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Abstract: Urban areas face challenges including vehicular emissions, stormwater runoff, and sedentary
lifestyles. Communities recognize the value of trees in mitigating these challenges by absorbing
pollution and enhancing walkability. However, siting trees to optimize multiple benefits requires a
systems approach that may cross sectors of management and expertise. We present a spatially-explicit
method to optimize tree planting in Durham, NC, a rapidly growing urban area with an aging tree stock.
Using GIS data and a ranking approach, we explored where Durham could augment its current stock of
willow oaks through its plans to install 10,000 mid-sized deciduous trees. Data included high-resolution
landcover metrics developed by the U.S. Environmental Protection Agency (EPA), demographics from
the U.S. Census, an attributed roads dataset licensed to the EPA, and sidewalk information from the
City of Durham. Census block groups (CBGs) were ranked for tree planting according to single and
multiple objectives including stormwater reduction, emissions buffering, walkability, and protection of
vulnerable populations. Prioritizing tree planting based on single objectives led to four sets of locations
with limited geographic overlap. Prioritizing tree planting based on multiple objectives tended to favor
historically disadvantaged CBGs. The four-objective strategy met the largest proportion of estimated
regional need. Based on this analysis, the City of Durham has implemented a seven-year plan to plant
10,000 trees in priority neighborhoods. This analysis also found that any strategy which included the
protection of vulnerable populations generated more benefits than others.

Keywords: eco-health; green space; EnviroAtlas

1. Introduction

Since the publication of the Millennium Ecosystem Assessment [1], the concept of ecosystem
services has increasingly been incorporated in land management and land use planning [2]. Not only
can the value of ecosystem outputs be estimated, but features of ecosystems can often be expanded or
managed to substitute for built infrastructure that would otherwise be required [3,4]. Communities are
becoming aware that vegetation-based “green” infrastructure provides environmental benefits, such
as cleaner air and water, and can do so at substantial cost savings when compared with traditional
“gray” infrastructure and technology approaches [4,5].
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In today’s resource-constrained environment, communities are challenged to design solutions
that contribute to multiple objectives while achieving their principal goals. In addition to budgetary
limitations, the urban setting often lacks adequate space [6] to allocate to natural, managed or simulated
ecological features for the services that they produce. Therefore, a greater return on investment may
be facilitated by placing urban green infrastructure in areas of the greatest local need, where need is
determined by both the mitigation of environmental hazards and the provision of services to vulnerable
and underserved populations. The effectiveness of generating services where need exists can then be
assessed using both single- and multiple-objective designs.

In contrast to conventional infrastructure and technologies, multiple benefits can be generated by
a single green infrastructure installation. Curbside trees may be planted to provide the primary benefit
of shade for pedestrians, but also produce myriad positive externalities, or co-benefits. These include
flood hazard mitigation due to stormwater absorption, respiratory health improvements from the
filtration of air pollutants, and mental health improvements through increased opportunity to engage
with nature [5,7]. The ecosystem services framework is inherently interdisciplinary; urban ecosystems
can provide multiple environmental as well as social services [8]. However, it is difficult to aggregate
and evaluate trade-offs among multiple, disparate services to estimate benefits. We developed a
screening-level methodology to quantify a proposed action (urban tree planting) in terms of multiple
community needs. We then applied this methodology to a specific community (Durham, NC,
USA), providing a multi-year, high-resolution management plan for maximizing benefits from the
proposed action.

1.1. Approach

Green infrastructure is often deployed based on its ability to provide ecosystem services; however,
the potential beneficiaries of those services must be explicitly considered. For example, if a tree
casts a shadow but no one walks beneath it, can it be said to have generated a shading ecosystem
service? Given the competition for resources and space in urban settings, strategic investments in
green infrastructure require not only accounting for the multiple services potentially generated, but
also the intensity of need where those services could be provided.

Our method is based on the supposition of a fixed quantity of potential ecosystem services
provision (here represented by a pre-determined number of trees), where the actualization of their
benefits (and thus their value) is solely a function of where they are located. For each of four potential
benefits, we developed a metric of intensity of need by areal unit. The unit we used is the census
block group (CBG); these are later aggregated to neighborhoods for better recognition by Durham
city officials. However, any appropriate unit (block, catchment, etc.) may be used. For each metric
reflecting intensity of need for a benefit, we ranked CBGs for sequentially ordered planting; the scores
for each CBG were retained for calculating benefits provision in the evaluation stage. A glossary of
abbreviations used in this paper is included as an Appendix A.

To evaluate the relative benefits provided by each planting scenario, we developed a metric of
“fractional benefits provision” (FBP) which relates the benefits provided by a tree planting scenario to
the maximum potential benefits which could be provided if tree planting resources were unlimited. That
is, we estimate benefits provision under the City’s pre-condition of limited resources (i.e., 10,000 trees)
in relation to the maximum potential benefit for the study area. Multiple planting strategies targeted
ecosystem services either singly or in combinations. We hypothesized that (1) there is significant
geographic variability in the intensity of need for different ecosystem services; (2) planting strategies
developed to maximize the provision of a single benefit will fail to maximize the provision of co-benefits;
and (3) multi-objective designs that consider several benefits simultaneously will generate greater total
benefits than single-objective designs.
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1.2. Case Study: Durham, NC

Located in the central Piedmont region of North Carolina, Durham County has a population of
approximately 270,000 (964 people per square mile) [9]. More than 30% of the population is living
below twice the poverty level. Low-income populations suffer disproportionate health and social
vulnerabilities, in part due to inequitable distributions of public assets and risks [10,11]. The study
area also faces stormwater and vehicular emissions challenges. The county is divided into two major
water basins, with the Neuse to the north and the Cape Fear to the south. Due to stormwater runoff
from areas including the City of Durham, both of the receiving reservoirs (Falls Lake and Jordan Lake)
are impaired for nitrogen and phosphorus [12,13]. Durham has implemented a greenhouse gas and
criteria air pollutant action plan which cites vehicular emissions as 39% of community greenhouse gas
emissions and outlines future reduction targets [14]. Further, the current Durham urban forest is at a
critical stage due to impending die-off of about 13,000 trees planted during the 1930s [15,16].

As part of the Trees Across Durham initiative, the City of Durham is dedicated to increasing
its tree stock by 1500 trees per year between 2019 and 2026. The projected cost of this effort by the
end of 2026 is estimated at 1.1 to 1.25 million U.S. dollars (Alexander Johnson, City of Durham, pers.
comm.). This is a substantial outlay for a medium-sized city, and yet it will not fund new trees for
all neighborhoods. The Durham Urban Forestry Department requested our assistance to develop a
methodologically sound prioritization plan for siting the 10,000 trees along neighborhood rights of
way to maximize potential societal benefits.

Durham is also a featured community in the EPA’s EnviroAtlas, an online decision support tool
designed to help users identify and map the benefits nature provides to people [17]. The EnviroAtlas
community component provides ecosystem services and demographic data summarized by CBG, with
environmental metrics based on one-meter resolution land cover data. These resources provided the
spatial scale needed to evaluate the tree planting strategies of our study.

1.3. Problem Formulation

Like many communities, Durham is confronted with an aging stock of urban street trees—in this
case, primarily willow oaks (Quercus phellos). Their large size and senescent state are beginning to cause
significant upkeep and infrastructure expenditures, mostly due to falling limbs and root intrusion.
Although there is an increasing awareness of the services provided by urban trees, their drawbacks
often prevail in the public mind. Further, the benefits of trees cannot be viewed in isolation, as the
targeting of any one ecosystem service can affect the provision of other services [18]. For example, a
tree species like Serviceberry (Amelanchier arborea) may be chosen for the aesthetic quality of its bark
and flowers, and urban foragers may enjoy co-benefits from collecting its small edible fruits [19]. Any
tree management strategy should account for multiple anticipated values.

An integrated strategy for tree planting looks beyond economic costs to health and other social
benefits. Some ecosystem services can translate to costs averted; others are less tangible and more
subjective. In either case, the nature and magnitude of the actual costs and benefits are highly dependent
on location and on the beneficiaries of the services. Therefore, our methodology factored in the location of
urban trees with respect to environmental stressors and vulnerable populations. We used the placement
of urban trees to demonstrate how our approach yields an increase in benefits provision.

2. Methods

Our study area is the 143 CBGs within the Durham County portion of the Durham community
featured in US EPA’s EnviroAtlas. We constructed our analysis according to the stated preference
of the Durham Urban Forestry Department to augment the current stock of willow oaks with
10,000 deciduous trees suitable to the urban landscape. While the provision of ecosystem services
is species-dependent, we chose to model all trees uniformly according to the phenology of the red
maple (Acer rubrum), a representative mid-sized broadleaf tree for the region [20]. The selection of a
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medium-sized tree is consistent with the desire to reduce the risks of larger trees while maximizing
the provision of ecosystem services. We chose a single species because we are primarily exploring
the impacts of multiple placement strategies, rather than trying to match species to site. However,
multiple species should be selected to avoid pest infestation and other risks of a monoculture [20].
Species selection will be determined on a case-by-case basis by the Durham Urban Forestry Department
according to environmental, aesthetic, and economic considerations.

We conducted a semi-quantitative analysis of the benefits of alternate tree-placement strategies
based on the trees’ potential for providing multiple ecosystem services. To determine the number
of trees that might be placed in each CBG, we first calculated the number of eligible sites for tree
planting (Figure 1). We identified these within public rights of way where the City and County of
Durham have jurisdiction and responsibility to manage roadside trees. We defined rights of way as
30-foot buffer zones along all road edges. While 30 feet is wider than most legal rights of way, this
width reflects mature canopy cover. We then restricted candidate planting sites using the one-meter
land cover data [21]; we included bare soil and herbaceous cover types and excluded existing tree
cover, impervious surface, and water. We quantified potential tree planting sites per CBG using the
maximum number of non-overlapping 30 ft2 candidate areas, assuming one new tree per site.
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We selected four common urban objectives that may be achieved through tree planting. Two
address the mitigation of hazards—stormwater runoff and traffic emissions—identified as local
issues of concern. Two involve social factors that affect the realized benefits of ecosystem services.
These objectives are to prioritize vulnerable populations and enhance the pedestrian environment.
Greenery is a venue and stimulus for healthful behaviors including physical activity, social interaction,
and engagement with nature [22]. In urban and natural areas, this quality is a key aspect of
cultural, recreational, and aesthetic ecosystem services [1]. Each of the four objectives considered
exposure pathways and was evaluated in isolation and combined to form multi-objective cases which
demonstrate how multiple benefits can be optimized by a single action.
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2.1. Single-Objective Cases

Our stormwater objective is based on the capacity of urban trees to absorb rainfall and polluted
runoff [23,24]. While species type, rainfall amount, soil quality and saturation, and other variables
affect this capacity, it has been well documented that land use plays a major role in stormwater
quantity and quality [25,26]. A sensitivity analysis of the stormwater runoff parameters in US EPA’s
widely-used SWMM model showed that the model was most responsive to impervious land cover [27].
Therefore, we targeted the strategic planting of trees based on the percent impervious land cover in
each CBG. We used the EnviroAtlas percent impervious surface metric, summarized by CBG [21], as a
measure of intensity of need for our stormwater metric.

Our road emissions objective targets the mitigation of vehicular air pollution by urban street trees.
The effectiveness of near-road tree buffers is dependent on species as well as local factors including
temperature, precipitation, wind speed and direction, and design of the built environment [28].
Nevertheless, leaf stomata readily absorb gaseous pollutants [29], while a continuous tree buffer can
loft and dilute airborne pollutant flow [30]. We focused on nitrogen dioxide (NO2), a US EPA-labeled
criteria pollutant that has been linked to significant public health issues such as childhood asthma and
cardio-vascular disease [20,31]. To identify the biggest potential source of vehicular air emissions, we
categorized the roads within our study area for each of the 143 CBGs based on speed and fleet (truck)
mix (Table 1). Analyses were conducted in ArcGIS 10.2 [32] using the NAVTEQ road database for the
U.S. [33].

Table 1. Road classification according to speed category and presence of high-emissions traffic
(i.e, trucks), with 1 having the lowest emissions and 4 the highest emissions.

Road Classification Speed Category Truck Route

1 2 (31–44 mph) No
2 2 (31–44 mph) Yes
3 1 or 3 (0–30 or 45+ mph) No
4 1 or 3 (0–30 or 45+ mph) Yes

We defined a road in the same manner as Watkins and Baldauf [34], who make no distinction
among street, collector, arterial, highway, expressway, toll-way, parkway or freeway. Since roads are
characteristically classified based on these functions, not speed or fleet mix, the typical US Department
of Transportation road classifications are not sufficient as metrics for potential source emissions.
According to EPA’s MOBILE6 and newer MOVES vehicle emissions models, NO2 emissions vary by
driving speed and vehicle type [35,36]. Speed affects NO2 emissions in a parabolic fashion; both the
Victoria Transport Policy Institute and the US Federal Highway Administration show that lower and
higher driving speeds result in higher NO2 emissions than mid-range driving speeds [37,38].

Roads with speed limits in the lower emissions range (31–44 mph) were ranked lower than roads
with speed limits outside this range, and roads designated as truck routes were ranked higher than
non-truck routes. The rank of the road (from 1 for low-emissions, speed-limited roads not designated as
truck routes, to 4 for high-emissions speed-limited roads designated as truck routes) was multiplied by
total road length within each CBG, and the resulting value used as the needs metric for road emissions.

While reducing air emissions across the study area is a worthwhile environmental goal, greater
human health and well-being benefits can be realized by targeting populations most vulnerable
to air pollution. Studies have shown that young, old, and low-income populations are especially
vulnerable to illness and disease caused by air pollution [11,39]. For this study, we identified vulnerable
populations based on age, income, and population density to maximize tree planting in block groups
with the highest concentrations of vulnerable populations using 2010 US Census data obtained through
EnviroAtlas [21]. The population vulnerability metric was calculated as the product of population
density, the percent of young and old (less than five and greater than 64 years of age), and the percent
with income below twice the poverty level.
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Inactivity-related health issues, such as obesity and diabetes, have reached epidemic levels in the
US and are the leading risk factors for heart-related disease [40,41]. Recent studies have revealed that
decisions about parks and natural environments affect people’s physical and mental health [42,43].
Tree cover has been shown to provide health benefits directly by reducing the urban heat island
effect [44], thus improving conditions for walking. Street trees have been linked to walking behavior
also through improved pedestrian safety [45] and aesthetics [46,47]; in addition, they may facilitate
healthful social interaction [48]. Land use mix and street network patterns are strongly linked to
pedestrian activity [43,49]. Trails, sidewalks and street crossings are additional features of walkable
environments, improving access to jobs and resources such as food and healthcare, while promoting
healthy outdoor activity [50]. For these reasons, we developed a walkability metric for health. We
ranked each CBG based on road speed and sidewalk availability, with the logic that increasing tree
cover along walkable roads will promote pedestrian use.

The walkability metric is the ratio of sidewalk length to category 1 (low-speed) road length,
multiplied by the percentage of category 1 road length. Sidewalk GIS data were obtained from the
Durham City and County Planning Departments. Roads data derived from NAVTEQ [33]; these two
spatial datasets were merged and segmented by US Census 2010 CBG polygons for the study area
using ArcGIS 10.2 [32]. As with the other need-based metrics, higher values denoted higher need and
CBG priority rank. We underscore that we prioritized roads that were already walkable, based on
traffic and sidewalk characteristics, to enhance shading, safety, and aesthetics.

Each of these four single-objective case (SOC) metrics failed the Shapiro-Wilk test for normality at
95% confidence; these results were confirmed visually using Q-Q plots. Therefore, each metric was
standardized to a value between 0 and 1 using non-parametric methods, according to the range of
non-standardized metric values. All metrics apart from the road emissions metric were skewed right,
with the population vulnerability and walkability distributions approximating power-law distributions
(Figure 2). The population vulnerability and walkability distributions also exhibited high kurtosis,
while the road emissions and stormwater distributions exhibited very low kurtosis.
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Figure 2. Distribution of standardized scores of each singular benefit (SB) metric.

We assessed possible correlation among the metrics using both a linear model and the non-parametric
Spearman’s rank correlation test. The r-squared value of the linear model relating road emissions to
walkability was 0.22, and below 0.03 for all other relationships. The Spearman’s ρ (range −1 to +1) relating
emissions to walkability was 0.43, between 0.22 and 0.28 for population vulnerability to walkability and
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stormwater to walkability, respectively, and below an absolute value of 0.16 for all other relationships. The
two most strongly correlated SOC metrics (road emissions and walkability) exhibited limited geographical
overlap (Figure 3a,d). While both metrics are road-based, the emissions metric incorporates high-speed
roads and truck routes, whereas the walkability metric includes low- to medium-speed roads without
regard for truck designation.
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2.2. Multiple-Objective Cases

The SOCs target one benefit while potentially accruing the added value of other benefits. The
multi-objective cases (MOCs) seek to incorporate multiple benefits by intentionally accounting for
them in the decision-making context. We developed six 2-objective cases (MOC2s), four 3-objective
cases (MOC3s), and one 4-objective case (MOC4).

We prioritized CBGs for tree planting based on the generation of intentional co-benefits (ICB). For
each MOC, we calculated the ICB generation by CBG as the product of the singular benefits (SB) metrics
under consideration. For example, the ICB value by CBG for the MOC2 considering stormwater and
walkability was calculated as the product of the SB for stormwater and the SB for walkability. For MOC4,
the ICB value by CBG was calculated as the product of all four SB values (See Supplementary Materials).
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2.3. Benefits Calculation

Trees were distributed into eligible planting sites by ranking CBGs according to SB for SOCs
and ICB for MOCs, with a higher score indicating a higher priority. Beginning with 10,000 trees and
the highest-ranking CBG in the target objective, we filled CBGs until all 10,000 trees were depleted
for each case. We assessed the effectiveness of each case according to FBP, defined as the ratio of
benefits generated by the distribution of 10,000 trees relative to the maximum benefits which could be
generated if all candidate tree sites could be filled. First, we calculated the potential benefits provision
for each SB by CBG as the product of the total number of candidate tree sites and the SB score for that
CBG. The maximum benefits provision for each SB is the sum of potential benefits provided across all
143 CBGs. The FBP for each SB is the ratio of the sum of potential benefits provision for all CBGs that
can be filled with trees to the maximum benefit provision for all 143 CBGs in Durham:

FBP(SB) =
∑n

i=1 CBG(SB)i × CBG(trees)i

∑143
i=1 CBG(SB)i × CBG(trees)i

(1)

where CBG(SB) is the SB value of a CBG, CBG(trees) is the number of candidate tree sites within a
CBG, and n is the number of CBGs that could be filled with trees when the CBGs were prioritized for
each case. Using the same method, we also calculated the FBP of gross benefits (GB), with GB being
defined as the sum of all four SBs per CBG.

While GB allowed us to assess the accumulation of benefits, we also calculated the capacity of
each case to generate coincident co-benefits (CCB), whether through intentional planning or as an
incidental byproduct. For each CBG, CCB was calculated as the product of all SBs (in the same manner
as ICB was calculated for MOC4). Then the FBP of CCB was calculated for each SOC and MOC:

FBP(CCB) =
∑n

i=1 CBG(CCB)i × CBG(trees)i

∑143
i=1 CBG(CCB)i × CBG(trees)i

(2)

where CBG(CCB) is the CCB value of a CBG. By assessing estimated benefits provision as a fraction
of maximum benefits provision, we could directly compare the provision of singular, gross, and
coincident benefits across all 14 SOCs and MOCs.

3. Results

The road emissions SOC case generated the lowest GB and CCB provision, followed by the
stormwater SOC (Figure 4). Prioritizing according to either of these objectives resulted in widely
dispersed target CBGs with no apparent pattern (Figure 3). The population vulnerability SOC nearly
maximized the provision of SB for this objective and resulted in the highest GB provision of any
SOC. The target CBGs were less widely dispersed, with a distinct clustering around historically
disadvantaged communities east of downtown Durham, as well as a spur leading southwest from the
city center along a major highway. GB and CCB provision in the walkability SOC was nearly as high
as in the population vulnerability SOC, with a very tight clustering of target CBGs around downtown
Durham and near the two major universities—Duke University to the west of downtown and North
Carolina Central University to the south.

The metrics that were distributed closer to a normal distribution resulted in less efficient resource
allocation. For example, the FBP for road emissions reduction was between about 37% and 47%
depending on whether the objective was targeted or not. This compares unfavorably with the FBP
for population vulnerability, which increased from about 27% to 83% when it was targeted. While
exclusive consideration of road emissions captured only 40% of maximum GB across Durham, exclusive
consideration of population vulnerability captured more than 55%. In fact, even the simultaneous
consideration of all objectives in MOC4 captured only slightly more GB at 59%.

The MOC2s generally resulted in slightly higher GB provision. However, two of the MOC2s
(road emissions × stormwater; road emissions × walkability) generated lower GB than the SOCs of
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population vulnerability and walkability. MOC2s that included road emissions tended to underperform
MOC2s that did not, and MOC2s that included population vulnerability tended to outperform MOC2s
that did not.
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Figure 4. Benefits provisioned by each single- and multi-objective case. SOCs are identified by the
singular benefit (SB) used to define them (Emiss = road emissions; Vuln = population vulnerability;
Storm = stormwater reduction; Walk = walkability), and MOCs are identified by the set of metrics used
to define them. Colored bars represent the fractional benefit provision (FBP) for each SB. The grey
bars represent FBP for gross benefits (GB). The black hashed circle represents the FBP for coincident
co-benefits (CCB).

No MOC3 substantially outperformed the three highest-performing MOC2s (population
vulnerability × stormwater; population vulnerability × walkability; and stormwater × walkability).
Conversely, the lowest performing MOC3 (road emissions × stormwater × walkability)
underperformed every MOC2 that included population vulnerability in the provision of both GB and
CCB, and even underperformed the MOC2 which included only stormwater and walkability.

GB provision also did not substantially increase in MOC4. The spatial pattern of MOC4 (Figure 5)
largely matched that of the overlapping areas of the SOCs of population vulnerability and walkability,
with concentrations in the downtown area, around the two major universities, and along the spur to
the southwest of downtown. While GB provision was similar across all high-performing scenarios,
CCB generation improved substantially in MOC4, and tended to be higher in MOC3s than MOC2s
or SOCs.

In response to the City’s request for tree-planting site recommendations, we proposed MOC4
because it generated the greatest GB and CCB. We agglomerated the highest-priority CBGs under
MOC4 into eight civic neighborhoods. Then, we ranked those eight neighborhoods according to the
relative calculated needs of their constituent CBGs. Within each neighborhood we identified walkable
street lengths with minimal or no street-side tree cover, using estimates provided in EnviroAtlas [51],
which we verified using Google Street View. Our management plan based on this analysis is in
Supplementary Materials.

4. Discussion

We present a methodology for maximizing the provision of benefits by an ecosystem services
enhancement strategy through simultaneous consideration of multiple need-based objectives. In this
use case, we demonstrated that the capture of CCB is enhanced when multiple objectives are considered
explicitly and simultaneously [52]. However, we also found that prioritizing the consideration of
vulnerable populations, a social objective, yields the most benefits singly and when combined with
one or two other objectives.

Contrary to our original hypothesis, the maximization of GB and CCB were approximated by
targeting just one strategic objective, where the data representing that objective were strongly skewed
and highly kurtotic. Where simultaneous consideration of multiple benefits is not possible or is too
computationally expensive, GB provision may be significantly improved by focusing on a single objective
with geographically concentrated benefits. In Durham, the single objectives that exhibited greater
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nonnormality and resulted in more efficient GB generation contained a social component—demographics
in the population vulnerability objective and built infrastructure in the walkability objective. In some
cases, there were location tradeoffs between objectives. For example, the CBG with the second highest
need for stormwater reduction (southeast corner of Figure 4c) was not covered by MOC4, nor in
our recommendation to the City of Durham, because the other ecosystem services provisioned there
were minimal.
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Much research has focused on the potential benefits of urban trees, quantifying the potential
ecosystem services they provide in terms of ecological production functions [5,7]. We extended this
paradigm to estimate the actual benefits of those potential services through calculating intensity of
need for those services across neighborhoods. For example, while trees may buffer vehicular air
pollution in any context, the benefits of this service to pedestrians are much greater for a row of
trees planted along a highly-traveled neighborhood street than along a sparsely populated highway.
Strategic placement within the landscape is required to maximize actual benefits.

We recognize that monetization has been the primary method of comparing dissimilar environmental
states [2]. Many resources have been developed to this end, such as the U.S. Environmental Protection
Agency’s BenMAP tool, which estimates the economic impacts of changes in air pollution on human
health, and the USDA Forest Service’s i-Tree suite, which includes a method to monetize selected benefits
of urban forests [53,54]. However, some of the outcomes that communities care most about (e.g., social
cohesion, quality of place, health and well-being) do not lend themselves to monetization [2]. In fact, in its
assessment of our prioritization scheme, the Durham management team focused on health outcomes and
service to historically disadvantaged communities, and was indifferent to the monetization of benefits.
Nevertheless, non-monetized benefits are typically under-represented in cost-benefit analyses.

The consideration of multiple measures of what people “value,” known as multi-criteria decision
analysis (MCDA), has advanced into areas such as landscape planning in part through the inclusion of
ecosystem services indicators [55]. Fontana, Radtke et al. [56] used MCDA to evaluate landscape design
alternatives for their ability to produce multiple services, while other studies applied multi-objective
algorithms to optimize ecosystem services for watershed management and agricultural production [57].
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Similarly, our methodology quantifies in non-monetary terms the extent to which a proposed management
action provides a suite of ecosystem services addressing expressed needs across a community. This
functional, practical screening-level approach allows the direct comparison of four dissimilar but
complementary SBs, as well as evaluation of GB and CCB provision according to incidental or intentional
inclusion, respectively, of multiple objectives.

Limitations and Areas for Further Development

Our study constructed fourteen single- and multi-objective cases to develop metrics for ranking
and evaluating the intensity of needs in each CBG. We focused on issues of concern to the study
community, quantifying need using readily available geospatial data [58]. We recognize that estimating
an actual outcome for each objective met would require sector-specific modeling. For instance,
a stormwater pollutant loading model would be required to calculate N or P load reduced; or an air
emissions model would be required to calculate NO2 reductions from tree planting. While numerous
tools for scenario modeling of this type are available (e.g., USDA i-Tree suite), quantification of
biophysical outputs is beyond the scope of this study. Indeed, part of the appeal of assessing ecosystem
services provision in terms of intensity of need for services, as opposed to biophysical drivers, is the
ease of calculation from readily-available data. Therefore, for each objective described in our study,
we considered only the major characteristic(s) of sector-specific models and literature, and created
a simplified metric that reflected the primary documented driver(s) of the objective. Nevertheless,
spatially explicit estimation of the value of realized benefits (e.g., monetary value or health outcomes)
depends on biophysical outputs which are not addressed here. Nor are trade-offs between or synergies
among ecosystem services directly accounted for in a physically meaningful way [59]. Also, though
our model explores potential benefits of trees in a spatial dimension, we ignore temporality which is
increasingly appreciated as an essential component in a holistic accounting of ecosystem services [60].
For example, it will take years for the full benefits from newly planted trees to be realized; this
ecosystem benefit curve could also be explored. Further, because a policy action was predetermined in
our case (i.e., the planting of 10,000 trees over seven years by the Durham Urban Forestry Department),
we did not explore the potential effects of alternative policy scenarios, a tool which has been previously
used to highlight the benefits of alternative regulatory actions [61].

5. Conclusions

Urban stakeholders have a variety of interests, including stormwater management, air pollution
reduction, population fitness, and equity. By including this suite of needs, our method aims to
further the goals of multiple stakeholders and raise awareness of urban tree benefits. We show how
explicit consideration of multiple benefits simultaneously optimizes the capture of co-benefits, as
compared with the incidental capture of co-benefits achieved in single-objective cases. We also show
that, in this study area, the exclusive consideration of population vulnerability nearly maximizes the
capture of gross benefits. This finding is likely because the distribution of vulnerable populations is
highly nonuniform.

The utility and practicality of our approach was underscored by its adoption by the City of Durham.
The strategic use of green infrastructure to support societal needs, particularly the disproportionate
needs of the most vulnerable populations, is also one feasible means to address the U.N. Sustainable
Development Goals [62]. As this case study is a rare practical application of trade-off theory in an
urban setting [55,58], it may be appropriate for inclusion in a compendium of ecosystem services
management applications [58]. Since our method relies exclusively on publicly available data and is
not computationally complex, its application to a variety of other localities would be straightforward.
Further, the prioritization strategy outlined here for evaluating multiple ecosystem services could be
adapted to other urban land use decisions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/10/12/4488/s1.

http://www.mdpi.com/2071-1050/10/12/4488/s1


Sustainability 2018, 10, 4488 12 of 15

Author Contributions: Conceptualization, R.A., A.A. and T.M.; Methodology, A.A., T.M. and C.R.; Software,
A.T. and D.B.; Validation, A.T.; Formal Analysis, A.A., A.T. and D.B.; Investigation, D.B.; Resources, R.A.; Data
Curation, R.A.; Writing-Original Draft Preparation, A.A., T.M., A.P. and R.A.; Writing-Review & Editing, R.A., L.J.
and A.T.; Visualization, A.T. and D.B.; Supervision, R.A. and L.J.; Project Administration, R.A. and L.J.; Funding
Acquisition, R.A. and L.J.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer: This research article has been reviewed and approved by the National Health and Environmental
Effects Research Laboratory, U.S. Environmental Protection Agency. Approval does not signify that the contents
reflect the views and policies of the Agency, nor does the mention of trade names of commercial products constitute
endorsement or recommendation for use.

Appendix A Summary of Abbreviations

Abbreviation Name Description
CBG Census block group Geographic unit of organization
CCB Coincident co-benefits Product of all SB scores
FBP Fractional benefit provision Ratio of actual benefits to potential benefits
GB Gross benefits Sum of all SB scores
ICB Intentional co-benefits Benefits from multiple metrics
MOC Multi-objective case Prioritization schemes using ICB scores
SB Singular benefits Benefits from a single metric
SOC Single-objective case Prioritization schemes using SB scores
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