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Abstract: This study involves a screening-level risk assessment of the impairment of human health
and life related to hydrogen explosion and chemical release during the operation of a hydrogen
refueling station (HRS) that uses organic hydride. First, twenty-one accident scenarios were identified
involving the leakage of hydrogen, toluene and methylcyclohexane (MCH) in the HRS. Next, the
leakage frequency for each scenario was estimated using a hierarchical Bayesian model. Simulations
were then performed of the blast-wave pressure and heat radiation after a hydrogen leak and
of atmospheric dispersion of evaporated chemicals after leaks of liquid MCH and toluene. The
consequences were estimated for each scenario according to leak size using the existing probit
functions and threshold values. Finally, the risk due to explosion, heat radiation, and acute toxicity
was estimated by multiplying the consequence by the leakage frequency. The results show that the
mortality risk of explosion and acute effect is less than 10−6 per year, which is a negligible level of
concern. However, the mortality risk of heat radiation in the scenarios involving hydrogen leakage
from the pipe connected to the cylinders and compressors exceeds 10−4 per year inside the HRS,
thereby requiring additional steps if a more-detailed risk assessment is needed.

Keywords: hydrogen refueling station; organic hydride; quantitative risk assessment; explosion; heat
radiation; acute toxicity

1. Introduction

Fuel cell vehicles (FCVs) have the potential both to reduce considerably our dependence on
foreign oil and to lower harmful emissions that contribute to air pollution. There are now growing
numbers of FCVs and hydrogen refueling stations (HRSs) globally. Hydrogen has major characteristic
hazards such as explosion and embrittlement, which increases the accidental risks at HRSs. To prevent
and mitigate major hydrogen accidents, adequate safety measures should be identified through risk
assessment [1]. Therefore, research has been conducted into quantifying the potential risk related
to HRSs.

Li et al. [2] performed a quantitative risk assessment (QRA) based on thirteen accident scenarios
involving jet fires, flash fires, and explosions at high-pressure HRSs. They reported that the individual
risk in an HRS is 6.48 × 10−4 per year, and leaks from compressors and dispensers are the main
risk contributors. Sun et al. [3] performed a risk analysis based on nine accident scenarios involving
jet fires and flash fires at high-pressure HRSs. They found that the individual risk in a refueling
station is 7.65 × 10−6 per year. The leak from booster compressors contributes the most to the overall
risks, almost 69%, and the leak from tube storages contributes the second most to the overall risks,
approximately 27%. Furthermore, the individual risk to customers was 1.63 × 10−5 per year.
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LaChance [4] described an application of QRA methods to help establish the minimum separation
distance between an HRS and the public. Kikukawa et al. [5] undertook a screening-level risk
assessment of HRSs for 70-MPa FCVs and suggested that a safety distance of 6 m was sufficient
in such cases.

The organic chemical hydride method for hydrogen storage and transportation has both high
gravimetric and volumetric hydrogen density. However, this method has not been established
technically, because a dehydrogenation catalyst has not attained enough stability or sufficient
performance [6]. Thus, this method for hydrogen storage using hydrogenation and dehydrogenation
chemical reactions has been developing recently. Okada et al. [7] developed a dehydrogenation catalyst
using a simple fixed-bed reactor that has a high stability and sufficient performance. Biniwale et al. [8]
studied thermal profile of catalysts surface under spray-pulsed injection of cyclohexane over Pt
catalysts supported on activated carbon and alumite. Shukla et al. [9] described the results of
experiments on dehydrogenation of methylcyclohexane (MCH) over Pt supported on metal oxides
(Pt/MO) and Pt supported on perovskite.

This organic chemical hydride method is considered low potential risk, because hydrogen is stored
as a chemical liquid under ambient pressure at room temperature [6]. Tsunemi et al. [10] estimated the
consequences and damage due to explosions and heat radiation after a hydrogen leak, as well as the
acute toxicity caused by the leakage and dispersion of MCH and toluene energy carriers in an HRS
that uses organic hydride. However, there are no existing studies involving the risk assessment of HRS
using organic hydride considering the frequency of leakage accidents at the station. The aim of this
study was to conduct a screening-level assessment to identify and quantify the risk of impairment to
human health and life related to hydrogen explosions and chemical release during the operation of an
HRS that uses organic hydride.

2. Materials and Methods

A risk assessment framework for an HRS was constructed, as shown in Figure 1, to include
accident probabilities, emissions of chemical substances, hazards, vulnerabilities, and exposure. Risk
assessment is based on various assumptions, thus it is important to refine scenarios whose risk is a
high level of concern at the screening-level assessment. In this study, a screening-based risk assessment
was conducted by calculating the largest hazard for all leakage accident scenarios and the leak size of
hydrogen and chemicals.
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The characteristics of this assessment are as follows. First, operational occurrences and accidents
due to various components and devices in the station were treated totally for screening assessment.
Second, a method for estimating the leakage frequency using a hierarchical Bayesian model was
established to use an existing accident database as the prior distribution, updated by incorporating
the data for HRS accidents. Third, in addition to the effects of explosions and heat, the effects of the
toxicities of the leaked chemicals were turned into risk assessment objects for application to an HRS
that uses organic hydride. Fourth, the spatial distribution of human risk, including residents living
near the HRS, was estimated and displayed using a geographic information system (GIS).

2.1. Leakage Scenarios

We assumed that an HRS that uses organic hydride is located in inner Tokyo where the population
density is high. An organic hydride HRS uses three main processes (Figure 2). For liquid storage, MCH
(the hydrogen energy carrier) is pumped from a tanker truck into the HRS storage tank. Toluene (the
byproduct of dehydrogenation) is stored before being removed from the HRS. During dehydrogenation,
the hydrogen is separated from the MCH and refined. For hydrogen storage, the refined hydrogen is
compressed and stored in storage cylinders, from where it is sent to the dispenser to supply FCVs.
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Figure 2. Schematic flow and leakage scenarios of a hydrogen refueling station that uses
organic hydride.

We created twenty-one scenarios involving leakage from components (Figure 2) based on
hypothetical accidents in which either hydrogen leaked from the hydrogen storage pipes or MCH or
toluene leaked from the liquid storage pipes in the HRS. Following LaChance et al. [11], we categorized
the leak sizes as: “very small”, “minor”, “medium”, “major”, and “rupture”. These correspond to
ratios of the leak hole area to the total flow area of 0.01%, 0.1%, 1%, 10%, and 100%, respectively.
Hereinafter, we refer to the fractional leak area as FLA.

2.2. Leakage Frequency

The data on HRS accidents are limited, and there are no such data for organic hydride HRSs
because such stations are yet to be operational. Therefore, it is difficult to estimate leak frequencies



Sustainability 2018, 10, 4477 4 of 13

or accident rates appropriately using exiting leakage/accident data. Instead, we estimated the leak
frequencies for hydrogen, MCH, and toluene by using the method of Kihara et al. involving a Bayesian
inference model [12], for which we followed the method of LaChance et al. [11]. Table 1 describes the
data used for Bayesian updating. These come in the form of leak frequencies observed in the chemical,
compressed-gas, nuclear-power, and offshore petroleum industries and from HRSs in the US, as well
as accident records for compressed natural gas stations, HRSs, and gasoline stations in Japan. While
the US accident database records leak frequencies, the Japanese one records narrative descriptions of
accidents rather than leak frequencies or accident rates. Therefore, we classified each accident record
datum according to the FLA criteria and calculated the leak frequency per component.

Table 1. Accident database used to estimate leakage frequency.

Description of Accident Database Processes Applied References

Accidents recorded during 1975–2007 in the US for
the chemical-processing, compressed-gas,
nuclear-power, and offshore-petroleum industries
and hydrogen refueling stations.

Hydrogen storage,
dehydrogenation, liquid storage

Sandia National Laboratories,
2009, 2012 [11,13]

637 accidents during 1965–2015 in Japan for
compressed natural gas stations and hydrogen
refueling stations.

Hydrogen storage,
dehydrogenation

High Pressure Gas Safety Institute
of Japan [14]

869 accidents during 2006–2014 in Japan for
gasoline stations. Liquid storage Fire and Disaster Management

Agency, Japan [15]

The inference model assumes that the logarithm of the mean leak frequency for each component
is related linearly to the logarithm of the FLA [11]. We constructed a linear regression model, for which
we used a hierarchical Bayesian model in parts. We then used WinBUGS version 1.4.3 [16] to obtain
the most likely parameter values and the mean and credible intervals of leak frequency for each FLA.
We assumed that the distribution of leak frequency on the FLA follows a log-normal distribution.
Considering the components listed in Table 2, we obtained the leak frequencies for the component
assembly for the twenty-one leakage scenarios and five FLAs.

We used the median of the estimated leak frequency for following assessment. Upon hydrogen
leakage, we assumed inevitable ignition as the worst-case scenario for the screening assessment, which
is why the accident probability is the same as the leak frequency.
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Table 2. Assumed numbers of components in each leakage scenario.

No. 1 Leakage Scenario Pipes Joints Valves Flanges Compressors Pumps Cylinders Tanks Reactors Hydrogen
Refiner Hoses

Nozzles
and

Couplers
Inlet/Outlet

1 Components associated with dispenser (excess-flow
stop valve, dispenser nozzle) 80 40 10 8 2

2 Components connected to cylinder (82 MPa) 5 20 15

3 Cylinder (82 MPa, 300 L) 3

4 Compressor (82 MPa) and related components (50 L) 20 30 5 1

5 Components connected to cylinder (45 MPa) 5 20 15

6 Cylinder (45 MPa, 300 L) 9

7 Compressor (45 MPa) and related components (50 L) 20 30 5 1

8 Components connected to hydrogen holder (300 L) 30 20 8

9 Hydrogen holder (1 MPa, 300 L) 1

10 Hydrogen refiner and related components 20 30 10 1

11 Compressor in dehydrogenation process 10 30 5 1

12 Components connected to toluene separator 20 30 5

13 Dehydrogenation reactor and related components
(0.3 MPa, 1800 L) 20 50 10 7 1

14 Toluene return piping and related components 5 1 3

15 Methylcyclohexane (MCH) feed piping and related
components 5 1 5 1

16 Toluene return piping (underground piping) 5

17 Toluene storage tank (underground tank, 30 m3) 1

18 Components for removing toluene 17 2 7 1 3 1

19 MCH feed piping 5

20 MCH storage tank (underground tank, 30 m3) 1

21 Components for receiving MCH 16 1 3 3 1
1 Number labels as shown in Figure 2.
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2.3. Emissions and Hazards

We calculated the amount of leaked hydrogen for each FLA assuming that: (i) hydrogen (at a
maximum pressure of 82 MPa) begins leaking from the hydrogen storage pipes (with an inner diameter
of 5.9 mm); (ii) the shut-off valve activates after 30 s [9]; and (iii) the excess-flow stop valve operates
within 0.2 s if the flow rate of hydrogen exceeds 3.6 kg/min [17]. We calculated the leaked amounts of
toluene and MCH for each FLA by assuming an inner pipe diameter of 27.6 mm in the liquid storage
process, an inner pipe diameter of 105.3 mm for removing toluene and receiving MCH, and continuous
chemical leakage for 30 min [10].

We assumed that the total amount of hydrogen leaked for 30 s forms a stoichiometric hydrogen/air
mixture (30 vol %). An ignition point was set at the horizontal center of the mixture region and 0.5–1 m
above the ground, and the value of ignition probability was set to 100%. The ignition results in a
premixed hydrogen/air explosion which will be the largest hazard. We used FLACS and FLACS-Fire
(GexCon) software to estimate the blast-wave pressure, impulse, and heat from the hydrogen leak at
each grid point and time.

We estimated the average concentrations of chemicals in the atmosphere within each 10-m mesh
30 min after the chemicals began to leak. For this, we used the frequencies of wind direction, wind
speed, and atmospheric stability for the meteorological conditions in Tokyo using a puff model
incorporated in the Acute Effect Assessment Tool under development by the National Institute of
Advanced Industrial Science and Technology [18].

Grid points for analysis were arranged at intervals of around 10 m in an area with a radius of
200 m from the hydrogen ignition point or 100 m from the chemical leak source at a height of 1.5 m
above the ground.

2.4. Vulnerability and Consequence

We used the probit functions from the Green Book [19,20] to estimate the consequences of exposure
to the blast-wave pressure, namely eardrum rupture, fatalities caused by being displaced by the blast
wave, and fatalities caused by head injuries. We used the same method to estimate the consequences
of the heat dose, namely first-degree burns, second-degree burns, and fatalities.

We used the acute exposure guideline levels (AEGL) are the airborne concentration of a substance
above which it is predicted that the general population could experience life-threatening health effects
or death (AEGL-3); irreversible or other serious, long-lasting adverse health effects or an impaired
ability to escape (AEGL-2); and notable discomfort, irritation, or certain asymptomatic non-sensory
effects (AEGL-1) [21]. We used AEGLs for 30-min inhalation exposure to toluene of 250 mg/m3

(AEGL-1), 2900 mg/m3 (AEGL-2), and 20,000 mg/m3 (AEGL-3) [22], and used the AEGL-1 equivalent
human NOAEL for MCH acute effect of 690 mg/m3 [10] for threshold values.

The consequence of acute inhalation toxicity through inhalation of MCH or toluene was estimated
by aggregating the probabilities of the various meteorological conditions when the atmospheric
chemical concentration exceeds each of the above threshold values.

2.5. Damage and Risk

To calculate the number of injuries in the HRS and among the surrounding residents due to an HRS
accident, we constructed 10-m mesh GIS data for the populations inside the buildings [9]. We calculated
the damage Di for each leakage scenario by multiplying the population by the consequence from each
10-m mesh estimated in Section 2.4 for each leak size:

Di = Σj(Ci,j × Popj), (1)

where Di (number of people) is the damage due to an accident with leak size i, Ci,j (-) is the consequence
of 10-m mesh j due to an accident with leak size i, and Popj (number of people) is the population in
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10-m mesh j. We estimated the individual risk IRj for each leakage scenario due to explosion, heat
radiation, and acute toxicity by multiplying the consequence by the probability for each leak size:

IRj = Σj(Ci,j × Probi), (2)

where IRj is the individual risk of 10-m mesh j and Probi (-) is the probability of each leakage scenario
for leak size i. We calculated the population risk PR for each leakage scenario by multiplying the
individual risk of each 10-m mesh by the population of each 10-m mesh:

PR = Σj(IRj × Popj). (3)

3. Results

3.1. Leakage Frequency and Emission

Table 3 lists the results for the estimated leak frequencies and emissions of hydrogen, MCH, and
toluene for the 21 scenarios and the five FLAs. In Scenarios 1, 2, 4, 5, 7 and 10–13, the leakage frequency
exceeds 10−2 per year. Those results arise from the high estimated leakage frequencies of the hoses,
nozzles and couplers, and compressors. The emissions exceed 100 m3 in Scenarios 2, 3, 5 and 6 because
of the large stored quantities of hydrogen with high pressure.

Table 3. Results for leak frequencies of processes and emissions of hydrogen and energy carriers for 21
scenarios and five FLAs.

Leakage
Scenario

Frequency 1 Emission 2

Very
Small Minor Medium Major Rupture Very

Small Minor Medium Major Rupture

1 8.8 × 10−2 3.0 × 10−2 1.2 × 10−2 5.2 × 10−3 2.9 × 10−3 0 0.5 5 1.2 4
2 1.0 × 10−2 5.5 × 10−3 2.8 × 10−3 1.3 × 10−3 1.2 × 10−3 0 0.5 5 43 208
3 9.8 × 10−7 8.3 × 10−7 5.6 × 10−7 3.2 × 10−7 1.7 × 10−7 106 242 243 243 243
4 1.7 × 10−2 9.8 × 10−3 5.5 × 10−3 3.3 × 10−3 2.4 × 10−3 0 0.5 4 28 40
5 1.0 × 10−2 5.3 × 10−3 2.8 × 10−3 1.3 × 10−3 1.2 × 10−3 0 0.3 3 23 114
6 1.0 × 10−5 8.8 × 10−6 5.9 × 10−6 3.4 × 10−6 1.8 × 10−6 58 133 133 133 133
7 1.7 × 10−2 9.8 × 10−3 5.5 × 10−3 3.3 × 10−3 2.4 × 10−3 0 0.3 2 15 22
8 8.9 × 10−3 4.5 × 10−3 2.3 × 10−3 1.2 × 10−3 1.0 × 10−3 0 0 0.1 0.5 3
9 9.8 × 10−7 8.3 × 10−7 5.6 × 10−7 3.2 × 10−7 1.7 × 10−7 1 3 3 3 3
10 1.3 × 10−2 6.6 × 10−3 3.1 × 10−3 1.5 × 10−3 1.2 × 10−3 0 0 0.1 0.3 0.5
11 1.7 × 10−2 9.7 × 10−3 5.3 × 10−3 3.2 × 10−3 2.3 × 10−3 0 0 0.1 0.3 0.5
12 1.1 × 10−2 5.6 × 10−3 2.3 × 10−3 1.1 × 10−3 7.6 × 10−4 0 0 0 0.2 2
13 2.0 × 10−2 9.8 × 10−3 4.2 × 10−3 1.9 × 10−3 1.4 × 10−3 4 7 7 7 7
14 3.1 × 10−4 7.0 × 10−5 2.1 × 10−5 1.2 × 10−5 6.3 × 10−6 0 0 0 0 0.3
15 4.6 × 10−4 1.6 × 10−4 5.8 × 10−5 2.0 × 10−5 2.0 × 10−5 0 0 0.2 0.4 0.4
16 4.7 × 10−5 1.8 × 10−5 7.9 × 10−6 3.9 × 10−6 1.6 × 10−6 0 0 0 0 0.3
17 4.5 × 10−5 1.9 × 10−5 7.9 × 10−6 3.3 × 10−6 1.4 × 10−6 5 29 30 30 30
18 6.7 × 10−3 4.1 × 10−3 2.3 × 10−3 1.3 × 10−3 8.5 × 10−4 0 0 0.2 2 21
19 4.7 × 10−5 1.8 × 10−5 7.9 × 10−6 3.9 × 10−6 1.6 × 10−6 0 0 0 0 0.4
20 4.5 × 10−5 1.9 × 10−5 7.9 × 10−6 3.3 × 10−6 1.4 × 10−6 5 29 30 30 30
21 6.7 × 10−3 4.1 × 10−3 2.3 × 10−3 1.3 × 10−3 8.5 × 10−4 0 0 0.2 2 21

1 Unit:/year; values show the median data calculated by Bayesian inference. 2 Unit: m3 (under standard conditions);
chemicals are hydrogen (Scenarios 1–13), MCH (Scenarios 14, 16–18), and toluene (Scenarios 15, 19–21). Total sum
value of all 10-m mesh cells for rupture leak.

3.2. Consequence, Damage and Risk

Tables 4 and 5 list the results for the consequence, damage, and risk due to explosion and heat
radiation, respectively. The consequence, damage and risk due to explosion are low. The individual
mortality risk due to explosion is less than 10−8 per year in Scenarios 1–13.
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Table 4. Results for consequence, damage, and risk to people by explosion.

Effect Item Unit Leakage Scenario

1 2 3 4 5 6 7 8 9 10 11 12 13

Ruptured ear
drums

Consequence, max. 1 (-) <10−8 2.0 × 10−5 1.7 × 10−5 1.3 × 10−5 1.3 × 10−5 1.3 × 10−5 9.3 × 10−7 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

Damage 2 [people] <10−8 4.7 × 10−5 6.4 × 10−4 1.1 × 10−4 3.3 × 10−4 3.3 × 10−4 6.7 × 10−6 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

Individual risk, max. 3 [/year] <10−8 3.1 × 10−8 <10−8 5.9 × 10−8 2.4 × 10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

Population risk 4 [people/year] <10−8 9.5 × 10−7 <10−8 4.5 × 10−7 4.7 × 10−7 <10−8 3.3 × 10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

Blast-wave
fatalities

Consequence, max. (-) <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

Damage [people] <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

Individual risk, max. [/year] <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

Population risk [people/year] <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8 <10−8

Head-injury
fatalities

Consequence, max. (-) 0 <10−8 <10−8 0 0 0 0 0 0 0 0 0 0
Damage [people] 0 0 <10−8 0 0 0 0 0 0 0 0 0 0

Individual risk, max. [/year] 0 <10−8 0 0 0 0 0 0 0 0 0 0 0
Population risk [people/year] 0 0 0 0 0 0 0 0 0 0 0 0 0

1 Maximum value of 10-m mesh cell for rupture leak. 2 Total sum value of all 10-m mesh cells for rupture leak. 3 Maximum value of 10-m mesh cell for all leak sizes. 4 Total sum value of
all 10-m mesh cells for all leak sizes.

Table 5. Results for consequence, damage, and risk to people by heat radiation.

Effect Item Unit Leakage Scenario

1 2 3 4 5 6 7 8 9 10 11 12 13

Ruptured
ear drums

Consequence,
max. 1 (-) 0.3 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.3 <10−8 <10−8 8.7 × 10−3 0.5

Damage 2 [people] 1.9 7.2 7.2 7.2 7.2 7.2 7.2 1.9 1.9 <10−8 <10−8 6.3 × 10−2 3.3
Individual risk,

max. 3 [/year] 3.2 × 10−3 3.2 × 10−3 2.9 × 10−6 7.2 × 10−3 3.2 × 10−3 2.9 × 10−6 7.2 × 10−3 2.8 × 10−4 5.1 × 10−7 <10−8 <10−8 6.6 × 10−6 1.3 × 10−2

Population risk 4 [people/year] 2.3 × 10−2 2.3 × 10−2 2.1 × 10−5 5.2 × 10−2 2.3 × 10−2 2.2 × 10−4 5.2 × 10−2 2.0 × 10−3 3.7 × 10−6 <10−8 <10−8 4.8 × 10−5 9.5 × 10−2

Blast-wave
fatalities

Consequence,
max. (-) 4.4 × 10−5 1.0 1.0 1.0 1.0 1.0 0.7 4.4 × 10−5 4.4 × 10−5 <10−8 <10−8 <10−8 3.0 × 10−4

Damage [people] 3.2 × 10−4 6.9 7.2 7.0 7.2 7.2 5.1 3.2 × 10−4 3.2 × 10−4 <10−8 <10−8 4.7 × 10−8 2.2 × 10−3

Individual risk,
max. [/year] 5.2 × 10−7 2.4 × 10−3 2.8 × 10−6 5.2 × 10−3 2.3 × 10−3 2.8 × 10−6 3.5 × 10−2 4.5 × 10−8 <10−8 <10−8 <10−8 <10−8 6.0 × 10−6

Population risk [people/year] 3.8 × 10−6 1.7 × 10−2 2.0 × 10−5 3.7 × 10−2 1.6 × 10−2 2.2 × 10−4 2.6 × 10−2 3.2 × 10−7 <10−8 <10−8 <10−8 <10−8 4.4 × 10−5

Head-injury
fatalities

Consequence,
max. (-) 5.2 × 10−5 1.0 1.0 0.8 0.9 0.9 0.5 5.2 × 10−5 5.2 × 10−5 <10−8 <10−8 3.8 × 10−8 2.7 × 10−4

Damage [people] 3.8 × 10−4 5.9 6.9 6.1 6.8 6.8 3.3 3.8 × 10−4 3.8 × 10−4 <10−8 <10−8 2.7 × 10−7 1.9 × 10−3

Individual risk,
max. [/year] 6.2 × 10−7 2.2 × 10−3 2.7 × 10−6 4.2 × 10−3 1.9 × 10−3 2.6 × 10−6 2.2 × 10−3 5.4 × 10−8 <10−8 <10−8 <10−8 <10−8 5.6 × 10−6

Population risk [people/year] 4.5 × 10−6 1.6 × 10−2 2.0 × 10−5 3.2 × 10−2 1.4 × 10−2 2.0 × 10−4 1.6 × 10−2 3.9 × 10−7 <10−8 <10−8 <10−8 <10−8 4.1 × 10−5

1 Maximum value of 10-m mesh cell for rupture leak. 2 Total sum value of all 10-m mesh cells for rupture leak. 3 Maximum value of 10-m mesh cell for all leak sizes. 4 Total sum value of
all 10-m mesh cells for all leak sizes.
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The maximum consequence due to heat radiation is nearly 100% in Scenarios 2–7 (i.e., hydrogen
leakage from the pipe connected to the cylinders and compressors in the hydrogen storage process). The
individual mortality risk due to heat radiation exceeds 10−3 per year in Scenarios 2, 4, 5 and 7. However,
the mortality risk due to heat radiation in Scenarios 3 and 6 (i.e., hydrogen leakage directly from the
cylinders) is less than 10−5 per year because the leak frequency is low. Furthermore, the consequence
and risk due to heat radiation in Scenarios 8–13 (i.e., hydrogen leakage at dehydrogenation) are less
than those for the hydrogen storage process.

Table 6 lists the results for the consequence, damage, and risk due to acute toxicity. The risks of
human exposure to atmospheric concentrations of toluene exceeding AEGL-2 and AEGL-3 equivalent
human NOAEL are very small in Scenarios 14–21. The maximum individual risk of human exposure
to concentrations of MCH and toluene exceeding AEGL-1 equivalent human NOAEL exceeds 10−3

per year in Scenarios 18 and 21, but the level of the effect is slight.

Table 6. Results for consequence, damage, and risk to people by acute toxicity.

Effect Item Unit Leakage Scenario

14 15 16 17 18 19 20 21

AEGL-1

Consequence, max. 1 (-) 0 0 0 0 0.5 0 0 0.4
Damage 2 [people] 0 0 0 0 58.5 0 0 29.2

Individual risk, max. 3 [/year] 0 0 0 0 1.3 × 10−3 0 0 8.9 × 10−4

Population risk 4 [people/year] 0 0 0 0 0.12 0 0 5.8 × 10−2

AEGL-2

Consequence, max. (-) 0 - 0 0 0 - - -
Damage [people] 0 - 0 0 0 - - -

Individual risk, max. [/year] 0 - 0 0 0 - - -
Population risk [people/year] 0 - 0 0 0 - - -

AEGL-3

Consequence, max. (-) 0 - 0 0 0 - - -
Damage [people] 0 - 0 0 0 - - -

Individual risk, max. [/year] 0 - 0 0 0 - - -
Population risk [people/year] 0 - 0 0 0 - - -

1 Maximum value of 10-m mesh cell for rupture leak. 2 Total sum value of all 10-m mesh cells for rupture leak.
3 Maximum value of 10-m mesh cell for all leak sizes. 4 Total sum value of all 10-m mesh cells for all leak sizes.

4. Discussion

For process safety management, Kolluru et al. [23] indicated that the average individual mortality
risk level for public should be less than 10−6 per year and the maximum individual mortality risk for
employees should be less than 10−4 per year. EIHP2 document of risk acceptance criteria for HRSs [24]
indicates that the individual mortality risk for employees and customers caused by hydrogen-process
related events should not exceed 10−4 per year. ISO [25] proposes the risk criteria for HRSs as an
average individual risk (AIR) less than 10−6 for vulnerable external populations and an AIR less than
10−4 for facility users and workers. In this study, the risk criteria were set that the individual mortality
risk in the inner side of the station should be less than 10−4 per year, and the risk to the surrounding
residents should be less than 10−6 per year.

Figure 3 shows the maximum individual mortality risk by each scenario. The individual mortality
risk due to explosion is less than 10−6 per year in Scenarios 1–13, which is a negligible level of concern.
The individual mortality risk due to acute toxicity is less than 10−6 per year in Scenarios 14–21, which
is also a negligible level of concern. The individual mortality risk due to heat radiation exceeds 10−4

per year in Scenarios 2, 4, 5 and 7, and the mortality risk exceeds 10−6 per year in Scenarios 2–7 and 13.
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Figure 3. Maximum individual mortality risk in each leakage scenario.

Figure 4 shows the relationship between the distance from release point of hydrogen and
individual risk in Scenarios 2, 4, 5 and 7. The result indicates that the mortality risk exceeds 10−4 per
year within the 10 m distance from the release point of hydrogen. Thus, the individual mortality risk
due to heat radiation is not a negligible level of concern in the inner side of the HRS, and the equivalent
risk to the surrounding residents is very much smaller.
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Figure 4. Relationship between the distance from release point of hydrogen and individual
mortality risk.

Therefore, the mortality risk to the surrounding residents due to explosion, heat radiation, and
acute effects is less than 10−6 per year, which is a negligible level of concern. Meanwhile, although the
mortality risk to workers and customers inside the HRS due to the blast wave and acute toxicity is also
less than 10−6 per year and therefore also poses a negligible level of concern, the mortality risk due
to heat radiation in the accident scenarios in which hydrogen leaks from the pipe connected to the
cylinders and compressors exceeds 10−4 per year inside the station, thereby requiring additional steps
if a more-detailed risk assessment is needed.
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5. Conclusions

This study conducted a screening-level risk assessment of the impairment to human health and
life related to hydrogen explosions and chemical releases during the operation of an HRS that uses
organic hydride. Twenty-one accident scenarios were identified involving the leakage of hydrogen
during the high-pressure hydrogen storage process and dehydrogenation process and of toluene and
MCH during the liquid storage process. The Leak frequency of each leakage scenario was estimated
using a hierarchical Bayesian model. Simulations were performed of the blast-wave pressure and heat
radiation after a hydrogen leak and of the atmospheric dispersion of evaporated chemicals after leaks
of liquid MCH and toluene. Probit functions or threshold values were created for each effect, and the
consequences were estimated for each scenario according to leak size. The risks due to explosion, heat
radiation, and acute toxicity were estimated by multiplying the consequences by the leak frequency.

As a result, the mortality risk to the surrounding residents in all accident scenarios was less than
10−6 per year, which is a negligible level of concern. The mortality risk to workers and customers due to
the blast wave and acute toxicity inside the HRS upon leakage of hydrogen from the dehydrogenation
process and of toluene and MCH from the liquid storage process was also less than 10−6 per year,
again a negligible level of concern. However, the mortality risk due to heat radiation in the accident
scenarios involving hydrogen leakage from the pipe connected to the cylinders and compressors in the
high-pressure hydrogen storage process exceeded 10−4 per year inside the HRS, thereby requiring
additional steps if a more-detailed risk assessment is needed. In conclusion, we revealed that the
individual mortality risk is negligible in the accident scenarios in the liquid storage process and the
dehydrogenation process uniquely installed in HRSs that use organic hydride.

In future work, we will conduct a detailed risk assessment in the accident scenarios in the
hydrogen storage process installed in all HRSs. We intend to use event-tree analysis to estimate
accident frequencies, and to conduct hazard assessment by arranging grid points for analysis at
smaller intervals than those used in the present study. Measures based on risk criteria should also be
investigated by conducting QRA using the consequence, damage, and occurrence-probability data
presented herein.
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