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Abstract: With the rapid development of sensing, communication, computing technologies, and
analytics techniques, today’s manufacturing is marching towards a new generation of sustainability,
digitalization, and intelligence. Even though the significance of both sustainability and intelligence
is well recognized by academia, industry, as well as governments, and substantial efforts are
devoted to both areas, the intersection of the two has not been fully exploited. Conventionally,
studies in sustainable manufacturing and smart manufacturing have different objectives and employ
different tools. Nevertheless, in the design and implementation of smart factories, sustainability,
and energy efficiency are supposed to be important goals. Moreover, big data based decision-making
techniques that are developed and applied for smart manufacturing have great potential in promoting
the sustainability of manufacturing. In this paper, the state-of-the-art of sustainable and smart
manufacturing is first reviewed based on the PRISMA framework, with a focus on how they interact
and benefit each other. Key problems in both fields are then identified and discussed. Specially,
different technologies emerging in the 4th industrial revolution and their dedications on sustainability
are discussed. In addition, the impacts of smart manufacturing technologies on sustainable energy
industry are analyzed. Finally, opportunities and challenges in the intersection of the two are
identified for future investigation. The scope examined in this paper will be interesting to researchers,
engineers, business owners, and policymakers in the manufacturing community, and could serve as
a fundamental guideline for future studies in these areas.

Keywords: sustainable manufacturing; sustainability; energy efficiency; smart factory; smart
manufacturing; big data; decision-making

1. Introduction

Since James Watt redesigned the steam engines in the 18th century, which was the cornerstone
to the 1st industrial revolution, human’s capability to manufacture products has been improved
dramatically. The way of manufacturing products has also changed significantly in the following
the 2nd and the 3rd industrial revolutions, which arose from the usage and popularity of electric
energy and new communication technologies, respectively. Nowadays, with the availability of
big data, the advancement of computational capability, and the popularization of smart devices,
the manufacturing industries is marching towards a new era, namely, the 4th industrial revolution.
The emerging manufacturing paradigm is often referred as “smart manufacturing”, which combines
artificial intelligence, communication technology, and then applies them to production and business so
that the production efficiency is enhanced, customized needs are satisfied, and the production cost is
lowered [1,2].
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Compared with traditional manufacturing, the most distinctive features of smart manufacturing
are greatly enhanced flexibility, automation, intelligence, high integration, and sustainability [3–5].
Big data, smart sensors, Internet of Things (IoT), etc. are all driving forces for smart manufacturing.
Smart manufacturing brings such a profound impact to various industry sectors with broad
applications including integrated circuit manufacturing, workload rescheduling, and production
optimization. For example, modern computer processing techniques, such as deep learning, utilizes big
data to characterize, model, and control production processes, leading to enhanced product quality and
lowered risk of accidents [6–11]. Smart sensor techniques, like radio-frequency identification, enables
tracking and identifying the position of a large number of objects accurately [12]. Smart grid system
helps to distribute the power adaptively and adjust the power supply intelligently [13]. Combination
of cloud computing and high performance computing improves decision making of terminals [14,15].
Additive manufacturing greatly changes the way of fabrication and enhances customization. Those
technologies have been increasingly applied to more and more areas, attracting more attention
from industry, academia, and governments. Many countries have realized the importance of smart
manufacturing and therefore invested hugely in the realization of this paradigm. For example, the U.S.
launched two related manufacturing institutes, Digital Manufacturing and Design Innovation Institute
(DMDII) and Clean Energy Smart Manufacturing Innovation Institute (CESMII). The U.S. government
invests about $50 million and $70 million in DMDII and CESMII, respectively. China devotes three
billion dollars in a plan called “Made in China 2025”, the goal of which is to speed up the pace of
modernized industries [16]. Complying with the emphasis of government, smart manufacturing draws
significant attention in academia. Recent research mainly focuses on the optimization of schedules and
adjusting production process regarding the prediction so that the efficiency can be boosted.

Although industrial revolutions stimulate the improvement of residents’ living standard and
bring much convenience in almost every aspect of society, serious issues such as environment pollution
and global warming also arose, owing to the combustion of large amount of fossil fuels and noxious in
manufacturing. Industries emissions are the main source of greenhouse gases, such as CO2. According
to an EPA report, annual industrial CO2 emissions in the U.S. accounts for 21% of overall emissions [17].
In addition, shortage of natural resources, resulting in the increase of energy price is a critical pressing
issue that needs to be addressed [18]. Figure 1 illustrates the energy consumption in the U.S. from
1949 to 2016. The data source is from the U.S. Energy Information Administration [19]. It can be
concluded that industrial energy consumption is the most important part of the overall energy usage,
and it was almost doubled compared with 1949. The demand of balancing ecosystems and leaving
enough resources for future generations places significant pressure on manufacturing [20]. In order to
deal with environmental problems and conserve energy and natural resources, concept of sustainable
manufacturing was proposed and has attracted substantial attention from governments, industry,
and academia [21]. Sustainable manufacturing aims at changing the traditional production mode to a
less poisonous emission, which is more environment-friendly, less consumption of natural resource
and long-term insight style. Many countries promulgated policies related to promote sustainable
manufacturing, such as restricting the emissions of factories and encouraging renewable energy.
In academia, sustainable manufacturing is also a field of popular interest. Most researchers focus on
clean energy solutions, reducing waste, and recycling.

Smart manufacturing and sustainable manufacturing are two important themes in modern
industries, and there are many intersections between the two. Sustainability is one of the essential goals
of smart manufacturing, which is significant due to current environmental issues and consumption of
natural resources. For example, one of the core ideas of smart manufacturing is to improve energy
efficiency [22]. Improving energy efficiency means more energy saving and less consumption of
natural resources. Therefore, energy efficiency is also a solution to sustainability [23,24]. Rich research
results are available in both areas. However, there are a limited number of works in the intersection of
sustainable manufacturing and smart manufacturing. Additionally, the overlap of these two areas is
not sufficiently addressed in the existing literature.
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Figure 1. Consumption trend of different applications in U.S. from 1949-2016. The data is from the U.S.
Energy Information Administration [19].

In order to promote smart factories with sustainability and tackle the aforementioned challenges in
the future, we aim at summarizing the existing achievement and drawing more attention to the critical
research gap. In the rest of this article, the definition and characteristics of sustainable manufacturing
are first presented, followed by a discussion on the current related policies in major industrial countries.
Smart manufacturing is then introduced. The hierarchy of smart manufacturing in energy levels as well
as the key technologies related to sustainable manufacturing are discussed in detail. The current stage
of sustainable energy solutions and the existing smart manufacturing applications related to energy
devices are also reviewed. Finally, we summarize the current research gap and possible approaches to
further promoting energy sustainability in smart factories.

2. Description of Target Literature

This paper reviews the state-of-the-art of smart manufacturing and notion of sustainability
by identifying the significant influcence of smart manufacturing on society, industries as well
as environment and innovation achieved in recent years. To conduct the review systematically,
we organize our review based on the PRISMA framework [25].

First, a database of the scientific literature and government reports is built based on the
search results from Google Scholar, Google Search, and Web of Science. Most of the materials are
peer-reviewed scientific literature, while reports from government and other authentic institutions
are also included, because national policies and global trends of smart manufacturing are critical
topics addressed in this article. To identify the target scientific literature, several key words, “smart
manufacturing”, “sustainability”, “intelligent”, “IoT”, and their combinations are chosen.

Second, the papers in the database are filtered using the following rules.

(1) For the papers published within recent three years, only the literature from top journals or
conferences in the corresponding field are chosen.

(2) For the papers that have been published more than three years ago, the literature with high
citations are considered.

(3) For the papers have been published more than seven years ago, they are only used as an
introduction to the key concept or descriptions of conventional technologies.
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The year distribution of the reviewed papers is illustrated in Figure 2. For studies focused on the
same problem, the latest and most recognized papers, which are usually published in more authentic
journals, are chosen as major references. In order to have an objective and comprehensive overview of
related topics, we have selected the most representative literature for each section. The referred papers
have more citations and are recognized for providing better insights of the investigated area.

2016-2018

39.7%
2011-2015

38.2%

Early than 2011

22.1%

Figure 2. Year distribution of reviewed literature.

Both smart manufacturing and sustainability are very broad concepts, and they are related to
numerous technologies, therefore, the literature from a wide range of sources are chosen. Figure 3
summarize the distribution of journals cited in this paper. It can be noticed that the most cited source
journal is Sustainability. Additionally, literature from more than 60 journals are reviewed, including
the top journals in sustainability, manufacturing, energy, and top conferences in computer science.

Figure 3. Journal distribution of reviewed literature.
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Figure 4 shows the distribution of the literature among different core aspects in our review.
Most topics have more than 10 references. Specifically, for promising topics that attract more attention
in academia and industry communities, more references are included to capture the quick advancement
in recent decades. For example, deep learning is an emerging area that has received more and more
attention globally. As a data analysis and prediction tool, deep learning shows its unsurpassed power
in many areas and is expected to have wide applications in smart manufacturing. Hence more literature
are reviewed to cover the details on this topic.

Figure 4. Section distribution of reviewed literature.

3. Green and Sustainable Manufacturing

In this section, we first present the definition and characteristics of sustainable manufacturing
and then introduce the current development and related policies.

3.1. The Definition and Characterization

Nowadays, the environmental disruption, climate warming, air pollution, and water contamination
are increasingly affecting residents’ life and health, and the shortage of energy and resources is also
exerting tremendous burden on manufacturing and policymakers. The traditional manufacturing fails
to meet current environmental requirements since it consumes the future generations’ resources and
harms the environment. Thus, the importance of sustainability is widely recognized, leading to the
development of sustainable manufacturing. A large and growing number of manufacturing companies
are realizing substantial financial and environmental benefits from sustainable business practices.

In manufacturing, sustainability refers to the creation of manufactured products through
economically-sound processes that minimize negative environmental impacts while conserving energy
and natural resources. Sustainable manufacturing not only benefits the next generations, but also
enhances employee, community, and product safety [26]. The criteria for sustainable manufacturing
can be summarized as follows [27]:

• no or little harm to the environment and society
• no reduction of natural resource
• capability of satisfying nowadays and future energy needs
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• high efficiency
• no toxic emission to air, land or water
• no or little greenhouse gases emission
• no pressure on future populations

To achieve sustainability in smart factories, a common concept called Source-System-Service route
(3S) is proposed [27]. Source step means the energy or resources used is clean, abundant, renewable,
inexpensive and environment-friendly. The system includes the enhancement of energy efficiency,
integration of machines and factories, multifunction and less energy waste or trash. Service step means
recycling, dependable and clean products.

3.2. Current Development and Policy

To prevent climate change, environmental disruption, and promote the advancement of sustainable
manufacturing, many countries launched related policies. China sponsored green manufacturing
as one of the major projects in manufacturing. In the 12th Five-Year Plan, the industries related
to environmental protection, energy saving, biotechnology, new energy, new energy vehicles are
emphasized [28].

In the European new seven-year 2020 program, the European Union plans to invest 7.8 billion
dollars to a program called “Factories of the Future” to promote smart manufacturing as well as
sustainable manufacturing [29]. The goal of this program is to develop clean, environmentally friendly
manufacturing [16]. The European Union plans to reduce up to 30% of the current energy consumption,
20% waste and 20% materials consumption in manufacturing processes, as well as integrate novel
technologies and develop up to 50 new applications [16].

The U.S. government invested 680 million dollars, of which 240 million is from public investment
and 460 from non-federal sources, to boost sustainable manufacturing, specifically clean energy,
and smart manufacturing [16]. Other countries, such as the United Kingdom, Australia and Korea,
also established policies or plans to promote the advancement of the 4th industries, and environment
friendly manufacturing [29].

4. Smart Manufacturing

As the subject of the 4th industrial revolution, smart manufacturing becomes a popular theme.
In this section, the definition of smart manufacturing is first presented, and then the role of
sustainability is explained. Finally, we state a hierarchy of manufacturing to enable responsive
analysis of the impact of different technologies on the production activities.

4.1. The Definition

Smart manufacturing is a very broad concept. Internet of Things (IoT), wireless sensor networks,
big data, cloud computing, and embedded system are all key enabling technologies [30]. Additionally,
improved measures or methodologies that can be used to modify the production process, increase
efficiency or reduce emission are also included in this concept. The aim of smart manufacturing
is to maximize profits of factories, nullify the risk of accidents and achieve zero-emission in the
production process.

A basic structure of smart manufacturing consists of machines, facilities or resources, communication
network, cloud computing, and monitoring or control terminals. Machines exchange information and
sensors send signals through the network to the cloud when they are running. In the cloud, data is
analyzed with machine learning or other information technologies simultaneously, and then the results
or predictions are sent to terminals for decision-making. In this process, the production is optimized
so that high efficiency and performance could be achieved. Except for production optimization, the
operating conditions of each machine are monitored, and the possible failure or potential errors are
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predicted in the cloud, and the manager can decide to make adjustments to the facility in advance,
which reduces the risk of accidents and avoids energy waste.

Smart manufacturing brings innovation into three aspects: horizontal integration, vertical integration,
and end-to-end integration. Horizontal integration means strengthening the cooperation among
companies or corporations; vertical integration refers to the integration among different subsystems
in each corporation; and end-to-end integration enables the combination of design, customers’
needs, and dynamic adjustment of production. By simultaneously performing horizontal integration,
vertical integration, and end-to-end integration, smart manufacturing is able to make the production
process more efficient, sustainable, cost-effective, and customized. The differences between smart
manufacturing and traditional manufacturing are summarized in Table 1 [30].

Table 1. Comparison of smart manufacturing and traditional manufacturing.

Smart Manufacturing System Traditional Manufacturing System

Multiple Resources Restricted and Prearranged Resources
Dynamic Routing Static Routing
Instant Interconnection No Interconnection
Self-organization Independent Control
Big Data Isolated Information

4.2. The Role of Sustainability in Smart Manufacturing

Smart manufacturing and sustainable manufacturing have many intersections. A critical goal
of smart manufacturing is to enhance production sustainability. When performing manufacturing
activities, the production cost is an essential factor that affects manufacturers’ managing strategies.
If the technology is intelligent in other aspects but energy costly, it can hardly be widely applied. Since
the price of energy is continuously increasing, the money spent on the purchase of raw materials and
energy, including electricity and fuels, accounts for a significant portion of the production budget.
High energy efficiency and low consumption mean more money savings. Thus, in order to maximize
the profits, sustainability needs to be taken into consideration by manufacturing companies.

In addition, because of the severe environmental pollution and disruption of natural resources,
more and more countries emphasize sustainability, as evidenced by the promulgation of various laws
and policies. The larger quantity of money invested, the more technologies and clean energy research
sponsored. Environment-friendly techniques will be the future trends both in academia and industries.
Consequently, sustainability is one core aspect of smart manufacturing.

4.3. The Hierarchy of Smart Manufacturing

A hierarchy of smart manufacturing process is defined in the existing literature for the convenience
of analyzing the energy efficiency of different technologies in the smart factories [31,32]. In this article,
a three-level hierarchy is adopted: process level, machine level, and factor and enterprise level.
The criteria of such divisions are the hierarchy of interaction and integration in the manufacturing
processes. The mechanism of increasing energy efficiency is quite different at different levels. The key
feature of one technology is identified by analyzing its impact and its implementation at a given level.
At each level, we first present its definition, and then summarize the possible approaches/techniques
as well as the potential improvements based on the criteria given in Section 3.1. Finally, following by
the list of the achievement at each level, the limitations and research gaps are discussed.

4.3.1. Process Level

Practice belonging to this level includes the research and innovation regarding fundamental
physical phenomena, the emerging methods or technologies that are different with the legacy
techniques, as well as the applications of new energy. Here, the physical phenomena refer to
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energy losses brought by physical mechanisms, such as material reflectivity, heat transfer, and heat
waste. Some researchers argue that the energy waste at this level is insignificant compared with
the total energy usage [32,33]. Nevertheless, the improvement of the fundamental physical process
is still remarkable to sustainability and energy efficiency, because many processes are mutually
interconnected, and enhancement of one process often results in the advancement of other connected
processes. The improvement is even more notable in the 4th industrial revolution, considering that
IoT becomes a critical in the smart factories. For example, the performance of electronic devices
or machines is greatly dependent on the performance of the cooling system. Studying the basic
process of cooling and heat transfer can increase the efficiency of the cooling unit, thus enhancing the
machine’s energy efficiency and reducing energy waste. Another example involves tool degradation.
Tool degradation almost exists in any manufacturing process and is the source of many undesirable
outcomes, e.g., deteriorated product quality, increased production costs due to reworking and
refurbishing, and reduced energy efficiency of machines. Some studies indicate that tool degradation
greatly influences the machine behavior and defines a limit to the device [31]. Furthermore, research
related to the mechanism of energy transformation is also desired. Study of recycling heat waste in
a certain process, for example, contributes to the conservation of energy and reduces energy waste.
Innovative manufacturing processes that consume less energy are also important for sustainability.
For instance, due to its numerous advantages over traditional fusion welding techniques, ultrasonic
metal welding has been popularly adopted in various industrial applications, such as lithium-ion
battery assembly [34–38], automotive body construction [39], and power device packaging [40].
Two important advantages of this process are its short cycle time and low energy consumption.

4.3.2. Machine/Station Level

Machine/station level focuses on the integration of different processes. The energy usage of this
level is the sum of all the processes. The energy efficiency (Effm) at this level is given as:

Effm =
Eprocess

Econsumed
.

As shown above, the energy efficiency of the machine level is proportional to the energy usage of
the processes. As mentioned in Section 4.3.1, the energy waste of single process may not be a large
percentage of the overall energy waste. However, the efficiency of the process level has a critical impact
on the energy efficiency of the machine level. In fact, doubling energy efficiency at process level will
lead to doubling efficiency at the machine level [31,41,42].

4.3.3. Factory Level

Factory level is a level where the efficiency is not just a sum of all the lower levels, but a result
of interaction among all subsystems. At this level, the facilities and machines are interconnected.
An improvement of a single component may have a significant impact on the others since the whole
system is working as an entity. The technologies are applied at this level influence the energy efficiency
by vertical and horizontal integration, which is one of the essential features that distinguish smart
manufacturing and traditional manufacturing. The mainstream research on smart manufacturing,
such as big data analytics and machine learning, mainly optimizes the performance at this level.
By adaptively allocating resources, optimally scheduling operations, and improving decision-making,
the energy and materials waste is reduced, and sustainability is thus enhanced.

4.4. Smart Manufacturing in the Energy Industry

According to the International Energy Agency (IEA), the manufacturing industry contributed 27%
of global final energy consumption in 2014, and the demand for energy resources in the manufacturing
industry is expected to keep rising as the development of world economies [43]. Sustainable energy is
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one solution to reducing the negative impact on the environment and increase energy sustainability.
Energy resource is one of the most critical resources for the manufacturing industry. Adopting
sustainable energy could reduce pollution and greenhouse gas emissions from the source, and lead to
improved energy sustainability during the whole product cycle.

The development of smart manufacturing technologies is very influential in the energy industry
and helps facilitate the deployment of sustainable energy. The cost of electricity from solar photovoltaic
and windfalls rapidly. Since 2010, prices of new solar photovoltaic have come down by 70%, wind by
25% and battery costs by 40%, and the sustainable energy is affordable to not only developed countries
but also developing countries [43,44].

The impacts of smart manufacturing technologies in the energy industry are reflected in
two major aspects. First, smart manufacturing technologies could improve the performances or
reduce the production cost of energy devices, such as energy collect devices and energy storage
devices. Second, energy factories could turn into “smart energy factories” with the help of smart
manufacturing technologies. The performance improvements of energy manufacturing devices and
energy manufacturing processes could help energy industry meet the drastically increasing demands
of energy resources, and thus enhance the energy sustainability from the source. Details of smart
manufacturing applications in the energy industry will be discussed in Section 5.

5. Applications of Smart Techniques in Sustainable Manufacturing

In this section, the case studies related to different smart techniques are classified and discussed.
For each technique, we first introduce the technique and then analyze its application in sustainable
manufacturing.

5.1. Deep Learning

Deep learning, as part of machine learning family, is now attracting increasing attention from
both academia and industries. Inspired by the structure of the human brain, deep learning mainly
utilities multilayer neural networks to classify data and predict trends. Deep learning needs to be fed
a large quantity of data, then typically using backpropagation algorithm to optimize the weights of
neurons until convergence. It has been proven to be successful and bring much breakthrough in a
wide range of fields, such as automatic speech recognition [45], natural language processing [46,47],
computer vision [48], and mobile advertising [49]. Compared with traditional machine learning
algorithms, deep learning is characterized by hierarchical learning, which requires more data and
higher calculation performance. Some popular deep learning architectures are as follows [50]:

• Convolutional neural networks (CNN)
• Long short-term memory networks (LSTM)
• Deep belief networks (DBN)
• Deep stacking networks (DSN)

The emergence of the IoT trend stimulates the success of deep learning. The popularity of the
Internet and automation technology provides a substantial amount of data. Big data provides a
sufficient amount of data to feed and train the neuron network, discovering the hidden pattern or
intricate structure. Meanwhile, the significant improvement of processing power is another factor that
drives the broad application of deep learning. A current single GTX 1080 GPU with computational
capability of 8.9 TFLOPS, is approximately twice as powerful as the best supercomputer in 2000,
which has only 4.9 TFLOPS computational capability. The rapid revolution of computing performance
shortens the time to obtain the outcome, and real-time analytics becomes feasible.

Recently, as a very effective method, deep learning is one of the most active research domains.
Many researchers devote their efforts to this area. In manufacturing, the application can be divided
into the following aspects:

• Quality inspection [6,51]
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• Fault diagnostic (detection, identification, estimation of magnitudes)
• Predictive analytics for defect prognosis [52,53]
• Condition monitoring [54,55]
• Service or operation planning [56,57]

For example, Nijat et al. [6] implemented stacked LSTM to extract features from time series data,
which switches the intensive hand-crafted feature extraction way to a more automatic and intelligent
way. Their network can also be used in process planning, monitoring the semi-finished products
quality and determining the next process step. Leng and Jiang [56] built a decision support system by
modifying stacked denoising auto-encoder to extract sentence-level characteristics, which integrates
the resources of different enterprises. Ren et al. [52] proposed a generic approach to predict defect
area and segment defect. Their network can achieve good performance on a small dataset and can
be applied to different types of surface, which reduces the cost of data collection. Chen et al. [58,59]
applied a deep neural network to classify rolling/bearing fault and predict remaining useful life
of bearing. Yu et al. [54] applied a multistage DBN-based extreme learning machine to credit risk
assessment. Leng et al. [57] combined a deep learning method with granular computing to service
planning. Zhao et al. [55] proposed a convolutional bi-directional LSTM method to monitor machine
health and eliminate noise intervention. Wu et al. [53] implemented LSTM to estimate remaining
useful life of machines, aircraft turbofan engines in particular. Xu et al. [51] utilized region proposal
network into standard parts inspection. Masci et al. [60] present a max-pooling CNN to inspect steel
defect, which obtained twice improvement in performance compared with traditional Support Vector
Machine classifiers. Shao et al. [61] developed a Restricted Boltzmann Machine based deep belief
networks to extract features from vibration signals and to characterize operation status of motors and
conduct fault diagnosis.

5.2. Smart Grid and Smart Metering

The smart grid is an electric network system that distributes the power effectively. This technology
implements advanced monitoring methods to capture the actions of consumers and power providers,
integrating the power distribution and generation as well as consumption so that the energy losses are
reduced, and the reliability of power supply is increased. In this technology, central controlling system,
named Supervisory Control and Data Acquisition system, is implemented, which supervises the energy
use of machines and factories, adjusting the power supply of the whole system dynamically [62–64].
The key technologies or features of smart grid include [13]:

• Smart meters
• State estimation
• Distributed generations
• Renewable energy integrations (REI)
• Bidirectional communication system (BCS)
• Automatic healing capability (AHC)
• Data security/cyber security
• Carbon emission reduction
• Meter data management (MDM)
• Field area networks (FAN)
• IT and back office computing
• Demand response
• Electricity storage devices
• Distribution automation

Mainly, the smart meter is an essential component of smart grid technology. The smart meter is a
digital meter that records energy consumption and sends data to the Internet. It not only monitors
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the performance of all equipment but also visualizes the flow of energy for the ease of understanding
the usage manners and consumption patterns. Herrmann et al. [62] propose an application of smart
meters in manufacturing. It turns out that by adopting different temporal resolutions in different
manufacturing levels, including process level, machine level as well as factory level, smart meters
are capable of capturing necessary loads and energy peaks of the production process and improving
energy efficiency in each level.

The smart grid has numerous advantages over the traditional grid system, such as high efficiency,
reliability, and economics. First, by tracing the energy usage, the energy peaks can be monitored
so that the distribution of power can be adjusted correspondingly, which effectively reduces the
excessive energy consumption. With a smart meter, the energy consumption is recorded more precisely
and virtualized, and the data collected in the cloud can be used to optimize the scheduling, which
greatly increases energy efficiency [62,65]. Second, by implementing state estimation and automation
technology, the possible fault of an electric net can be diagnosed, and the network is self-healing,
which increases the reliability of power supply, as well as the resistance to the damage of natural
disasters, such as hurricane and earthquake [66]. Besides, smart grid effectively reduces brownouts or
blackouts [67]. Third, energy costs are decreased by monitoring the hourly energy use and performing
dynamical adjustments with the help of smart meters. The data collected is transmitted to the Internet
or cloud for ease of analysis and managing usage. By arranging the energy-intensive task in the low
energy use time, factories can save energy and a large quantity of money [67–69]. For energy generators,
because the smart grid enables immediate communication with the end-users, they can arrange the
power plants more adaptively, so that the number of costly power plants could be decreased. Apart
from conventional smart grid technology, micro-grid is more stable and economic and is mainly
used in demand side management. Wang [70] proposed an optimization modeling for micro-grid.
The integrated genetic algorithm to solve the dilemma where the comfort of users and consumption
reduction cannot be both achieved. They conducted a simulation on a smart grid from Tianjin, and the
numerical results suggested an enhancement in demand response to the economic operation.

Smart grid plays an important role in sustainable manufacturing. For the traditional grid, one
big problem that hinders the popularity of renewable energy, such as wind and solar energy, is that
the generation of such electricity is always fluctuating and not stable. Since smart grid can monitor
the power demand and adjust the power supply dynamically and the capacity of renewable energy
is improved, the utilization of renewable energy can be increased. In addition, by monitoring the
performance of machines and optimizing schedule with smart metering, the supply of energy can
be adjusted dynamically, reducing energy waste and increasing energy savings, which contributes
to the energy sustainability. To evaluate the performance of smart grid on sustainability, Zhao [71]
conducted a systematic literature review and proposed a four-sustainability-criterion evaluation
framework, which employed stochastic Analytical Hierarchy Process (AHP) and fuzzy Technique for
Order Preference by Similarity to Ideal Solution (TOPSIS).

However, there are still some concerns about the smart grid. One concern is the security issue.
Since the data is transmitted online, it is vulnerable to attacks from hackers. Smart grid systems rely
on the meters and distributed computer agents. If hackers attack these automated control systems,
the whole power supply line could be cut off. Therefore, more research is desired on this issue.

5.3. Radio-Frequency Identification (RFID)

Radio-frequency identification technology (RFID) is used to trace and identify the assigned task of
each object. RFID mainly comprises such components: tags (transponders), readers, antenna, printers,
information systems, mobile devices, and point of sale with RFID readers. Figure 5 shows the basic
structure of RFID. In this technology, each object is attached to a unique tag. The specific information,
such as the procedure an object should be processed, is stored in the tag. There are some antennas on
the tag so that the communication and identification from a long distance are allowed. The signals sent
from antennas are collected by readers, which exchanges information with programmers to accomplish
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the desired processing task of the item. By RFID, the objects can be tracked very precisely, and even
in a wide area and among many objects, each tag can be distinguished, which is far better than the
traditional manual identification and classification.

The tags can be classified into active and passive categories. Active tags need a power source,
which is usually an onboard battery. Thus, the power capacity determines the lifetime of the tag.
The requirement of power source influences the size, price and lifetime of tags. In contrast, a passive
tag doesn’t need batteries, which is made of antennas, semiconductor chips, and some encapsulation.
The passive tag is powered by the tag reader. The energy is captured by the antenna. To power up a
passive tag, the radiation must be strong enough, and the magnetic induction or electromagnetic wave
capture must be implemented to transmit power to the tag. Although passive tags are smaller and
cheaper, the wave that a reader emits is much stronger than that of an active tag.

Figure 5. The structure of RFID.

The readers can be divided into two classes, i.e., passive readers and active readers. Passive
readers only receive radio wave signals and cannot charge tags. The advantage of passive readers
is that the wave range is broad and easy to adjust. The active readers can both charge tags and
receive radio waves. However, the reception range of active readers is relatively short compared with
passive readers.

RFID technology has been widely used in many areas [12], such as airport’s tracking baggage
system, monitoring oil drill pipe, recording insect motions as well as preventing collisions in mines.
Specifically, many industries adopt RFID technology to assist the production process and manufacture
customized products. For example, the Ford Motor Company used this technology to assemble cars
parts automatically, improving the quality and tracking on production line [72]. During the production
process, a vehicle is attached to a tag to specify what process to be done at each stage, satisfying
different customer needs. Implementing RFID decreases the operator error, and increase the efficiency
greatly. Compared with traditional tracking systems, RFID has the following features [73,74]:

1. Ease of identification. Because the tag attached to the item is assigned unique information, such as
manufacturing conditions and product type, the part is easy to identify and track during the
production. This feature is very important in mass production.

2. Simultaneous communication. The tag not only specifies what task to be done on the part,
but also keep updating during the production, recording the complete task as well as quality
diagnostics, which enables real-time inspection and monitoring.
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3. Automation. By attaching the tags to the item, the production process, including assembling,
packaging, and delivery is finished automatically. In addition, the performance history is
recorded, so that the manufactures can use such information as feedback to modify the production
process and improve the quality of products.

4. Improving efficiency at the enterprise level. RFID technology integrates designing, and customer
needs as well as manufacturing. Because the information on the tag is constantly updated,
the designers can change the production process easily to meet some special customer needs.
By shortening the response time, manufacturing efficiency is greatly improved, and the waste
(energy consumption and production cost) due to rescheduling induced by different customer
needs in mass customization production is minimized.

5.4. Big Data Analytics and Data Mining

Nowadays, data is being collected at all the levels in the manufacturing sector. The data size in
manufacturing is extremely large, and the manufacturing industry is marching towards a big data era.
Big data is characterized by four V’s, i.e., volume, variety, velocity, and veracity. High volume means
the size of the dataset is huge. High velocity indicates a high speed of data collection is extremely
fast. High variety represents there are numerous data sources and types. High veracity refers to the
high uncertainty and large noise in the collected data. In manufacturing, a large amount of data is
constantly generated, coming from process design, assembly, scheduling, instant communication,
quality examination and so on. Moreover, big data in manufacturing is unique and different than
other sectors. For example, manufacturing largely depends on human operations, so it is beneficial
to model and leverage human intelligence. Nevertheless, human intelligence is extremely abstract,
and the digitalization of such knowledge is very difficult. Furthermore, the decision-making processes
at different levels are dynamic and interactive with multiple objectives and constraints. Figure 6
illustrates the data sources in a modern manufacturing factory. The challenges brought by big data
and the uniqueness of manufacturing make the traditional data processing methodologies no longer
capable. Data mining technique offers a feasible solution.

Figure 6. Data sources in a modern manufacturing factory.
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Data mining is a tool that commonly implements machine learning, statistical methods, visualization
or other pattern recognition technologies to find useful features or trends. Since it is successful
in discovering potential patterns hidden inside big data, data mining can be used to optimize the
operation, improve products quality and other aspects, including fault recognition, quality diagnostic,
prediction, and scheduling [75,76]. Different from other techniques, data mining does not require
specific data collection processes, and because of development of machine learning, especially deep
learning, data mining is playing an increasingly important role in big data analytics for manufacturing.

Data mining has been widely used in the industries that require a high precision method to
monitor the quality of product and diagnose faults, such as semiconductor manufacturing and
integrated circuit manufacturing. Some researchers apply a decision-tree to detect fault and make
decisions [77–79]. Sebzalli [80] implemented neural networks and c-means clustering to optimize the
production process and reduce the waste of product due to changeover, thus increasing energy
efficiency and saving energy. Lee et al. [81,82] used self-organized maps and fuzzy networks
to improve the performance of the quality examination. New machine learning and statistical
techniques were proposed to achieve a balance between measurement cost and precision or enhance
interpolation accuracy for high-resolution 3D measurement tasks [76,83–85]. Applications include
high-precision machining and ultrasonic metal welding. Using these algorithms, not only measurement
cost can be saved significantly, but also measurement time is reduced to a great extent. As such,
production efficiency can be promoted. These data mining methods or algorithms aim to increase the
efficiency at the process level, and they turn out to successfully and effectively promote the efficiency
of manufacturing.

At the factory and enterprise level, data mining is also employed in detecting possible problems
that may influence the integration of the whole production process and the supply chain. Some
researchers proposed an intelligent system to compare and analyze the collected data. After that, the
discovered feature is shared so that the overall energy efficiency of manufacturing is improved [86–88].
Other applications of data mining include [89]:

• Predicting manufacturing process and minimizing tool wear or other tool defects [83,90,91].
• Improving engineering design and decision-making [92,93].
• Optimizing machine performance.
• Discovering material properties to instruct yield in medical and chemical industries [94].
• Assisting decision making by predicting the outcome of decisions [95].
• Promoting maintenance [96].

Data mining can be applied to sustainable manufacturing [97]. In transportation, some commercial
data mining systems such as MineFleet can effectively save energy usage and promote sustainability.
Data mining acts in the following aspects.

1. Petrol waste analytics. By analyzing the data collected from vehicles, the trend of fuel consumption
is predicted to improve combustion efficiency, which saves energy and reduces emissions.

2. Emission control. Transportation emissions are the important source of greenhouse and toxic gas
in the air. Data mining provides an effective method to develop a decision-making system or set
a reference for policy makers.

It is worth noting that computing also consumes energy. When processing big data, the energy
consumption resulted by computing facilities cannot be ignored. Many researchers or institutions [98–100]
have carried out research on energy saving of computing platforms. For instance, Fricke et al. [101]
proposed a system that takes advantage of computing ability of mobile phones to save energy. However,
this area is relatively insufficiently studied, and more research efforts are necessary.
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5.5. Cloud Computing and High-Performance Computing

Cloud computing, as an emerging technology, is defined by National Institute of Standards and
Technology [102] as “a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or service
provider interaction”. Based on cloud computing, the concept of cloud manufacturing is proposed,
which means a kind of customer-centric manufacturing that comes up with customer needs and keeps
reconfiguring the resources and schedule so that the energy efficiency is increased, and production
costs are reduced [14].

As one of the core enabler technologies of smart manufacturing, cloud computing is now
transforming the way of manufacturing analytics. It saves a large quantity of cost by eliminating
some traditional processes [103]. For example, some necessary operations to accomplish customization
such as tweaks can be optimized by cloud computing. Hence, such changes can happen seamlessly.
Elkay Manufacturing company succeeded in applying cloud computing to their production and
obtained great benefits [104]. This saves cost mainly at the process level. Cloud computing can also
benefit manufacturers at the enterprise level. By accelerating transactions between manufacturers and
wholesalers, time can be significantly saved [103]. Other applications involve increasing operation
efficiency and strengthening the collaborations, virtualization and product design [104,105].

Cloud manufacturing is a popular research domain. Topics in this domain mainly include
automation, control, the platform architecture, and resource sharing and management [103,104].
For example, Valilai et al. [105] proposed a platform, called XML Layered Modular (XMLAYMOD)
platform, to support distributed manufacturing systems, which implements cloud computing
paradigm and service-oriented approach. Then they successfully applied the platform to product
designing, process planning, and CNC machining. Zhang et al. [106] proposed a cloud computing
platform to support cloud manufacturing. Yoo and Kim analyzed critical variables in the application
of cloud computing regarding technology, organization, and environment. They also pointed out top
management support, competitive pressure, and compatibility to be essential factors in employing
cloud computing [107].

Since the timely response is required in cloud computing, the end server is required to have
excellent computing capabilities. High-performance computing (HPC) on the cloud can serve as
a good solution. According to Techopedia’s definition, “HPC is the use of supercomputers and
parallel processing techniques for solving complex computational problems. HPC technology focuses
on developing parallel processing algorithms and systems by incorporating both administration
and parallel computational techniques”. [108] Typically, HPC is utilized to solve some complicated
problems, such as large-scale simulation and modeling, which is infeasible to solve in a fast manner
with normal computers. The applications of HPC include [108]:

• Oil and gas industry modeling
• Electronic design automation
• Climate modeling
• Media and entertainment
• Biosciences

By involving computer architecture, electronics, and other technologies, HPC on the cloud is
a powerful tool for industrial analytics and business management. Many researchers conducted
investigations on evaluating and improving the performance of cloud HPC. For example,
Gupta et al. [109] evaluated the performance of HPC and showed that for low communication intensive
applications, HPC on the cloud is more cost-effective. Hassani et al. [110] proposed a novel approach
to enhance the performance and scalability of Amazon’s HPC cloud performance. Their study showed
that using their method, Amazon’s HPC cloud can achieve over 20% acceleration compared with
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Pthreads and OpenMP. Expósito et al. [111] investigated the bottlenecks of HPC cloud on Amazon
regarding shared memory, representative HPC codes and new cluster instances. They also proposed
some techniques to reduce the cost and energy use.

HPC on the cloud is also an excellent solution to sustainable manufacturing. Because cloud
computing is required to be instantly accessible to the computing resources, the data centers
are necessary to guarantee the operation. However, when the demand is enormous, the energy
consumption increases dramatically, which in return will cause more energy cost and more greenhouse
gas emissions [112]. To address this issue, Garg et al. [112] introduced Dynamic Voltage Scaling to the
near-optimal scheduling policies which combine the profit analysis and energy sustainability in the
resource allocation. Their system leverages heterogeneity to perform computation and reduces 33% of
the energy cost by lowering CPUs supply voltage.

5.6. Additive Manufacturing

The definition of additive manufacturing covers a wide field of production techniques that
fabricate specially customized products in a layer-by-layer fashion. The development of smart
manufacturing technologies is fast changing, and when it is coupled with increasing commercial
demand, additive manufacturing (commonly known as 3D printing) shows numerous advantages
in providing customized and specifically designed products [113]. With the adoption of additive
manufacturing, the design-to-product cycle is shortened significantly, and resources including time,
energy, and money are greatly saved. Hence, great industrial sustainability, as well as production
efficiency, can be achieved [114].

Commonly adopted additive manufacturing technologies include Fused Deposition Modeling
(FDM), Stereo-Lithography (SLA), Selective Laser Sintering (SLS), and Digital Light Processing
(DLP) [115]. These manufacturing technologies have tremendous applications in various fields.
Table 2 shows a summary of the applications and improvement in different fields with the additive
manufacturing technologies [116–118].

Table 2. Applications of Additive Manufacturing.

Application Fields Improvements brought by additive manufacturing

Medical instruments
Permitting to scan and build a physical model of defective
tissue from patients and better treatment plan for doctors

Architectural design and modeling
Providing powerful technique support for architects to make
creating physical models much easier

Fuel cells manufacturing
Precisely depositing a very thin layer of platinum, needed for
the oxidation and reduction reaction, with high utilization
efficiency of the platinum

Lightweight machines
Enabling the manufacture of complex cross-sectional areas like
the honeycomb cell or every other material part that contains
cavities and cut-outs which reduce the weight-strength relation

Art creation
Providing the possibility of virtually manufacturing the most
complex form imaginable

Some widely recognized characteristics of additive manufacturing technologies include direct
production 3D CAD models, designs in the form of shared digital files, customized novel, complex
structure, and final products with low porosity [118]. As such, additive manufacturing technology is
a more advanced flexibility option that can lead to significant changes in the outcome of the market
structure as well as the supply chain.

Through applying additive manufacturing techniques, we observe several outstanding
advantages over traditional manufacturing techniques, such as mass customization and enhancing
industrial sustainability and extending the lifespan of products [114,119]. This is because,
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by dematerialization and reconfiguration of the value chain due to redesigning of products, the required
materials, components as well as energy consumption are reduced, so that the scale of material flows
decreases, saving energy demands and bringing less environmental impact. As additive manufacturing
is able to convert the material into customized products and services directly, it is identified as having
the great potential to provide many sustainability advantages [119]. These advantages include the
impact on the economy, the natural environment, and human society. The influence of environment
and economy from additive manufacturing is interconnected.

Furthermore, additive manufacturing can be environmentally compatible with traditional
manufacture processes for small to medium batch products with complex structures. Although
the cost of additive manufacturing is still expensive, additive manufacturing is expected to be less
costly in the future for larger products [114]. While the high performance of additive manufacturing
may be most frequently encouraged by creation or capture of economic value, there are cases where
behaviors are motivated by social and environmental values. For example, Filabot has the direct aim of
commercializing technologies to reduce negative environmental impacts. Through taking something
considered as waste, Filabot’s products can add value by supporting localized polymer recycling [114].

In summary, this section has reviewed the characteristics and strengths which can enable a more
sustainable model of production as well as consumption in the smart manufacturing area. Given the
examples, advantages, and applications mentioned above, it is clear that additive manufacturing will
play a vital role in the transition towards a more sustainable industrial system since the applications
of additive manufacturing technologies creates opportunities for more sustainable production and
consumption. The exploitation of such opportunities will lead to changes in the distribution of
manufacturing, reconfiguration of values chains, and simplification of supply chains.

6. Applications in Energy Industry

In this section, the current stage of sustainable energy solutions is first reviewed. Next, several
smart manufacturing applications related to energy devices are discussed. Finally, we analyze
current research and possible approaches to modeling, monitoring, and decision-making tasks in the
energy industry.

6.1. Sustainable Energy

Sustainable energy is a broad concept. It includes renewable energies, such as solar energy,
wind energy, hydropower, geothermal energy, bioenergy, marine energy, and all energies that supply
the current consumption with insignificant influence on future energy and minimal or no negative
impact on ecology, economy, and society [27]. In the following parts of this section, several sustainable
energies with greatest shares in the current world energy supply are studied and evaluated based on
their natural properties.

6.1.1. Solar Energy

The source of solar energy is the radiant light and heat from the Sun. Generally, solar energy is
generated by collecting thermal energy through solar thermal systems and converting to electricity
through photovoltaic systems. The most important advantage of solar energy is that it has almost
unlimited energy supply with relatively balanced global distribution. Thus, solar energy is a
competitive choice for less developed counties without access to other sustainable energies.

6.1.2. Wind Energy

Wind energy is generated by collecting the mechanical energy of the airflow through wind
turbines. The cause of large-scale wind in nature is the differences in the atmospheric pressures, which
are caused by the differences in absorption of solar energy. Hence, wind energy can be treated as an
indirect use of solar energy. Electricity is the primary way of utilizing wind energy. In 2016, wind
energy is the second most significant source of renewable electricity [43]. As a clean and renewable
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energy, wind energy not only produces no water or air pollution but also has low construction cost
and maintenance requirements. Moreover, one of the most critical advantages of wind energy is that
the land resources occupied by wind farm can be shared with other purposes [27].

6.1.3. Hydropower

Hydropower is harvested from the mechanical energy of falling water or fast running water.
Because the water flowing in general changes slowly and has long seasonal patterns, hydropower is
relatively stable, unlike unpredictable and rapidly fluctuating solar and wind power. The techniques for
hydropower generation are relatively robust and developed. However, the extremely low geographical
diversity limits the deployment of the hydropower plant in areas with limited water resources [27].
In 2016, the majority of renewable electricity is supplied by hydropower, which is 16% of the total
world electricity. However, the growth of hydropower is slower than other renewable energies, and its
share of renewable electricity falls 5.5% since 1990 [43].

6.2. Energy Devices Applications

In recent decades, the cost of sustainable energy system deployment falls dramatically.
For example, in 2016, the price of a solar photovoltaic module to generate 1 W of power under
a defined illumination intensity of 1 sun is one-sixth of the price in 2008 [120]. In addition to the
increasing availability of new materials, smart design and manufacturing techniques is another factor
that drives the decline of the manufacturing and deployment cost of energy devices. In the rest part
of this section, several smart manufacturing applications related to energy production and storage
devices are highlighted.

6.2.1. Energy Production Devices

Computer-aided simulation has been wildly used as a low-cost approach for optimizing product
designs, including sustainable energy devices. However, due to the nonlinear effects as well as
the complex and highly fluctuating environment the turbines subjected, challenges exist in the
design of wind and hydro energy devices, such as blade and other structures of turbines. Software,
tools, and frameworks for faster simulation and optimization are also highly desired. Benefited
from the advancement of data analytics techniques, several data-driven optimization algorithms are
proposed for the design tasks for wind and hydro turbines [121–124]. Moreover, the development of
computational infrastructures, such as HPC, enhances the evaluation efficiency for complex models
from hardware-level [125,126].

As mentioned in Section 5.6, additive manufacturing is a powerful tool for the low-cost and rapid
production of industrial products or prototypes. For the solar panel industry, Vak et al. developed an
additive manufacturing platform as a fabrication tool for solution-processed solar cells, and report
three major advantages of adopting additive manufacturing for solar cell manufacturing. First, additive
manufacturing enables users to test different device structures or designs without hardware changes.
Second, additive manufacturing brings reproducibility and transferability into the solar panel industry,
which allows users to share optimized printing conditions from machine to machine and from factory
to factory. Third, additive manufacturing significantly reduces the time for the production of new
parts and the fabrication of solar cell modules [127]. Wittbrodt et al. evaluated the potential of
using additive manufacturing, as a low-cost solution, to accelerate the deployment of solar energy
systems in developing conuntries [128]. The similar benefits are shared in wind and hydro energy
industries [129–132]. Additionally, Han et al. discussed the potential of wind energy harvesters
at the household level using low-cost and high-efficiency additive manufacturing technology [130].
Kamimura et al. adopted additive manufacturing for a scale-downed experiment to predict the
performance of a new turbines design without a large-scale experiment [131].
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6.2.2. Energy Storage Devices

Varieties of energy carriers, such as electricity, heat, and cooling, are integrated into the energy
systems. The smart manufacturing techniques make the energy storage devices more affordable, more
reliable, and cleaner and improve the sustainability in the energy industry.

In 2015, 27% of the final energy consumption in the industry was in the form of electricity, and the
share of electricity is expected to rise to 40% by 2040 [43]. In addition, the rapid development of electric
vehicles increases the demand for electricity storage in transportation. Among various kinds of energy
storage systems, lithium-ion batteries are the most popular form of storage in the world and contribute
more than 85% of power capacity in the deployed energy storage system in 2015 [133]. However,
the cost, performance, reliability, and safety of batteries remain challenges in the energy industry.
Luo et al. summarized the current research and development of crucial electrical energy storage
technologies based on the types of energy stored [134]. Saw et al. analyzed the issues of integrating
the lithium-ion battery into the electric vehicles battery pack, and provided a guideline for battery cell
choice and cell integration approaches selection. Schünemann et al. proposed a cost-oriented model for
electrode and cell production [135]. Aiming to improve the assembly quality of lithium-ion batteries in
electric vehicles, Smart monitoring, modeling, and control techniques were developed for ultrasonic
metal welding [35,83,136]. More research is required on battery manufacturing techniques for the goal
of energy storage systems, such as long-term storage durations, reducing battery integration costs, and
advanced battery recycling.

6.3. Smart Energy Systems

Benefited from the recent development in smart manufacturing technologies, more and more
advanced data analytics techniques are integrated with modeling, monitoring, and decision-making
technologies, and adopted in numerous studies related to the energy industry. The improvements are
demonstrated by several applications in the rest of the sections.

6.3.1. Modeling

One of the challenges in wind energy system modeling is that wind has low predictability, and
the performance of wind turbines is affected mainly by the wind profile. Because airflow is a chaotic
aerodynamic system with nonlinear and complex behaviors, it is difficult for the traditional physical
models and conventional statistical models to find the relationship between certain explanatory
variables and future wind speed efficiently. Recently, several machine learning techniques, such as deep
neural networks, show strong efficiencies in time series analysis of wind data for speed forecasting,
and the predicted accuracy for both short-term and long-term get improved [137–141]. Hu et al.
proposed a deep neural network architecture that transfers the high-level data patterns obtained from
data-rich farms to a newly built farm and reduces the prediction errors significantly [142]. For wind
power forecast and analysis, it is also crucial to have a model of wind-to-power relationship to
describe the response of a turbine under different wind profiles. However, it is almost impossible
to provide an analytical expression for such a complex turbine system. To address the challenges
in wind turbine operation modeling, Ding et al. proposed sophisticated statistical methodologies to
utilize real-world wind data and the corresponding turbine response data. The flexible modeling
capability of the nonparametric data analytic methods they adopted is demonstrated by wind industry
applications [143].

Similar challenges also exist in the modeling of the photovoltaic power generation system. Because
the photovoltaic power is greatly affected by the weather condition, the output power will fluctuate
greatly and thus is hard to be forecast accurately. A recent development of data analytic techniques
provides powerful tools for the performance prediction of energy systems, such as neural network based
modeling approach and ensemble empirical mode decomposition based forecasting method [144,145].
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6.3.2. Monitoring

Compared with the traditional power plants that generate power by burning fossil fuels,
sustainable energy factories, such as solar farms and wind farms, usually lay over a large area
field, which makes generation monitoring a challenging task. Additionally, the growing deployment
of self-driven sustainable energy systems, such as rooftop solar photovoltaic systems, increases the
demands of remote or distributed monitoring systems. Smart manufacturing technology could be
taken as possible approaches to addressing this problem. For example, Adhya et al. proposed an IoT
based solar photovoltaic system for remote monitoring, analyzing, and controlling the power plant.
This system could improve energy production efficiency by reducing manual supervision and assisting
scheduling task of plant management. The potential of integrating solar power into utility grid is
also promoted [146]. Han et al. developed a home energy management system using IoT technique,
considering both energy consumption and renewable energy generation [147].

6.3.3. Decision-Making

As the development of smart infrastructures, like smart meters and IoT devices, the data
volume in the energy industry is experiencing explosive growth. The most critical challenge in
an intelligent energy system is how to take advantage of big data to reduce the cost and improve
efficiency. Data analytics, HPC, and cloud computing techniques are useful for dynamic energy
management in smart grids. Mohammed et al. evaluated the performance of a hybrid artificial
neural network for short-term load forecasting [148]. Zhang et al. built a demand response system
for energy management with learning-based optimization technique [149]. Lee et al. proposed a
comprehensive multiple-criteria decision-making model, which consists of the interpretive structural
modeling and fuzzy analytic network process, for the evaluation and selection of photovoltaic solar
plant locations [150].

7. Prospective and Conclusion

In this paper, we first introduce the basic concepts of the two manufacturing paradigms and
then discuss major promising technologies aiming to the 4th industrial revolution, in which the
devotion to the sustainability is highlighted. Then we summarize the existing solutions to sustainable
manufacturing, including renewable and clean energy, energy devices and systems. The relationship
and gap between smart manufacturing and sustainable manufacturing are particularly discussed.
The most remarkable advancement as well as the identified research gaps that need more investigation
are summarized below:

1. Deep learning and data mining are core techniques that drive the advancement of
smart manufacturing and transform traditional manufacturing styles to modern paradigms.
Nevertheless, sustainability and energy efficiency have not been fully considered.
First, applications on sustainability and energy efficiency problems are less studied. This is
partly because that those problems are essentially different with problems popularly studied in
the computer science community regarding data types, data volume, and objectives. Furthermore,
when developing smart manufacturing techniques, the consideration of energy efficiency and
sustainability will yield multi-objective, multi-constraint problems, which can be so complicated
that conventional methods are incapable.

2. Cloud computing and HPC are key technologies of smart manufacturing. Nevertheless,
the deployment of these supercomputing techniques in manufacturing is still at its nascent
stage and requires substantial efforts. Particularly, the choice between cloud computing and
HPC, how to effectively incorporate supercomputing powers into daily manufacturing practices,
and cybersecurity issues need more investigation. Moreover, due to costly computation and
maintenance, supercomputing facilities are a major energy consumption source themselves.



Sustainability 2018, 10, 4779 21 of 28

Thus, research on reducing energy use, reducing maintenance cost, and achieving a tradeoff
between performance and energy efficiency remains to be done.

3. Additive manufacturing, as an innovative technique, has attracted a lot of interests from both
industries and academia. It increases the customization of products and enables producing
products with a complicated geometric shape. Although additive manufacturing is compatible
with sustainable manufacturing, there are still many things researchers can do to improve
sustainability, such as recycling materials. Additionally, the enhancement of product quality
using inline sensing and monitoring, real-time control, and sampling inspection methodology
also shows great potential in increasing the sustainability of additive manufacturing.

4. Smart manufacturing technologies have improved the production efficiency and sustainability
of some renewable energies with large shares. However, the applications for bioenergy and
the energies with small shares are limited. The existing smart manufacturing approaches for
large shares cannot be directly applied to small share applications as a result of different time
scales, varied production rates, and different process dynamics. As such, fundamental research
on extending existing methods and developing new methods is critically needed.

5. The electricity storage devices have drawn many scholars’ attention, and the ongoing research
has made some major progress in improving the quality and efficiency of battery manufacturing.
To further enhance the sustainability in energy storage systems, research on industrial heat
and cooling systems are highly desired. In addition, the deployment of big data based
decision-making, such as online process monitoring, real-time control, and battery performance
monitoring, is able to greatly promote quality and bring energy saving.

Given the increasing public awareness of environmental issues and the national policies,
it is foreseen that more emphasis will be placed on sustainability in the development of techniques in
smart manufacturing. The combination of clean energy, recycling materials, and smart manufacturing
should receive more attention from researchers, engineers, business owners, and policymakers
in the manufacturing community. In order to develop approaches tailored to these applications,
we propose that more fundamental research is needed and nontrivial efforts are required in this aspect.
For example, exploring the prognostic defects prediction method to avoid defects and save materials.
Collective efforts are necessary to develop an integrated decision-making framework for smart and
sustainable manufacturing.
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