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Abstract: Permeable pavement has been considered an effective low impact development (LID)
strategy in attempts to mitigate the environmental impacts of natural surface depletion brought about
by urbanization. A concern associated with the pavement’s hydraulic performance is its sensitivity to
clogging. This study aims to investigate the permeability reduction due to particle-related clogging of
pervious concrete (PC), a type of sustainable pavement surface. Permeability tests revealed that the
flow within PC samples shows turbulence, and a nonlinear relationship between discharge velocity
and hydraulic gradient is necessary to measure the permeability coefficient. Permeability loss due to
particle-clogging is influenced by the size of both PC aggregates and clogging particles. Clogging
with graded sand particles causes more severe reduction compared to single-sized sands.

Keywords: permeability; permeable pavement; clogging behavior; constant head test; low impact
development

1. Introduction

Over the past century, natural surfaces have been converted into impermeable finishes such
as pavements, parking lots, and roofs. These changes in land use associated with urbanization
have had significant effects on the hydrologic response of drainage basins, as reported by various
researchers [1–5]. Consequently, the quantity and frequency of floods in streams have been
magnified [5]. According to Chithra et al. [2], increases in impervious cover not only alter the urban
hydrology but also degrade the aquatic ecosystem. In the event of rainfall, pollutants such as sediment,
pesticides, and petroleum products, to name a few, are accumulated and rapidly transported by surface
runoff to nearby water bodies. The authors note that this situation is compounded by the urban heat
island (UHI) effect. This refers to the phenomenon where atmospheric and surface temperatures in
urban areas are higher than in rural areas.

In spite of pervasive changes to urban hydrology, city planners and stormwater engineers have
addressed the necessity of strategic planning for urban growth in order to alleviate the negative
impacts of urbanization on natural resources [1,5]. Stormwater management measures commonly
referred to as low impact development (LID), sustainable drainage systems (SUDs), or stormwater best
management practices (BMPs) [6] have shown promise in mitigating the effects of urbanization and
land development [7–9]. The underlying principle of these measures is to maintain the hydrology of an
urban watershed in order to approach its natural condition before it was developed [8,10]. According
to Coffman [10], reducing the amount of impervious surfaces of a developed site is one LID design
principle that can restore the hydrologic function of a watershed.

Permeable paving is one LID measure that can be used as an alternative to conventionally
impervious surfaces (such as low-traffic roadways, path walks, and car parks [8,11]), which generally
catch two-thirds of rainfall in an urban watershed [12]. Unlike traditional pavement surfaces like
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concrete and asphalt, permeable pavements have voids in their structure that are specifically designed
to promote infiltration and storage of stormwater through the paving layers [6,12].

A number of studies have indicated the capacity of various permeable pavement materials in the
attenuation of runoff rate and volume. Booth and Leavitt [13] evaluated the degree of surface runoff
reduction of four permeable pavement types including Grasspave2®, Gravelpave2®, Turfstone® and
UNI Eco-Stone®. Based on their monitoring, they found that the permeable stalls showed virtually
no surface runoff compared to the control asphalt pavement which generated a runoff nearly equal
to the maximum rainfall intensity. In a laboratory test conducted by Sañudo-Fontaneda et al. [14],
interlocking concrete block pavement (ICBP) models also showed a residual runoff of 0.5–10%.

Runoff from street surfaces generally contains a large volume of contaminants [15]. LID pavements
have been identified as being effective in filtering pollutants like suspended solids (SS) and heavy
metals by trapping them within the voids of pavement layers as shown in the literature [16–19].
With the promising filtration capacity of permeable pavement comes a great concern of its susceptibility
to clogging [11]. As pollutants are trapped in the voids, the hydrologic efficiency of LID pavement
may be reduced. The permeability loss due to particle clogging can be very dramatic: some field tests
report a 92% reduction in infiltration rates after two months of testing [20]. Some authors [21] have
observed significant infiltration reductions from 290 mm/min to 19 mm/min after approximately two
years of operation.

Many field and laboratory investigations have been made regarding the clogging dynamics
of permeable pavements. The long-term performance associated with particle clogging is typically
influenced by a wide range of factors and local conditions, including pavement type and design [22–24].
Laboratory assessments conducted by Andrés-Valeri et al. [22] indicated that porous concrete pavement
showed less clogging potential than porous asphalt pavement due to its higher infiltration capacity
and recovery from clogging. In another laboratory study [23] it was observed that particle clogging
occurred on the surface for porous asphalt and on the geotextile for Hydrapave® after 12 years
of stormwater simulation, whereas Permapave® showed no clogging even after 26 years. Martin
et al. [24] investigated the clogging behavior of porous asphalt, with aggregate gradation considered.
They found that the clogging rate can be estimated as a function of the gradation of aggregates and
clogging materials.

The properties of clogging particles are also considered to have an influence on the permeability
degradation of permeable pavement [25–28]. Coughlin et al. [26] evaluated the clogging effect of sand
and sodium montmorillonite (clay) in pervious concrete and concluded that clay causes ten times more
infiltration reduction. Regarding clogging with sand, the experiments carried out by Deo et al. [27]
showed that permeability reduction was more severe with finer gradation than coarser gradation of
clogging materials. Their test results along with pore size analysis revealed that there is a certain ratio
of pore size to particle size that yields the highest clogging degree.

In addition to particle-related clogging, porous pavement may be clogged as a result of permanent
deformation [29]. Deformation-related clogging is the reduction in void content caused by cumulative
rutting from traffic loads. Pore size may also be reduced due to binder breakdown [30]. Because of
the exposure to air of porous mixtures, the binder ages faster, resulting in a loss of cohesion which
contributes to a reduction in pore size. The present study aims to understand the hydraulic behavior of
permeable pavement, specifically that of pervious concrete. Pervious concrete is a type of permeable
pavement composed of coarse aggregates only and no fines. Furthermore, the present study aims
to investigate two factors that influence the clogging processes of pervious concrete: aggregate size,
and clogging particle size and gradation. To accomplish this, laboratory experiments were carried
out in order to evaluate the permeability characteristics of pervious concrete pavement. Permeability
values were assessed in two scenarios, which were newly built and clogged condition. The scenarios
considered three different aggregate sizes and four different clogging particle sizes.
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2. Materials and Methods

2.1. Pervious Concrete Specimens

Three kinds of pervious concrete (PC) specimens were used in this study. The PC mixtures
were made with aggregates of the size proportions shown in Table 1, and polyurethane binder.
The Elastopave® polyurethane, supplied by BASF, was composed of two components: polyol and
other additives, and methylene diphenyl diisocyanate (MDI). The specimens used for testing were of a
cylindrical shape, with a diameter of 100 mm and a height of 150 mm.

Table 1. Pervious concrete (PC) specimen composition.

Specimen
Designation

Percentage of Aggregates (%) Nominal Max. Aggregate
Size (NMAS) (mm)

Binder
Content (%)8–10 mm 5–8 mm 3–5 mm

PC A 100 0 0 10 5
PC B 0 100 0 8 5
PC C 0 0 100 5 5

Each specimen was tested for porosity using an apparatus for the determination of theoretical
maximum specific gravity and density of bituminous paving mixtures. The weights of the dry specimen
and the water-filled container were measured. Then, the specimen was submerged and vacuumed
while mounted on a shaking table for at least 10 min. Using Archimedes’ principle, the volume
displaced by the specimen was taken as the volume of solids (Vs). The volume of pores (Vp) was
then calculated by subtracting Vs from the total volume (Vt) obtained from linear measurements.
The volumetric porosity was calculated by the equation

p =
Vt − Vs

Vt
× 100. (1)

The pore size distribution of pervious concrete was analyzed using an image processing method.
Slices of 25 mm thickness were trimmed from the top and bottom of the cylindrical specimen using a
circular saw. Two cylinders were cut for each mixture, resulting in four slices and eight faces, with each
slice containing two faces. The slices were washed, dried, and brushed to remove the debris from
cutting. Their surfaces were carefully painted white using a rubber paint roller to improve the contrast
between the pores and solids. Using a flatbed scanner, each surface was then scanned at 1200 dpi
resolution. The resulting images were processed using ImageJ software for cropping, thresholding,
de-noising, and analyzing pore sizes, a technique similar to that used by Deo et al. [27]. Figure 1 shows
the pore size distribution obtained from image processing. The representative pore size is the diameter
corresponding to the 50% cumulative frequency [27]. The pore properties of each specimen can be
found in Table 2. From the figure, it can be observed that the sizes of pores vary with aggregate size.
It can be seen that the specimens with higher nominal maximum aggregate size (NMAS) had a higher
proportion of large pores, whereas the specimens with lower NMAS had a relatively large percentage
of small pores. This agrees with the findings of other studies related to image analysis of pore structure
of porous materials [27,31].
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Figure 1. Pore size distribution curve of PC specimens.

Table 2. Pore properties of PC specimens.

Specimen Designation NMAS (mm) Porosity (%) Representative Pore Size (mm)

PC A 10 30.7 2.847
PC B 8 31.0 2.425
PC C 5 34.3 1.768

2.2. Clogging Particles (CP)

To simulate the clogging effects of road dust particles, dry silica sand was used to permeate
the pervious concrete specimens. Four gradations of silica sand were adopted in this study: three
single-sized fines ((a) CP 1—0.6–0.85 mm, (b) CP 2—0.425–0.6 mm, and (c) CP 3—0.25–0.425 mm)
and one graded fine (CP 4) which represented the size distribution of road dust in Seoul, Korea [32].
The gradation of fine particles used to simulate clogging is shown in Figure 2. Gradation parameters
such as the uniformity coefficient (Cu) and gradation coefficient (Cc) are indicated in Table 3.
The clogging particle sizes and gradation were chosen in an attempt to evaluate the critical size of
uniform sand trapped in each specimen, and to investigate the effect of particle gradation on clogging.
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Figure 2. Particle size distribution curves of clogging particles (CPs).
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Table 3. Gradation properties of clogging particles.

Clogging Particle CP 1 CP 2 CP 3 CP 4

D10 (mm) 0.64 0.44 0.23 0.15
D30 (mm) 0.69 0.48 0.27 0.25
D60 (mm) 0.74 0.52 0.31 0.5
D50 (mm) 0.7 0.5 0.3 0.4

Cu 1.16 1.18 1.35 3.33
Cc 1.01 1.01 1.02 0.83

2.3. Measurement of Permeability

The coefficient of permeability (k) is a parameter that was used to characterize the hydraulic
behavior of pervious concrete in this study. Constant head permeability tests were conducted as these
are more applicable to highly porous materials. A schematic diagram of the laboratory equipment used
to measure k is illustrated in Figure 3. Each specimen was prepared by wrapping it with layers of thin
rubber and then locking it tightly in a metal casing to ensure that water flowed along the longitudinal
direction of the sample. This was very important to preventing the short-cutting of flow through the
side of the specimen as this situation greatly affects measurement. The specimen was then assembled
over the tail frame and under the constant head frame. The constant head frame kept the water level
above the sample (h1) maintained and an adjustable buffer tank connected to the tail frame controlled
the water level for permeability evaluation (h2). The buffer tank was seated on a platform that could
be moved at different heights using a hand wheel screw jack.
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Figure 3. Constant head permeability test diagram.

During the test, water was supplied to the head frame via a flowmeter and was allowed to move
through the specimen, then to the tail frame, then to the buffer tank, and finally to the measuring tank.
The amount of water discharged through the sample was collected and measured while maintaining
constant upper (h1) and lower (h2) water levels. The measuring tank was equipped with a pressure
sensor that detected water level changes as water was being collected.

In the evaluation of the permeability coefficient (k) of the pavement specimens used in this
study, Darcy’s law was not used as it is only applicable to soils which have a laminar flow condition.
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According to Darcy’s law, the discharge velocity (v) is directly proportional to the hydraulic gradient
(i), which is given by the equation

v = ki. (2)

A nonlinear equation was adopted in permeability calculations as it has been observed by some
authors [29–32] to produce an excellent fit when used to evaluate the permeability characteristics of
highly pervious coarse-grained materials. The relationship in this equation is expressed as

v = kin (3)

Authors have suggested that in a constant head permeability test, the nonlinear relationship can
be obtained by measuring the discharge velocity at several different hydraulic gradients. The variable
n is considered to be an experimental index of flow type which is equal to 1 for laminar flow, and 0.5
for turbulent flow. The value of k is equal to the value v when i = 1.0 [33,34].

2.4. Experimental Program

In this study, the permeability assessment was divided into two parts. The first part was the
evaluation of the original permeability of the pervious samples. The second part was the monitoring
of changes in the permeability characteristics of the test specimens due to particle-related clogging.
After measuring the initial permeability, clogging simulations were performed. Approximately 2.5 g of
clogging particles was sprinkled on the surface of each specimen while in the permeameter. After the
addition of CP, the permeability was measured. Sand was progressively added in 2.5 g increments,
and then the permeability measured, until one of three conditions was met: (a) a sand cake layer was
formed on the surface; (b) there was no change in the permeability coefficient; or (c) the permeability
coefficient approached zero. At the end of each permeability assessment, the specimen was removed
from the equipment and then de-clogged by washing with tap water using a garden hose. Efforts were
made to remove all of the sand that was trapped. This was done by shaking and rotating the specimen,
while it was subjected to pressure washing, for at least 30 min. After de-clogging, the permeability
was measured to verify that the original permeability had been retained. The same specimen was used
for clogging evaluations using the four gradations of CP. That is, for one pervious concrete specimen, a
permeability with simulated clogging experiment was conducted four times. A total of 12 experiments
were conducted with different combinations of PC specimens and CPs, as is indicated in Table 4.

Table 4. Experimental program.

Experimental Code Pervious Concrete Specimen Clogging Particle

A1 PC A CP 1
A2 PC A CP 2
A3 PC A CP 3
A4 PC A CP 4
B1 PC B CP 1
B2 PC B CP 2
B3 PC B CP 3
B4 PC B CP 4
C1 PC C CP 1
C2 PC C CP 2
C3 PC C CP 3
C4 PC C CP 4

3. Results

The initial permeability (ko) of the new PC specimen was determined using the constant head
concept as described in the previous section. For all specimens, the discharge velocity was measured
at four different hydraulic gradients to verify the flow condition mentioned in the previous section.
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Figure 4 shows the results of the initial permeability tests conducted for A1, B1, and C1. With regard
to the plot, it can be seen that the assumption of non-laminar flow in pervious concrete does hold true,
since the values of v and i reflect a nonlinear relationship. A regression analysis was performed on
these data and revealed a good fit with the modified Darcy’s law equation (Equation (3)). Curve fitting
parameters k and n were obtained, and the results are presented in Table 5. The values of n appear to be
less than 1.0, which indicates signs of turbulence. This is in good agreement with the results of several
studies [33–36]. Furthermore, based on the initial permeability values measured, it can be concluded
that particle gradation affects the infiltration ability of PC specimens. In this study, the specimen with
the largest nominal maximum aggregate size had the fastest discharge velocity for all head differences,
whereas the specimen with the smallest NMAS had the slowest discharge velocity. It can be seen that
an increase in aggregate size corresponded to an increase in the permeability coefficient. This can be
attributed to the pore structure of the material since pervious concrete specimens have pore sizes that
are proportional to their aggregate sizes. As presented in Table 2, larger aggregate sizes yielded larger
representative pore sizes.
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Table 5. Regression analysis results.

Specimen Designation Initial Permeability,
ko (mm/s)

Experimental
Variable, n

Coefficient of
Determination, R2

PC A 7.74 0.6786 0.9992
PC B 5.35 0.7259 0.9917
PC C 5.06 0.6737 0.9996

The reduced permeability was monitored for the entire duration of the clogging simulations.
Permeability measurements were carried out with every incremental addition of clogging particles for
different PC mixtures. The normalized permeability after each cycle was calculated using Equation (4),
where kc is the measured permeability for the current clogging cycle and ko is the initial permeability:

Normalized permeability =
kc

ko
(4)

Following the measurement of reduced permeability due to particle-clogging, the specimens
were de-clogged by pressure washing in an attempt to eliminate the trapped sand. The permeability
at i = 1.0 was measured to establish the initial permeability for the subsequent clogging experiment.
As shown in Figure 5, the permeability was restored to its original value. The average values of k for
four test cases per specimen are summarized in Table 6.
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Table 6. Average initial permeability values.

Specimen Designation Average Initial Permeability (mm/s)

PC A 7.73
PC B 5.43
PC C 5.03

Figure 6 shows the permeability reduction in PC specimens A, B, and C after different clogging
cases. Three single-sized clogging particles (CP 1, CP 2, and CP 3) having mean diameters (D50) of 0.7,
0.5, and 0.3 mm, respectively, were used to investigate which road dust size is critical to a particular
gradation of pervious concrete pavement. The critical particle size was assessed depending on the
degree of permeability loss measured before the terminal stage was reached (i.e., the stage at which
one of the conditions discussed in the previous section was met). Furthermore, one non-uniformly
graded sand (CP 4) having mean diameter of 0.4 mm was used to assess the effect of clogging particle
gradation to clogging behavior.

From Figure 6a, it can be observed that the permeability of sample A was reduced to a maximum
of 34%, which was caused by CP 2. Clogging particles CP 1 and CP 3 both reduced the permeability by
only 14%, with CP 1 having a higher clogging rate than CP 3. For this specimen, A1 was observed to
have a relatively large clogging particle size compared to pore size, which inhibited more particles
from entering through the voids. A3 was observed to have a relatively small particle size compared
to pore size, which resulted in the passage of most particles through the end of the specimen. When
considering the slope of the curves for A1, A2, and A3, it can be seen that the slope is at a maximum
for A1 until midway through the clogging simulation. This suggests that the surface pores were easily
blocked by large particles but only until the addition of a total of 12.5 g. After that, further addition of
particles did not show more permeability reduction because sand could no longer penetrate the pores.
A2 was found to have reached further sand addition and showed the most severe degree of clogging.
This implies that CP 2 has the highest potential of being trapped and retained in the pores, among the
three CP.

From Figure 6b, it may be noted that B1, B2, and B3 reveal reductions in permeability of 6%,
26%, and 67%, respectively. B1 and B2 were barely clogged due to their relatively small pore sizes,
compared with the large particle sizes which resulted in unsuccessful clogging of a majority of the
particles. B3 exhibited the highest clogging effect. However, the rate of clogging was so gradual that
it took 60 g of sand to reach the terminal stage. CP 3 was found to be successfully trapped in pores,
based on its consistent clogging rate.



Sustainability 2018, 10, 4845 9 of 12

Sustainability 2018, 10, x FOR PEER REVIEW  8 of 13 

 
Figure 5. Relationship between initial permeability and de-clogged permeability (i=1.0). 

Table 6. Average initial permeability values. 

Specimen 
Designation 

Average Initial Permeability 
(mm/s) 

PC A 7.73 
PC B 5.43 
PC C 5.03 

Figure 6 shows the permeability reduction in PC specimens A, B, and C after different clogging 
cases. Three single-sized clogging particles (CP 1, CP 2, and CP 3) having mean diameters (D50) of 0.7, 
0.5, and 0.3 mm, respectively, were used to investigate which road dust size is critical to a particular 
gradation of pervious concrete pavement. The critical particle size was assessed depending on the 
degree of permeability loss measured before the terminal stage was reached (i.e., the stage at which 
one of the conditions discussed in the previous section was met). Furthermore, one non-uniformly 
graded sand (CP 4) having mean diameter of 0.4 mm was used to assess the effect of clogging particle 
gradation to clogging behavior.  

 
(a) 

 

0

2

4

6

8

10

0 2 4 6 8 10D
ec

lo
gg

ed
 P

er
m

ea
bi

lit
y 

(m
m

/s)

Original Permeability (mm/s)

PC A

PC B

PC C

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65

N
or

m
al

iz
ed

 p
er

m
ea

bi
lit

y

Cumulative amount of CP (g)

A1

A2

A3

A4

Sustainability 2018, 10, x FOR PEER REVIEW  9 of 13 

 
(b) 

 

 
(c) 

Figure 6. Reduction in permeability coefficients during particle clogging simulations: (a) PC A; (b) PC 
B; and (c) PC C. 

From Figure 6a, it can be observed that the permeability of sample A was reduced to a maximum 
of 34%, which was caused by CP 2. Clogging particles CP 1 and CP 3 both reduced the permeability 
by only 14%, with CP 1 having a higher clogging rate than CP 3. For this specimen, A1 was observed 
to have a relatively large clogging particle size compared to pore size, which inhibited more particles 
from entering through the voids. A3 was observed to have a relatively small particle size compared 
to pore size, which resulted in the passage of most particles through the end of the specimen. When 
considering the slope of the curves for A1, A2, and A3, it can be seen that the slope is at a maximum 
for A1 until midway through the clogging simulation. This suggests that the surface pores were easily 
blocked by large particles but only until the addition of a total of 12.5 g. After that, further addition 
of particles did not show more permeability reduction because sand could no longer penetrate the 
pores. A2 was found to have reached further sand addition and showed the most severe degree of 
clogging. This implies that CP 2 has the highest potential of being trapped and retained in the pores, 
among the three CP. 

From Figure 6b, it may be noted that B1, B2, and B3 reveal reductions in permeability of 6%, 
26%, and 67%, respectively. B1 and B2 were barely clogged due to their relatively small pore sizes, 
compared with the large particle sizes which resulted in unsuccessful clogging of a majority of the 
particles. B3 exhibited the highest clogging effect. However, the rate of clogging was so gradual that 
it took 60 g of sand to reach the terminal stage. CP 3 was found to be successfully trapped in pores, 
based on its consistent clogging rate. 

From Figure 6c, it can be concluded that the permeability of C3 was reduced by twice as much 
as for C1 and C2, which had permeability losses of 35% and 31%, respectively. For specimen C, CP 1 
and CP 2 were also observed to be relatively large with regard to penetration of the pores. CP 3 was 

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65

N
or

m
al

iz
ed

 p
er

m
ea

bi
lit

y

Cumulative amount of CP (g)

B1

B2

B3

B4

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65

N
or

m
al

iz
ed

 p
er

m
ea

bi
lit

y

Cumulative amount of CP (g)

C1

C2

C3

C4

Figure 6. Reduction in permeability coefficients during particle clogging simulations: (a) PC A; (b) PC B;
and (c) PC C.

From Figure 6c, it can be concluded that the permeability of C3 was reduced by twice as much
as for C1 and C2, which had permeability losses of 35% and 31%, respectively. For specimen C, CP 1
and CP 2 were also observed to be relatively large with regard to penetration of the pores. CP 3 was
found to have a gradation that could successfully clog sample C, exhibiting the highest clogging rate
(maximum slope) and resulting in a 61% permeability loss. CP 3 was considered to be critical for both
samples B and C, but due to the difference in NMAS and corresponding pore size, a lesser amount of
sand was needed to clog sample C than B.
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From the results of the clogging simulations, it was found that for all aggregate sizes there were
clogging particle sizes that seemed too big and too small which failed to effectively reduce the pore
sizes of pervious concrete. It was found that clogging particles between those sizes were successfully
trapped in the pores, yielding the highest permeability losses. Among these successful clogging
sizes, the smallest is considered to be the size that causes the most severe permeability reduction,
because the terminal permeability of clogged pervious concrete will be governed by the permeability
of the clogging material. For this reason, clogging is considered to be significantly influenced by
the minimum particle size that can be trapped in (and not flushed from) the pores. Based on these
observations, the effective diameters of the critical clogging particles for sample A (NMAS = 10),
sample B (NMAS = 8), and sample C (NMAS = 5) are 0.5, 0.3 and 0.3 mm, respectively. It should be
noted that sample A has the highest pore size and sample C has the smallest pore size (see Table 2).
This may imply that the critical particle size varies with NMAS as well as representative pore size of
pavement material.

The degree of clogging due to non-uniform sand (CP 4) was also assessed for the three PC
mixtures. CP 4 represents the gradation of actual road dust that was collected from Seoul, Korea.
Based on Figure 6, permeability loss due to graded sand ranged from 80–90%. This is relatively high
compared to the degree of clogging caused by the single-sized sands which amounted to a maximum
of 67% permeability reduction and an average of 32%. Unlike the single-sized clogging particles,
CP 4 contained particles of a wide range of sizes. The larger sands filled surface pores easily and the
smaller sands were deposited in tinier voids, causing a much greater pore size reduction.

Based on the results of A4, B4, and C4, it can be seen that there is a decrease in the amount of
particles needed to reach the terminal stage of clogging when there is a decrease in the aggregate
size. This indicates that particle clogging occurs faster for pervious concrete mixtures with smaller
NMAS. As mentioned in the previous section, specimens with larger aggregates have bigger pores,
and require more particles to fully clog the voids. This may suggest that increasing the nominal
maximum aggregate size of pervious concrete can be effective in delaying the permeability reduction
caused by particle clogging.

4. Conclusions

In this study, constant head permeability tests were carried out to evaluate the hydraulic
characteristics of pervious concrete mixtures with different nominal maximum aggregate sizes, before
and after cyclic clogging simulations. From the results of the experiments reported in this study, the
following conclusions can be drawn:

• Aggregate size influences the pore distribution of pervious concrete. Pervious concrete with
higher NMAS contains bigger pores compared to pervious concrete with lower NMAS. Thus,
an increase in NMAS results in an increase in representative pore size.

• Aside from porosity and NMAS, representative pore sizes have significant effects on the
permeability of pervious concrete. The permeability was found to be 7.73, 5.43, and 5.03 mm/s
for NMAS 10, 8, and 5 mm, respectively. It was found that the values of permeability, NMAS,
and pore size are proportionally related given similar porosities.

• For aggregates with high porosity such as the pervious concrete specimens used in this study,
Darcy’s law may no longer be used to determine the coefficient of permeability. A nonlinear
relationship can be adopted to characterize the non-laminar flow found in highly permeable
concrete mixes.

• With regard to the clogging of single-sized particles, it was observed that for certain aggregate
sizes and corresponding pore sizes, some clogging particles resulted in significant pore reduction
due to their size. The clogging particles that caused the highest permeability loss were found to
have the smallest diameters that could allow particles to pass through the surface pores and be
retained in the internal pores without being washed out.
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• A minimum permeability loss of 80% was recorded among specimens permeated with graded
clogging particles, whereas for specimens subjected to single-sized sand clogging, a maximum
permeability reduction of 67% was recorded. Due to the presence of particles with a wide range
of sizes, the degree of clogging of non-uniform sand was more severe compared to clogging of
single-sized sands.

• When the pores of pervious concrete are fully covered by clogging particles, it appears that for
some test cases, the permeability at terminal stage may be limited by the infiltration capacity of
the clogging materials.
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