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Abstract: Uncertain linguistic variables and scoring evaluations are two important evaluation
mechanisms in the decision making field. Sustainability requirements for ship investment lead
to the complexity of influence factors and the decision making process. The uncertain linguistic
assessment features a large amount of ambiguity and subjectivity, while the scoring evaluation
features high precision and distinct gradations. This paper constructs a criteria system in the green
supply chain and proposes a dual group decision fusing mechanism for integrating the linguistic
variable and scoring evaluation into a unified evaluation term. A hierarchical cloud of linguistic
variable terms is constructed based on scoring via a reverse cloud generator, and then, the ship
investment linguistic terms are transformed into prospect values. In addition, the consistency and
investment selection performance are measured after aggregating the individual decision matrices
for group decision making. The empirical research results on the selection of dry bulk carriers
for investment show that dual group decision fusing mechanisms could effectively improve the
consistency, decision making efficiency, and accuracy of dry bulk ship investment choices and reduce
the cost of feedback adjustment for group decisions. In comparison with the trapezoidal fuzzy and
fuzzy TOPSIS methods of group decision making, the proposed method performs better when there
are a large number of alternatives.

Keywords: group decision; green supply chain; cloud model; prospect theory; fusion mechanism

1. Introduction

Due to the increasing tendency of societies to work toward a sustainable future, every decision,
especially for firms related to the national economy, is determined by balancing economic goals with
social-ecological concerns [1]. Suppliers, focal companies, and customers are linked by information,
material, and capital flows. Along with the value of a product comes its environmental and social
burden. In this context, focal companies in supply chains make investment selections and may
be held responsible for the environmental and social performance of these selections. Fan [2]
empirically analyzed the relationship between ship investment and decision making behavior;
he found that shipowners are inclined toward large ship sizes. Most expansion decisions are found
to be market-driven, and large companies expand to maintain their market shares and achieve
sustainable competitive advantages. According to international conventions along with standard,
local, and industrial regulations, green intelligent ships with low emissions, low fuel consumption,
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energy-saving mechanisms, and environmental safeguards are an inevitable trend in the development
of the shipbuilding industry. The study of ship investment in the green supply chain benefits from the
theory of decision making. The problem of selecting the optimal dry bulk carrier problem in decision
theory (DT) depends on green supply chain management (GSCM). A successful GSCM evaluation
may include green practice, green policy, green performance, and green collaboration [3]. However,
there are challenges involved in successful GSCM, including the uncertainty, complexity, and cost of
the objective factors along with the cognitive preferences, value judgments, and attitudes involved in
the subjective aspects [4].

Investment selection under the green supply chain is a complex issue with a variety of influencing
factors, which can be classified into internal capabilities and external environmental impacts of
enterprises. From the internal capabilities, Azimifard [1] introduced the social criterion to the issue of
sustainable supplier selection in the steel industry and proposed a sustainability indicators evaluation
criterion that includes economic, social, and environmental aspects. The results show that the distance
from supplier country to the destination country is obtained as the most important standard weight
through empirical research, and Iran is rated as the most sustainable supplier. Sivakumar [5] proposed
a model framework and case study involving benefit and risk factors, including green technology
capability, R&D capability, environmental training, and environmental activity control. A green vendor
selection framework based on the outsourcing perspective presents an integrated approach of AHPand
the Taguchi loss function to help the managers in the mining industry to develop green vendors.
Operating the supply chain is only justified if the products and services are ultimately “accepted”
by customers [3]. Green cooperation and collaboration play an important role in the overall supply
chain performance. Rostamzadeh et al. [6] indicated that the main criteria involved in green supplier
selection are as follows: eco-design, green production, green purchasing, green recycling, green
transportation, and green warehousing. Then, they proposed an integration of various criteria based
on a literature review and illustrated the case of a laptop manufacturer in Malaysia aiming to solve the
green multi-criteria decision making problem from practitioners. Sawik et al. [7] analyzed the vehicle
routing problems with environmental costs composed of noise, pollution, and fuel consumption.
The researchers investigated Spanish grocery companies aiming at the minimum cost, noise, pollution,
and fuel consumption. The authors also discussed green vehicle routing problems for optimal fleet
size under required transportation tasks’ capacity [8]. This provides a mixed-integer programming
formulation of multi-criteria vehicle routing problems to find a suboptimal solution of fleet size and
total capacity. Gallo [9] proposed a car pricing policy based on fuel surcharges as a substitution of
car ownership taxes for reducing greenhouse gas emissions. Based on the GHG emissions estimated
for Italy, the results show that car users prefer to shift towards more fuel-efficient vehicles than to
public transport, which reduces GHG emissions less than expected. Ngo et al. [10] assessed the causal
relationship between an urban greenway, motorized travel behavior, and environment outcomes with
the first quasi-experimental and longitudinal cohort study. It is the intention of this study to help guide
decision making for transportation investments towards climate change mitigation. The findings help
to understand the government strategies pursued to achieve environmental sustainability goals and
meet emission reduction targets in the transportation sector.

Multiple criteria decision making (MCDM) is an important part of modern decision science [11,12].
The tools of decision making include individual and group decisions. Group decision makers (DMs)
from a variety of fields generate different cognitive information when they evaluate alternatives
on the same criterion. Thus, there are many studies on the appropriate and correct expression and
computation of cognitive information. As one of the four leading disciplines in decision theory,
cognitive science contributes an important perspective in the report “Aggregate of four technical forces
promoting the common development of mankind” [13]. In real life, decision makers (DMs) rely on
cognition to make decisions. Differences in the cognitive abilities of DMs generate various evaluations
for the same criterion on multiple alternatives [14]. The knowledge or cognitive information expression
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for each attribute, which is able to reveal microscopic regularities in the descriptions of attribute
characteristics, provides an intelligent support for attribute-based cognition [15].

Owing to the fuzziness and complexity of decision making problems, cognitive information can
be represented in various ways. The linguistic term is a prevalent means of expression [16]. The theory
of probabilistic linguistic term sets is very useful in objectively dealing with multiple criteria group
making problems; the method allows DMs to express their preferences on linguistic terms for the
same attributes [17]. DMs tend to express their opinions with fuzziness and ambiguity, as decision
problems are always complicated in uncertain environments [18], resulting in human behavioral,
psychological, and cognitive impacts on the decision. For example, this information can be represented
through linguistic two-tuples [19,20], interval-valued rough random variables [17], or hesitant fuzzy
linguistic terms [18,21]. In addition, regret theory has an important role in decision theory, such as in
the dynamic location problem [22], enterprise production, and marketing strategy [23].

Fuzzy numbers, derived from fuzzy set theory, have become a major method in handling uncertain
attributes [24,25]. Cloud model theory is an innovation and development of the membership function
in fuzzy set theory [26]. A cloud model transforms the ambiguity and uncertainty of qualitative natural
language into quantitative membership values [27] and has been successfully applied to MCDM [28].
Although fuzzy numbers have more freedom to express the complex, uncertain information in real
decision making processes, it is still difficult to express the cognitive information of attributes precisely
with crisp numbers.

Fusing the cognitive information and reducing the information loss in the decision making
process have been two of the most important issues in the computation of cognitive information.
In many complex decision making situations, more elaborate and complex linguistic expressions are
required to express preferences under a dynamic and high degree of uncertainty. It would be very
helpful if the complex linguistic expressions could be manipulated and simplified in the framework of
linguistic decision making [29]. Cabreziro et al. [30] suggests linguistic information as a multiobjective
optimization task involving a weighted average criterion for consistency. Linguistic terms can be
transformed by mapping. Liu and Zhang [14] extended intuitionistic fuzzy sets to fuzzy sets with
linguistic terms, developing Archimedean t-norms and s-norms to create a fuzzy linguistic weighted
averaging operator to deal with multiple attributes in a group decision making problem. Chen [31]
determined suitable suppliers in the supply chain with linguistic values to assess the ratings and
weights of factors according to the best relative closeness coefficient from two directions; this is then
used to rank all suppliers.

In summary, researchers have attempted to create a single fuzzy assessment method or integrated
MCDM method. However, the usage of the green supply chain criterion was explored less often, and
specific industry research on the green supply chain was very limited. It is significant to fuse the
traditional investment decision factors and sustainable development factors to realize the sustainable
development and extension of the ship supply chain. It is necessary to integrate the influence factors
of green ship investment decision making under the background of the green supply chain, strengthen
the concept of sustainable development, and pay attention to the concept of sustainable management
of the ship life cycle and whole industry chain. On the basis of decision makers’ environmental
sustainable cognition, the index system of ship investment decision is reconstructed. Hence, this
paper attempts to fill the gap by taking full advantage of cognitive preferences and reductions of
information loss during evaluations. Fusing uncertain linguistic terms with continuous scores and
mapping uncertain linguistic terms to a hierarchical cloud can improve the information utilization
efficiency. The dual group decision mechanism merges the crisp scoring and the fuzzy linguistic term,
considering both the qualitative natural linguistic assessment and quantitative scoring evaluation.
A two-way evaluation mechanism ensures the high performance and makes full use of the hierarchy
of cognitive information in selecting among the alternatives.
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This paper is organized as follows. In the next section, a criteria system is constructed. Section 3
focuses on the proposed dual group decision fusion mechanism; the corresponding theory is shown
step by step beforehand. Then, a dry bulk carrier is selected for investment based on a performance
analysis. In the final section, an example is tested and discussed, while classic and current group
methods are employed as comparison methods and discussed.

2. Criteria System Construction

Cognition is not only formed in the brain, but also emerges from interaction with the environment.
The computation of cognitive information comprises the identification of factor information and the
decision environment. The influence factors for the selection of dry cargo ships for investment under
a green supply chain have been found using literature references, reports, and public data from the
ship industry. According to Sarkis (2003) [32], the green supply chain framework is based on basic
environmental awareness. Ship investment selection involves green supply chain management, green
cooperation and collaboration, consumer management, and green supply chain management [33,34].
Meanwhile, Yang [35] explored the relationship between green performance and green practices in
shipping. Then, Rostamzadeh et al. [6] pointed out that green practice consists of ecology design,
reverse logistics, and internal environment management. Under the environment of the green supply
chain, the decision making of dry bulk carrier investment is based on the external environmental
cognition. Therefore, it is necessary to identify not only green technology and the green purchase
of enterprises themselves, but also the environmentally-friendly practices, green policy norms, and
sustainable development performance brought about by the interaction between enterprises and the
external environment on cooperation and coordination ability. The decision making indicators of dry
bulk shipping investment would focus on the technology and purchasing ability, such as green material
procurement, environmental cooperation, and green market competition. The green purchasing aims
to make sure that the purchased items or raw material have desirable environmental attributes such as
reusability, product recovery, green packaging, etc. Green competition refers to the long-term dominant
position of competitiveness based on the vision of sustainable development, comprising the technology
and ecological design superiority, utilization improvement, and green market environment advantage.

The coordinance factors between shipping enterprises and environment include green practice,
environmental development policy, environmental performance, and cooperation within green
supply chain partners. The green cooperation and collaboration is collaboration that is driven
by green and environmentally-friendly development, including coordination with suppliers and
customers, information sharing with green partners, and also the inventive mechanism of supply chain
cooperation. Green practice requires more coordination with immediate customers and end-consumers,
along with greater interaction with suppliers when designing and developing new products.
It comprises a series of inter-organizational activities arising from different options for improving
environmental management, including product recovery processing capacity, the reverse logistics,
environmentally-friendly transportation, etc. Green policy uses environmental standardization to
act as an important role in supporting the implementation of relevant policies and systems, which
leads us to think about how to implement environmental management system standards to assist
the green supply chain management practices. Green performance is related to cost consumption,
investment recovery, and pollution treatment of environment sustainability metrics. The details are
found in Table 1.
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Table 1. Decision index for investment selection.

Influence Factor Code Indicators Literature

Green
practice

u1 Senior managers promise Kehbila [36], Chan [37]
u2 Environmentally-friendly transportation Victor [38]

u3 Reverse logistics Zsidisin et al. [39],
Rostamzadeh et al. [6]

u4 Resource and environment protection agent Sarkis [32], Berling et al. [40]
u5 Green stock Shang et al. [41]
u6 Product recovery processing capacity Li [42]
u7 Green education and training Zhu et al. [43]

Green
policy

u8 Environmental certification, ISO 14000 certification Lai et al. [44]
u9 Company policies and procedures Lai et al. [44]

u10 Ship design and compliance Keane et al. [45]
u11 Shipping documentation Tseng [46]

Green
purchasing

u12 Green raw materials and equipment Zsidisin et al. [39]
u13 Green packaging Rao et al. [47]
u14 Green recovery Khan et al. [48]

Green
performance

u15 Environmental performance and
economic performance Zhu et al. [33], Rao [47]

u16 Ecological design practice and investment recovery Zhu et al. [34,43]

u17 Pollution treatment cost and environmental
performance evaluation Yeh [49]

u18 Cost of consumption Tsai et al. [50]

Green
competition

u19 Environmentally-friendly technology and materials Awasthi et al. [51]
u20 Level of information technology Singh et al. [52]
u21 Green advertising and green market Chan et al. [53]

u22 Quality and productivity capacity
utilization improvement

Rao et al. [47],
Papapostolou et al. [54]

u23 Green production/ecological design Srivastava [55]
u24 Green public praise Zhang et al. [56]

Green
cooperation
and
collaboration

u25 Coordination with suppliers and customers Vachon et al. [57,58]

u26 Market and information sharing
with green partners

Awasthi et al. [51],
Zaheer et al. [59]

u27 Green customer Laari et al. [60]
u28 Greening supplier Awasthi et al. [51], Hsu et al. [61]
u29 Incentive mechanism of supply chain Fritsch et al. [62]

3. Methodology

When representing group decision making based on cognitive information, it is most natural
to utilize a natural linguistic term combined with precise values to select the best ship investment
alternative. We propose a dual group decision fusion mechanism consisting of a cloud model, prospect
theory, consensus of alternatives, and performance of alternatives. A cloud model reflects uncertain
phenomena in the natural sciences. In this case, a cloud model combined with prospect theory is
employed to represent the bounded rationality of DMs, which is fully integrated with the uncertainty
of the decision attributes. A model for the degree of consensus ensures the effectiveness of decision
making and reduces the inconsistency and bias of DMs. Finally, TOPSIS theory is utilized to illustrate
the performance of the decision method and determine a ranking of alternatives.

3.1. Problem Description

There are significant differences in knowledge and experience among DMs. In addition,
the individual preferences and risk attitudes of decision makers will also result in biases. Therefore,
a group decision mechanism for the selection of dry bulk carriers for investment under the green supply
chain is constructed. The set of alternatives is A = {a1, a2, · · · , am}(m ≥ 2), and the associated criteria
set is U = {u1, u2, · · · , un}(n > 2), where the criteria are mutually independent. The continuous
scoring evaluation set is X = {x1, x2, · · · , xn}(n > 2). The weight vector of the criteria layer is
ω = {ω1, ω2, · · · , ωn}, which satisfies the constraint condition ∑n

i=1 ωi = 1, ωi ≥ 0, i = 1, 2, · · · , n
along with some other constraints. The possible natural state f j = { f j

1, f j
2, · · · , f j

s} of criterion uj
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has probability pj
l under state f j

l (1 ≤ l ≤ s). For the set of DMs E = {e1, e2, · · · , et}(t ≥ 2), xk
ijl

represents the linguistic variable evaluation of alternative ai under the criterion uj in the state f j
l . Then,

the optimal scheme ranking is a prospect value decision framework with higher levels of satisfaction
and performance.

3.2. Cloud Model

The cloud model performs the quantitative transformation of scores, which is the key to a unified
evaluation based on the scores and linguistic terms. A cloud is composed of cloud droplets. One cloud
droplet cannot reflect the characteristics of a qualitative concept, but a cloud consisting of many cloud
droplets can represent the ambiguity of the scheme. Usually, the cloud model is denoted by cloud
droplets of the form C(Ex, En, He). Here, Ex is the expected value, which reflects the mathematical
expectation of the qualitative concept, and En is the entropy of the fuzzy qualitative concept. He is the
hyper entropy, which reflects the randomness of dispersion and the degree of certainty. The overall
distribution of an exact number of cloud droplets reflects the ambiguity and randomness of the cloud
transformation. The cloud transformation can be performed in two main ways: one is through direct
generation, such as with the golden section, and the other is through indirect generation, such as
with inverse cloud generation. The cloud model deals with uncertain transformations of qualitative
concepts and quantitative descriptions based on the cloud operation.

Suppose that DMs give the linguistic term a grade of n = 5 and make an effective domain
U = [−10, 10]. The golden section method of cloud transformation generates n clouds corresponding
to the linguistic term set. The intermediate complete cloud is C0(Ex0, En0, He0). The left and
right adjacent clouds are C−2(Ex−2, En−2, He−2), C−1(Ex−1, En−1, He−1), C1(Ex1, En1, He1), and
C2(Ex2, En2, He2). The left-side clouds are semi-descending clouds, indicating some poor qualitative
concepts, and the right-side clouds indicate some good qualitative concepts. Therefore, according to
the domain, the expected values for the five clouds are Xmin, Ex0 + 0.382× (Xmin + Xmax)/2, (Xmin +

Xmax)/2, Ex0 − 0.382× (Xmin + Xmax)/2, and Xmax. The golden section for generating a cloud on five
linguistic grades is shown in Table 2.

Table 2. Numerical characteristics of a cloud model.

Cloud Model Ex En He

C2(Ex2, En2, He2) 10 2.0604 0.1309
C1(Ex1, En1, He1) 3.82 1.2733 0.0809
C0(Ex0, En0, He0) 0 0.7869 0.05

C−1(Ex−1, En−1, He−1) −3.82 1.2733 0.0809
C−2(Ex−2, En−2, He−2) −10 2.0604 0.1309

To make up for the numerical characteristics of the cloud model given directly, e.g., through the
golden section, a reverse cloud generator is provided, and numerical characteristics of the cloud model
are computed based on cloud droplets. The first order central moments and variance are calculated
based on the cloud droplets as follows:

• The first order central moment of the input data B = 1
m ∑m

i=1 |xi − x|
• The variance S2 = 1

m−1 ∑m
i=1(xi − x)2

• The expected value Ex̂ = x = 1
m ∑m

i=1 xi
• The entropy of the cloud En̂ =

√
π/2× B

• The hyper entropy of the cloud Hê =
√
(S2 − En̂)

The cloud is depicted by three numbers; therefore, the comparison of clouds needs a special definition.
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Definition 1. (Cloud comparison) Suppose C1(Ex1, En1, He1) and C2(Ex2, En2, He2) are two
one-dimensional normal clouds in the domain. The positive ideal cloud C∗(maxi Exi, maxi Eni, maxi Hei), i =
1, 2. P(C1 ≥ C2) is the probability, which can be expressed as:

P(C1 ≥ C2) = 1− D(C∗, C1))

D(C∗, C1) + D(C∗, C2)
(1)

where D(C∗, C1) and D(C∗, C2) are the Hamming distances between C1 or C2, respectively, and C∗. If P(C1 ≥
C2) ≥ 0.5, then C1 ≥ C2; otherwise, C1 < C2.

3.3. Prospect Theory Based on the Cloud Model

Prospect theory, proposed by Kahneman and Tversky [63], is the most popular form of behavioral
decision theory. It can be compared with expected utility theory when solving the uncertainty decision
problem. Prospect theory puts forward the concept of a reference point that considers the risk attitudes
of decision makers. The core idea of a prospect value consists of a value function and a weight function
that reflect the bounded rationality of the DMs in the decision process.

The cloud prospect decision model integrates prospect theory with the cloud model. A cloud
comparison of the cloud model is embedded in the value function and weight function from prospect
theory. The cloud prospect decision matrix Vk for the kth DM is composed of a cloud prospect value
function v(C) and a cloud prospect weight function π(p). The cloud prospect value Vk

ij for attribute j
of alternative i is:

Vk
ij =

s

∑
l=1

m

∑
z=1,z 6=i

πk
ijl(pj

l)v(C
k
zjl). (2)

Taking the decision maker’s psychology as the starting point, the characteristics of different
alternatives are compared. This paper explores the prospect values of different alternatives under
various conditions and reflects the decision maker’s risk preference and cognition capability through
the value function and the weight function. We have:

v(Ck
zjl) =


(

D(Ck
ijl , Ck

zjl)
)α

, Ck
zjl ≥ Ck

ijl

−λ
(

D(Ck
ijl , Ck

zjl)
)γ

, Ck
zjl < Ck

ijl

(3)

where v(C) is formed by the subjective perception of the DMs and λ is the loss aversion coefficient.
When λ > 1, the DM is more sensitive to loss. The parameters 0 ≤ α, γ ≤ 1 reflect the degree of
concavity and convexity, respectively, of the regional value function for gains and losses; it is relatively
shallow in that region, which means it is a more stable reflection of value.

Cloud prospect theory is more reasonable than expected utility theory because of the introduction
of the decision weight function π(p):

πk
ij(pj

l) =


(

pj
l

)τ
/[(

pj
l

)τ
+
(

1− pj
l

)τ]1/τ
, Ck

ijl ≥ Ck
zjl(

pj
l

)δ
/[(

pj
l

)δ
+
(

1− pj
l

)δ
]1/δ

, Ck
ijl < Ck

zjl

(4)

where τ is a risk revenue attribute coefficient and δ is a risk loss attribute coefficient. As a nonlinear
treatment of probabilities in rank-dependent models that incorporate the relative positions of outcomes
for different behaviors, as in expected utility theory, prospect theory involves a weight function [64] πk

ij
that uniquely determines the probabilities. The weight function π(p) reflects the probability weight
function considering the risk attitudes of the DMs. When the reference point is set up, it assumes a
particular outcome, since DMs prefer and disprefer gains and losses, respectively. A positive utility
corresponds to a gain; otherwise, the outcome strictly dispreferred in comparison to the reference
point is the losses with negative utility values.
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3.4. Group Decision Consensus Degree

As the DMs differ in their preferences and cognitive abilities, a consensus measurement is
introduced to measure the cloud prospect consistency (CPC) between DMs for each alternative.
The consensus measurement operates at the DM level and aggregates the DMs for each alternative.
According to the consistency threshold, a correction scheme can then be selected. The CPC operates at
the decision maker level using a specified consistency threshold to provide a preliminary correction
scheme. The calculation of the CPC is mainly divided into two steps.

1. Aggregation: Calculate the cloud prospect decision matrix of each DM. The group cloud prospect
decision matrix Vc is computed by:

Vc
ij =

t

∑
k=1

Vk
ij/t (5)

where i denotes an alternative and j denotes an attribute.
2. Cloud prospect consensus degree: Classically, consensus is defined as the full and unanimous

agreement of all decision makers regarding all possible alternatives. The CPC used in this paper
is based on the cloud model and prospect theory, as shown in Equation (7). First, the consensus of
alternative i for DM ek with group decision matrix Vc is:

CON(Vk
i ) =

√√√√√ 1
n

n

∑
j=1

 Vk
ij −Vc

ij(
maxg{Vk

ig −Vk
ig} −ming{Vk

ig −Vc
ig}+ ε

)
∗ n

2

, g = 1, 2, . . . , n (6)

where ε is a correction coefficient, usually assigned a value of 1. The CPC of alternative i for all
DMs and the CPC of all DMs are computed as:

CPC(ai) = 1− 1
t

t

∑
k=1

CON(Vk
i ). (7)

Let the consensus degree threshold of the CPC for group decisions be β. If CPC(ai) < β, then
adjust ai according to the minimum CPC to adjust the alternative.

3.5. Dual Group Decision Fusion Mechanism

It is difficult, but necessary, to achieve consensus among all DMs in group decision making.
Usually, feedback regulation is introduced to allow the DMs to revise their evaluations. In some cases,
it may be repeated many times to get a consensus of all DMs. This reduces the general applicability of
the group decision making method. To improve the efficiency of investment selection, we instead make
a reasonable linguistic variable evaluation. As a reasonable supplement, we use a continuous scoring
evaluation based on cognitive capacity under the uncertain environment. Therefore, the linguistic
variable evaluation and accurate scoring evaluation are integrated into a unified evaluation term;
based on this, the cloud prospect values of alternatives with various criteria are determined. The best
investment alternative among the dry bulk carriers is determined through the relative proximity to
the ideal solution based on the cloud prospect value function. The linguistic assessment, cloud model
transformation and prospect value constitute the main components of the dual group decision fusion
mechanism model. The dual group decision fusion mechanism starts with both linguistic variable
evaluation and continuous scoring evaluation and aims to improve decision efficiency and accuracy.
It involves the following main steps.

First, set up the linguistic terms set and carry out the linguistic evaluation.
Second, set up an interval score in [0, 100] and carry out the continuous scoring evaluation.
Third, build a hierarchical cloud. Compute the scoring value corresponding to each linguistic
term, and use the reverse cloud generator to generate the expected value, entropy, and
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hyperentropy of the cloud. All generated clouds constitute hierarchical clouds of the cloud
prospect group decision model.
Fourth, build a unified frame for the linguistic terms, integrating the transformed hierarchical
and linguistic variables into a unified evaluation term.
Fifth, compute the prospect value of each alternative. Use Equations (1)–(4) to calculate the cloud
prospect values with the generated hierarchical clouds under the unified evaluation term.
Sixth, calculate the consensus degree based on the CPC. Use Equation (5) to aggregate the
decision matrices Vk

ij of all the DMs, and then, calculate the CPC for each alternative through
Equations (6) and (7).
Seventh, according to the consensus degree threshold, adjust the difference or disagreement
attribute to satisfy the accepted threshold.

4. Performance Analysis

As a newly-proposed method, the dual group decision fusion method requires a reasonable
standard to evaluate its performance. The ranking results for investment projects and the
corresponding consensuses can only provide a partial evaluation of the advantages and disadvantages
of the proposed method. Some quantitative indicators are used to evaluate the method more
comprehensively. TOPSIS (technique for order performance by similarity to the ideal solution) is
known for solving MCDM problems and has been widely accepted for investment selection due to its
simplicity and applicability, as well as its higher sensitivity in issues involving various criteria [1,65].
Therefore, the positive ideal and negative ideal solutions (PIS and NIS) from the technique for order
performance by similarity to ideal solution are used to evaluate the method based on prospect value.
The relative closeness to the PIS depends on the final sorting of all the alternatives.

Step 1: construct the normalized decision matrix of the prospect value on each attribute for each
DM. The normalization for the benefit criteria will be represented as:

zk
ij = Vk

ij
/

Vk∗
j , Vk∗

j = max
i
{Vk

ij} (8)

For cost criteria, the normalization will be

zk
ij =

mini{Vk
ij}

Vk
ij

(9)

Step 2: determine the ideal and negative ideal solution Zk+ (PIS) and Zk− (NIS), respectively.
There is a PIS and NIS for each DM on two kinds of decision attributes. We have:

Zk+ = {zk+
1 , · · · , zk+

n } =
{

max
i

zk
ij|j ∈ J, min

i
zk

ij|j ∈ J′
}

(10)

Zk− = {zk−
1 , · · · , zk−

n } =
{

min
i

zk
ij|j ∈ J, max

i
zk

ij|j ∈ J′
}

(11)

where J is associated with the benefit criteria and J′ is associated with the cost criteria.
Step 3: the separation measurement from the ideal and negative ideal solutions S+

i and S−i ,
respectively. For a given weight assignment coefficient ωi of the criteria, the weighted similarity
of the prospect value comes from Equations (12) and (13). Construct a similarity (distance)
measurement for the DMs between individuals and groups. Here, the individual similarity is for
an individual DM of alternative i.
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Sk+
i =

(
n

∑
j=1

ωj(zk
ij − zk+

n )p

)1/p

(12)

Sk−
i =

(
n

∑
j=1

ωj(zk
ij − zk−

n )p

)1/p

(13)

When p = 2, the similarity metric is the Euclidean distance. In addition, the group similarity is
the aggregation of the individual DMs. The group similarity measure for each alternative will be
computed through an operation ⊗ on all the DMs. The operation ⊗ is the geometric mean; the
group metric will be:

S+
i =

(
Πt

k=1Sk+
i

)1/t
(14)

S−i =
(

Πt
k=1Sk−

i

)1/t
(15)

Step 4: calculate the relative closeness to determine the ideal solution for the group. The relative
closeness is computed to PIS for alternative i:

C∗i =
S−i

S+
i + S−i

(16)

where 0 ≤ C∗i ≤ 1. The larger the index, the better the performance of the alternative.

The distinction of the metrics also marks the performance of the decision making in the selection
of dry bulk carriers for investment.

5. Numerical Analysis and Discussion

5.1. Case Description

Dry bulk carrier investment is one of the most important commercial activities of the international
shipping industry. Compared to other activities, it requires larger capital investments, longer
investment recovery periods, and a higher degree of risk tolerance. When considering a shipowner
who would like to invest in one of three dry cargo carriers, a1 represents the bulk carrier, a2 represents
the general cargo carrier, and a3 represents the multipurpose vessel. DMs make linguistic evaluations
and scoring assessments under three states f = {poor,fair,good}, where, for example, the poor
state denotes high energy consumption and deficient environmental technology and the good state
denotes a high level of green technology. DMs evaluate the decision attribute u under status f
with occurrence probability p on the discrete linguistic term set S = {1, 2, 3, 4, 5}, which represents
{quite poor, poor, fair, good, very good}. For example, poor implies that the current ship investment is
not the best match in terms of the attribute. In Appendix A in the Supplementary Materials, uncertain
linguistic evaluations and scoring assessments from 0–100 for dry cargo ships are provided from three
experts from the shipbuilding industry and the financial industry.

5.2. Comparison Method

To illustrate the effectiveness and significance of the dual group decision fusion mechanism,
two representative methods are used as comparison methods to confirm the effectiveness and
performance of the mechanism.

5.2.1. Group Decisions with the Trapezoidal Fuzzy Operation

One widely-used method of group decision making is the trapezoidal fuzzy method [66–68],
and it is the first comparison we use. A fuzzy set, characterized by a fuzzy membership function,
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can provide us with a measurement of the uncertainty and ambiguity in the real world. One of the
most popular implementations of fuzzy sets is through triangular or trapezoidal fuzzy numbers with
simple calculations. According to the proposed framework of cloud and prospect theory, different
attributes with various states are constructed with corresponding probabilities. The same uncertain
linguistic term set S is set up. Each linguistic term Si can be expressed as triangular fuzzy number
Xi = [xL

i , xi,M , xU
i ], where xL

i < xM
i < xU

i . The membership function is defined as follows:

µXi =


(x− xL

i )/(xM
i − xL

i ) xL
i ≤ x ≤ xM

i

(xU
i − x)/(xU

i − xM
i ) xM

i ≤ x ≤ xU
i

0 x ∈ (−∞, xL
i ) ∪ (xU

i ,+∞)

(17)

Let x̃ = [xa, xb] be the uncertain linguistic term, where xa and xb are the lower and upper limits,
respectively. They can also be expressed as the triangular fuzzy numbers [xL

a , xM
a , xU

a ] and [xL
b , xM

b , xU
b ].

Then, the linguistic variable x̃ = [xa, xb] can be transformed into trapezoidal fuzzy numbers:

µ(x) =


(x− xL

a )/(xM
a − xL

a ) xL
a ≤ x ≤ xM

a

1 xM
a ≤ x ≤ xM

b

(x− xU
b )/(xM

b − xU
b ) xM

b ≤ x ≤ xU
b

0 x ∈ (−∞, xL
a ) ∪ (xU

a ,+∞)

(18)

Therefore, every interval of linguistic terms can be transformed into a trapezoidal fuzzy linguistic
term [xL

a , xM
a , xM

b , xU
b ]. Meanwhile, the state probability is the interval probability of (0, 1). In addition,

the interval probability is the given probability plus or minus 0.1; for example, if the given probability
is 0.2, then the transformation probability interval is (0.1, 0.3). Then, decision making is conducted
through the following process:

(1) The interval probability is transformed into the interval probability weight. The interval
probability weights (ω

j
1, ω

j
2, · · · , ω

j
l ) for the jth attribute under the lth status are

[ω(pj
L1

, pj
U1
)], [ω(pj

L2
, pj

U2
)], · · · , [ω(pj

Ll
, pj

Ul
)], j = 1, 2, · · · , n. The weight function selection

depends on the properties of the attribute. For comparison, the probability intervals are the
extension of the definite probabilities, and the trapezoidal fuzzy numbers are the extensions of
the uncertain linguistic terms.

(2) Each triangular fuzzy term is transformed into a trapezoidal fuzzy expression. Each attribute is
expressed as the uncertain linguistic [xa, xb] variable and can be transformed into the trapezoidal
fuzzy number [xL

a , xM
a , xM

b , xU
b ].

(3) The prospect value is computed for the trapezoidal fuzzy assessment of the jth attribute with
the lth status under the ith alternative. According to prospect decision theory, the prospect value
of an alternative under various criteria depends on the reference point. According to [66–68], a
medium point in the linguistic term set should serve as the reference point.

(4) The prospect decision value is obtained by integrating the statuses of the attributes with the
alternative. First, the interval probability weight is extended to the trapezoidal fuzzy number.
Then, the prospect value is found by integrating the interval probability weight with the prospect
value function. This gives us a comprehensive prospect value for the ith alternative under the
jth attribute.

5.2.2. Group Decisions with Fuzzy TOPSIS

Classic fuzzy TOPSIS is used as the second comparison method. According to [66–68], all ratings
and weights are defined by linguistic variables. The main decision process involves the following steps:
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Step 1: Constructing criteria weights. The DMs provide importance weights for each of the
factors. The importance levels are then converted into trapezoidal fuzzy numbers based on five
levels of importance given in [69]:

ω = (ω̃j)1×n = x1x2 · · · xn/[ω̃k
1, ω̃k

2, · · · , ω̃k
n]

where ω̃k
j =

(
ω̃1

1+ω̃2
2+···+ω̃t

j
t

)
, j = 1, 2, . . . , n.

Step 2: Aggregation of the rating matrix. Each DM evaluates each alternative with respect to
each of the criteria using the five scales given in the form of trapezoidal fuzzy numbers:

X =
(

f̃ k
ij

)
m×n

=

f1
...

fm

 f̃ k
11 · · · f̃ k

1n
...

. . .
...

f̃ k
m1 · · · f̃ k

mn


Then, the aggregate rating of each alternative can be calculated as f̃ij =

(
f̃ 1
ij+ f̃ 2

ij+···+ f̃ t
ij

t

)
.

Step 3: Normalizing the decision matrix R̃ = [r̃ij]m×n. Paying attention to the different
characteristics of each attribute, the normalization of the benefits and costs refers to [69].
Step 4: Weighting the normalized decision matrix ṽ, ṽij = r̃ij × ω̃j.
Step 5: Calculating FPISand FNIS.

d∗i =

√√√√1
4

n

∑
j=1

(ṽij − ṽ∗j )
2, d−i =

√√√√1
4

n

∑
j=1

(ṽij − ṽ−j )
2

where ṽ∗j = (1, 1, 1, 1) and ṽ−j = (0, 0, 0, 0).
Step 6: Computing relative closeness. The equation is the same as Equation (16).

5.3. Results and Analysis

The optimal dry cargo carrier investment decision was made following the golden section of the
cloud transformation and numerical characteristics as in Table 3, that is the five discrete linguistic term
sets S = {C+2, C+1, C0, C−1, C−2}. When referring to the other attributes, DMs make a comparison
with other attributes and other states.

According to the dual group decision fusion mechanism, the five reverse clouds and
corresponding linguistic terms are generated by a reverse cloud generator based on the linguistic
term evaluation and scoring assessment. The expected value is positive and increases along with the
discrete linguistic variables.

Table 3. Reverse cloud generator.

Order Linguistic Term Expected Value Entropy Hyperentropy

1 C−2 19.6984 3.0176 5.0228
2 C−1 36.8468 3.0852 3.1052
3 C0 56.9922 3.2751 3.6096
4 C+1 76.5396 3.6019 4.9476
5 C+2 93.0769 3.5053 2.5213

According to the prospect decision matrix, Equations (4)–(6), and Equations (8) and (9),
and considering the loss aversion psychology and risk attitude of each expert, the normalized
individual prospect value matrix of alternative i for three decision makers are as follows (Tables 4–6).
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Table 4. Normalized prospect value matrix of the alternatives for DM1.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

V1 0.4746 0.8087 0.9610 1.0000 0.6678 0.3127 1.0000 0.5344 0.9284 0.8139
V2 0.6197 1.0000 0.3545 0.5418 0.5065 0.4652 0.8974 0.5190 0.9274 1.0000
V3 1.0000 0.7331 1.0000 0.8413 1.0000 1.0000 0.7188 1.0000 1.0000 0.7436

u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

V1 0.6558 0.3466 1.0000 0.5997 1.0000 0.5237 0.3974 0.9225 0.7789 1.0000
V2 0.9232 1.0000 0.3665 1.0000 0.6256 0.4523 0.3523 0.5345 1.0000 0.8017
V3 1.0000 0.9795 0.8033 0.8980 0.5634 1.0000 1.0000 1.0000 0.8184 0.0000

u21 u22 u23 u24 u25 u26 u27 u28 u29

V1 1.0000 0.4213 1.0000 1.0000 0.6881 0.9910 0.6687 0.6442 0.8577
V2 0.4688 1.0000 0.2388 0.4257 1.0000 0.1493 0.9041 1.0000 0.2717
V3 1.0000 0.6916 0.9907 0.5361 0.8072 1.0000 1.0000 0.7501 1.0000

Table 5. Normalized prospect value matrix of the alternatives for DM2.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

V1 1.0000 0.0000 0.6893 0.9260 0.5048 1.0000 0.3701 0.6059 0.6744 0.7894
V2 0.8731 1.0000 0.5488 1.0000 0.9434 0.6988 1.0000 1.0000 0.7433 1.0000
V3 0.6664 0.9079 1.0000 0.2431 1.0000 0.9743 0.9587 0.8134 1.0000 0.0892

u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

V1 1.0000 0.7684 0.3916 0.9609 0.9235 0.5675 1.0000 0.4894 1.0000 0.8461
V2 0.5547 0.6212 0.6916 0.4674 0.5286 1.0000 0.6041 0.4166 0.6177 1.0000
V3 0.6837 1.0000 1.0000 1.0000 1.0000 0.7633 0.4949 1.0000 0.8211 1.0000

u21 u22 u23 u24 u25 u26 u27 u28 u29

V1 0.0559 0.4664 1.0000 0.6097 1.0000 0.7670 0.6279 0.6026 1.0000
V2 1.0000 0.8054 0.9285 1.0000 0.7878 1.0000 1.0000 0.6206 0.4809
V3 0.7975 1.0000 0.8190 1.0000 0.3663 0.4722 0.2388 1.0000 0.5882

Table 6. Normalized prospect value matrix of the alternatives for DM3.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

V1 0.5329 0.6892 0.3837 1.0000 0.9679 0.1242 0.9909 0.5443 0.9378 0.5504
V2 1.0000 0.6474 1.0000 0.6678 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
V3 0.7452 1.0000 0.6398 0.1229 0.8390 0.7000 0.1212 0.6564 0.9838 0.6957

u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

V1 0.5436 0.7691 0.7262 0.6136 0.0935 1.0000 0.4551 0.4145 0.5766 1.0000
V2 1.0000 0.6721 0.6527 0.8452 0.8657 1.0000 0.7276 0.4145 1.0000 0.4398
V3 0.1649 1.0000 1.0000 1.0000 1.0000 0.4501 1.0000 1.0000 0.0000 0.4868

u21 u22 u23 u24 u25 u26 u27 u28 u29

V1 0.6918 0.4850 0.5448 0.6120 1.0000 1.0000 0.9928 0.8591 1.0000
V2 1.0000 1.0000 1.0000 0.5350 0.8697 0.2531 1.0000 0.4790 0.5068
V3 0.9225 0.7416 0.5354 1.0000 0.3388 0.4941 0.4390 1.0000 0.2771

According to Equations (6) and (7), the consensuses of the three alternatives were
0.9960, 0.9962, and 0.9959, which are all greater than the common thresholds of 0.9
(β = 0.9) and 0.95 (β = 0.95). The higher level of consensus shows the credibility
of the decision making process. The set of weights for the given 29 attributes was
{0.01, 0.03, 0.01, 0.01, 0.1, 0.01, 0.005, 0.08, 0.1, 0.01, 0.0058, 0.06, 0.009, 0.01, 0.1, 0.01, 0.0362, 0.01, 0.05, 0.01,
0.005, 0.019, 0.0045, 0.08, 0.007, 0.055, 0.045, 0.025, 0.0035}

The set of relative closeness values for the three alternatives was {0.4643, 0.5326, 0.5675}.
Obviously, there are large distinctions among the Ci values, which shows a rank of a3 > a2 > a1;
namely, the multipurpose vessel was superior to the general cargo carrier, and the general cargo
carrier was superior to the bulk carrier. Obviously, the multipurpose vessel had the best investment
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performance, namely it had the best prospect value on dry bulk carrier investment and was closest to
the optimal investment scheme. At the same time, the performance measurement could be used to
motivate the current program to further improve and optimize, and to motivate enterprise’s high-value
goal orientation. The investment performance of multi-purpose ships increased by 22.23% compared
with the bulk carrier, and the general cargo carrier increased by 14.71% compared with the bulk carrier.

5.4. Method Comparison and Evaluation

When there are five linguistic term in S, the transformation method from the uncertain linguistic
variables to triangular fuzzy numbers is as follows, as in [68]:

x0 = 0

xL
i = (i− 1)/4 1 ≤ i ≤ 4

xM
i = i/4 0 ≤ i ≤ 4

xU
i = (i + 1)/4 0 ≤ i ≤ 3

xU
5 = 1

(19)

The corresponding relationship between the linguistic variables and the triangular fuzzy numbers
was x0 = (0, 0, 0.25), x1 = (0, 0.25, 0.5), x2 = (0.25, 0.5, 0.75), x3 = (0.5, 0.75, 1), x4 = (0.75, 1, 1).

With regard to the performance of the alternative selection, according to Equations (12) and (13),
the PIS and NIS for individual DM and the similarity or distance metrics for the individuals and the
group are as follows.

NIS PIS

S1
=

0.3983 0.2956
0.2652 0.4302
0.4209 0.2699


NIS PIS

S2
=

0.2438 0.3788
0.3900 0.2781
0.3994 0.2636


NIS PIS

S3
=

0.3241 0.4319
0.4716 0.2756
0.3681 0.3852


NIS PIS

S =

0.3157 0.3643
0.3654 0.3207
0.3955 0.3015


The weighted function value took the form of the trapezoidal fuzzy number, and the alternatives

were weighted based on the expected value of the trapezoidal fuzzy numbers. The separation measure
from the ideal and negative ideal solutions for the group DMs is as follows:

NIS PIS

S1 =

0.3984 0.3899
0.3737 0.3601
0.3901 0.3816


FNIS FPIS

S2 =

17.0052 13.7102
16.5062 14.2003
16.8311 13.8858


Finally, the degrees of consistency among the three alternatives were 0.9956, 0.9957, and 0.9955.

In other words, the decision also satisfied the consensus threshold. The set of relative closeness
values for the three alternatives was {0.5054, 0.5093, 0.5055}. Obviously, the investment selective
performances of the three alternatives were quite approximate, which means it is hard to provide an
optimal scheme for ship investment.

Comparatively, although the dual group decision fusion mechanism and the trapezoidal fuzzy
group decision making method of both result in a high degree of consistency (β = 0.99), the dual group
decision fusion featured greater consensus than the latter method. Moreover, as far as investment
selection performance is concerned, the dual group decision method performed better on the whole;
the performance values for more than two alternatives were larger than the corresponding values
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from the comparison method. In summary, the dual group decision fusion mechanism shows the best
performance in the selection of dry cargo carriers for investment, and the best alternative was the
multipurpose vessel.

According to the second comparison method or group decision by fuzzy TOPSIS, according to
Step 1, the criteria weight is seen in Appendix B in Supplementary Materials. Then, the weighted
normalized decision matrix, as seen in Appendix C in the Supplementary Materials, was based on
Step 2–Step 4. The FPIS of the three alternatives, and correspondingly the FNIS, was S2. Finally,
the closeness coefficients of the three alternatives were 0.5536, 0.5375, and 0.5479. The performances
were also similar and did not help in distinguishing the alternatives.

As the market becomes increasingly subdivided, the segmentation of cargo can influence the
selection of dry bulk carriers for investment. For example, ships containing green raw materials
and equipment demonstrate better economic and environmental performance, while ships under
the green supply chain aim at sustainable development and green competition. The differential
investment selection of dry bulk carriers must result in differential performance. In terms of adapting
to competition from other bulk carriers, multipurpose ship owners hope that future multipurpose
ships will be more flexible and more convenient to load and unload. Recently, the multipurpose ship
business began to analyze the development of the global multipurpose ship transport market and
became particularly optimistic about the Chinese market. The change in cargo has led to an increase
in the size of carriers, along with increases in the cargo holds; this is the trend in the development of
multipurpose ships.

6. Conclusions

Ship investment selection is a classic MCDM issue. According to the classification of seaborne
trade, dry bulk carriers occupy almost half of the territory. Apart from tankers, dry bulk carriers carry
the largest amount of cargo. This paper studies three types of dry bulk carrier investment alternatives.
Under the green supply chain, decision indices are constructed. The cognitive ability of multiple DMs
is utilized to identify factors that influence the investment decision. Six influencing factors are chosen,
and the corresponding indicators are constructed based on the sustainability requirement and green
supply chain environment of dry cargo carriers.

A dual group decision fusion mechanism is proposed for evaluating the investment selection.
The proposed method takes into account the scoring assessment and linguistic evaluation by integrating
both of them into a unified evaluation term. A cloud model is also embedded into the proposed
method to handle the ambiguity and randomness of DMs. The scoring assessment and linguistic
evaluation complement each other, resulting in greater consistency and a higher level of performance.
In addition, a consensus degree model and performance analysis ensure the validity and efficiency,
respectively, of the decision. Finally, two group decision methods are used to evaluate the proposed
method. Compared with other methods, the dual group decision fusion mechanism gives a more
significant, reasonable, and accurate result. In a project involving the evaluation of dry bulk carriers
for investment, the proposed method shows that the multipurpose vessel is the best alternative under
the green supply chain.

Multi-functional ships not only have great flexibility and individuality in ship manufacturing and
investment field, but also provide broad development space for sustainable development of enterprises,
especially in energy-saving and environmentally-friendly ship systems. Practically, managers of ship
enterprises, especially the dry bulk carriers’ investment selection, are future-oriented competitors,
as rational investors or investment managers need to respond to the long-term sustainable development
of enterprises, which balances the immediate interests and long-term interests.

The policy implication guides the macroscopic concept, which needs to carry out policies and
regulations. The constructed model of dry bulk carriers’ investment selection is a shock to existing
investment decision making on the evaluation of the decision making organization, procedure, and
scheme. With the implementation of a sustainable ship investment selection model, it will also
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restructure the organization and redistribute the resources. The concept of sustainable green supply
management is further strengthened in the process of investment selection for dry bulk carriers.

For future work, we would like to apply the dual fusing mechanism of group decision under
green supply chain perspectives to investment structural adjustment of green capacity, complicated
equipment, and major projects, as well as provide more effective policies and advice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/10/12/4528/
s1.
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