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Abstract: An energy paradigm shift has rapidly occurred around the globe. One change has been an
increase in the penetration of sustainable energy. However, this can affect the reliability of power
systems by increasing variability and uncertainty from the use of renewable resources. To improve
the reliability of an energy supply, a power system must have a sufficient amount of flexible resources
to prevent a flexibility deficit. This paper proposes a countermeasure for protecting nonnegative
flexibility under high-level penetration of renewable energy with robust optimization. The proposed
method is divided into three steps: (i) constructing an uncertainty set with the capacity factor of
renewable energy, (ii) searching for the initial point of a flexibility deficit, and (iii) calculating the
capacity of the energy storage system to avoid such a deficit. In this study, robust optimization
is applied to consider the uncertainty of renewable energy, and the results are compared between
deterministic and robust approaches. The proposed method is demonstrated on a power system in
the Republic of Korea.

Keywords: robust optimization; renewable energy; flexibility; deficit; uncertainty; flexible resource;
energy storage systems

1. Introduction

A paradigm shift in energy generation has rapidly taken place around the world. The traditional
energy industry was aimed at providing energy at a low price. However, the focus is changing to
provide safer, cleaner, and more sustainable energy in certain countries. In particular, China has been
reinforcing the competitiveness of its sustainable energy industry by supporting a strong policy and
developing its technologies. In keeping with this trend, the Republic of Korea has also tried to meet
this paradigm shift by establishing an energy policy, which was launched by the government in 2017.
As one aspect of this policy, the government announced its Renewable Energy 2030 implementation
plan, in which the share of renewable energy sources in the energy mix will increase from its current
level of 7% to 20% by 2030. Korea’s major energy administration and industry are making an effort
to achieve this goal [1,2]. However, such a sudden shift in the energy mix can worsen the conditions
of the power system, because renewable energy sources are quite volatile [3,4]. Therefore, some
countermeasures are required, including strengthening the grid through investments in the facilities
and preparing strategies for the effective operation of renewable energies [5–8].

To achieve stable operation, the power system under high renewable penetration should respond
to the variation and uncertainty of renewable energy sources to secure sufficient flexibility. If a power
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system achieves sufficient flexibility, it can respond rapidly to events such as a sudden decrease in
energy output, and ensure stability and superior quality. Owing to its increased importance, studies
related to flexibility have been conducted [9–14]. Electric Power Research Institute (EPRI) conducted
a study looking at the impact of transmission on system flexibility [9] and developed a multilevel
flexibility assessment tool [10]. In [11], the authors clarified flexibility by summarizing the analytic
frameworks that recently emerged to measure operational flexibility. The Danish Energy Agency
carried out an assessment of flexibility in Denmark and China [12]. Poncela et al. [13] proposed a
stepwise methodology based on a set of indicators for future power system flexibility applied to a
European case. In [14], flexibility metrics were compared between insufficient ramp resources and
the number of periods of flexibility deficit. In particular, the California Independent System Operator
carries out annual technical studies to determine the required capacity [15] and has developed a flexible
ramping product to handle increasing amounts of variable renewable generation [16].

Representative flexible resources include ramp rates, energy storage systems (ESS), and demand
response (DR). Among such flexible resources, an ESS can play an important role in supplying
balance to the grid by providing a backup to intermittent renewable energy sources and generating
a low-carbon power system [17]. In addition, a decrease in renewable energy curtailment can
occur [18]. Therefore, owing to these merits, an ESS was chosen to meet supply and demand against
the variations in renewable energy and to ensure nonnegative flexibility under high-level penetration
of sustainable energy.

Traditional optimization methodology is aimed at finding a deterministic result by assuming a
parameter and variable in a specific state without considering the uncertainty. However, in this case,
it is difficult to guarantee a reliable solution unless the data uncertainty is dealt with. For example,
if a parameter with uncertainty is estimated to have a certain value, it can be unclear whether the
value is correct. In addition, this can make the solution infeasible owing to the possibility of an error.
Therefore, many studies on optimization techniques that can apply uncertainty have been carried
out. In particular, in the power system industry, studies related to planning and operation have been
considered based on an increase in uncertain resources such as renewable energy sources [19–30].

Optimization methods that are able to handle uncertainties have been developed, such as
stochastic programming (SP) and robust optimization (RO). Optimization techniques have long
been used to deal with uncertainty. Several studies related to SP in power systems have been
conducted [19–22]. Jirutitijaroen et al. [19] proposed a mixed-integer stochastic programming approach
to find a solution to the generation and transmission line expansion planning problem, including
consideration of the system reliability. In [20], SP based on a Monte Carlo approach was introduced
to cope with uncertainties, and a new approach to modeling the operational constraints of an ESS
was applied to the capacity expansion planning of a wind–diesel isolated grid. In addition, in [21],
the authors proposed a multistage decision-dependent stochastic optimization model for long-term
and large-scale generation expansion planning. The authors in [22] proposed a novel stochastic
planning framework to determine the optimal battery energy storage system (BESS) capacity and the
year of installation in an isolated microgrid using a new representation of the BESS energy diagram.

Studies on power system operation and planning using RO have been carried out to consider
uncertainties such as renewable energy sources [23–30]. Ruiz and Conejo [23] presented a transmission
expansion planning (TNEP) method by constructing the load and RES output into uncertainty sets.
In [24], transmission and ESS expansion planning was carried out by characterizing the uncertainty
sources pertaining to load demand and wind power production through uncertainty sets. In addition,
in [25], energy generation and ESS expansion planning was implemented by handling the net load as
an uncertainty set. The authors in [26] used variation in the net load as an uncertainty set, and proposed
an economic dispatch to cope with variation in the use of ramp rates. In [27], the authors examined
the effectiveness of RO in maximizing the economic benefit for owners of home battery storage
systems in the presence of uncertainty in dynamic electricity prices. In [28], the authors proposed an
adaptive robust optimization model for multiperiod economic dispatch, and introduced the concept
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of dynamic uncertainty sets and the methods to construct such sets for modeling the temporal and
spatial correlations of uncertainty. Yi et al. [29] presented ESS scheduling by constructing the RES
output, load, and real-time thermal rating (RTTR) of transmission lines into an uncertainty set. In [30],
algorithms to minimize total cost under Korea’s commercial and industrial tariff system based on
robust optimization were proposed.

Stochastic Programming assumes that uncertain data have a probability distribution function
(PDF), although this method has difficulty in accurately constructing a PDF for the uncertainty. This is
based on the generation of scenarios that describe uncertain parameters, the size of which grows
with the number of scenarios, which may result in intractability. However, the RO represents an
uncertainty parameter set, which can contain any number of scenarios without specific knowledge
of the PDF. As its methodology, it also minimizes the objective value under the worst-case scenario.
Scenarios do not need to be generated, which makes the RO computationally tractable. Therefore,
owing to such advantages, the RO is more appropriate than the SP for solving the optimization problem
with uncertainties [31–37]. In this paper, the reasons for using the RO are that it allows for treating
uncertainties in the optimization problem and can lead to a robust solution, which is immunized
against uncertainty.

Many studies on power system operation and planning with renewable energy have mostly
considered its outputs as uncertainties. However, many factors affect the output of renewable energy,
including the weather and installation locations, which make it hard to forecast. Thus, this paper
proposes using the capacity factor as the output of the RES. Applying the capacity factor can make it
simpler to consider the output of renewable energy by using the ratio of the rated capacity to the real
outputs of renewable energy without taking the factors into account.

The nameplate capacity of renewable energy is known from the installation planning, while the
capacity factor is unknown due to its characteristics, including variable and unpredictable outputs. So,
the capacity factor of renewable energy has uncertainty and affects planning because it has difficulty
making decisions on how the system will be reinforced. In addition, it needs many scenarios about
renewable energy sources. This paper calculates the required capacity of flexible resources like ESS
to secure sufficient flexibility without generating scenarios regarding renewable energy resources by
constructing its uncertainty set based on the RO.

This paper presents a countermeasure to ensure nonnegative flexibility using flexible resources
including the ramp rate and ESS by considering the capacity factor of renewable energy as an
uncertainty set. It can be divided into three steps: (i) The range of the capacity factor of renewable
energy is predicted in the construction of the uncertainty set. (ii) The initial point where the flexibility
deficit occurs within an uncertainty set is detected using the RO. (iii) The capacity of the ESS is estimated
to prevent negative flexibility from a variation in renewable energy with the RO. The effectiveness of
the proposed method is demonstrated using the Korean Power System for the year 2030.

2. Materials and Methods

2.1. Uncertain Parameter

In the power system planning stage, the output of renewable energy is a typical parameter of
uncertainty because it is unpredictable and variable. It is necessary for the output of renewable energy
to be expressed as its capacity factor because it is less likely to generate electricity to the nameplate
capacity under the influence of many factors, including the installation site and climate. The capacity
factor can be expressed based on the ratio of energy generated over a period of time divided by the
installed capacity.

Capacity Factor =
Actual Energy Generated (MWh)

Time Period (h)× Installed Capacity (MW)
(1)
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The uncertainty set of the capacity factor can be described as follows:

CF =

{
CF : ∑

i∈NRE

|CFre,i−CFre,i|
ĈFre,i

≤ ΓRE
√

NRE ,

CFi ∈
[
CFre,i − ΓREĈFre,i, CFre,i + ΓREĈFre,i

]
∀i ∈ NRE

} (2)

where NRE denotes the number of renewable energy sources and CFi is the capacity factor of renewable
energy i. In Equation (2), CFi is located within the range of the upper and lower capacity, and its width
is determined based on the deviation ĈF. Although the robust optimization has a disadvantage in
that its result is usually too conservative, it can overcome such conservativeness by using the budget
of uncertainty proposed in [37]. This can be applied using ΓRE in Equation (2), which can control the
size of the uncertainty set and lies within the range 0 ≤ ΓRE ≤ 1. If ΓRE is 1, the capacity factor can
have any value within the interval of the uncertainty set. On the contrary, ΓRE = 0 implies CF = CFre f ,
which means the uncertainty is not considered.

The capacity factor of renewable energy can be used to construct the uncertainty set by calculating
the upper and lower limits through the use of the historical and predicted outputs of renewable energy,
shown in Figure 1.
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2.2. Mathematical Formulation

This section proposes a way to prevent a flexibility deficit under high-level penetration of
renewable energy using a robust optimization methodology. The more the penetration level of
the RES increases, the more variation and uncertainty arise. Thus, a measure is needed to keep supply
and demand from experiencing an increase in variation and uncertainty, which can be solved by
securing a sufficient amount of flexible resources. If the power system can achieve sufficient flexible
resources to balance supply and demand from variation and uncertainty, it will not be necessary to
install additional flexible resources. However, as an opposite case, a power system needs to invest in
additional flexible resources to maintain supply and demand. As a proper process for the installation of
flexible resources, the power system is examined to determine how many it would require after looking
at whether it can ensure nonnegative flexibility within the uncertainty set. In this paper, the process is
divided into 2 steps: (i) finding the initial point of the flexibility deficit within the uncertainty, and (ii)
determining the capacity of the flexible resources to ensure nonnegative flexibility within the interval
of the capacity factor. The details are presented below.

2.2.1. Searching for the Initial Point of Flexibility Deficit within the Uncertainty Set

Objective Function

The objective function consists of the sum of the cost of the generation and penalty (e.g.,
load shedding and curtailment). The generation cost is considered based on a quadratic function of
the fuel cost of the thermal units, because renewable energy generation has a comparatively low cost.
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The penalty cost is expressed based on the amount of flexibility deficit multiplied by its cost coefficient
and is a sufficiently large positive constant because it is related to a flexibility deficit causing load
shedding and curtailment to balance supply and demand. The objective function can be formulated as
follows:

max
CF∈U

min
y∈Ω(CF,Ppre

gi )
− Cost(Ppre

gi , PFD) (3)

Cost(Ppre
gi , PFD) = ∑gi∈NG

(
αgi + βgi·P

pre
gi + γgi·(Ppre

gi )
2
)
+ cFD·PFD ∀i ∈ NG (4)

where NG denotes the number of generators and αgi, βgi, and γgi denote the cost coefficients of the
ith thermal unit; cFD denotes the cost coefficient of a flexibility deficit; and Ppre

gi and PFD denote the
output of the ith thermal unit and the total amount of flexibility deficit, respectively.

An increase in the capacity factor affects the decrease in total net load and generation, which can
decrease the total cost of power generation if the power system has sufficient flexible resources to
take action against the variation in renewable energy. However, from the perspective of a flexibility
deficit, the value of the objective function increases owing to the penalty cost. Thus, just before the
point of flexibility deficit is reached, Equation (4) reaches its smallest value. The use of a negative
sign in Equation (4) changes it to the largest value just before the point when a flexibility deficit
occurs. This allows searching for the initial point of the flexibility deficit within an uncertainty set,
because robust optimization considers the worst-case scenario within the set. Accordingly, using this
objective function, the initial point of the flexibility deficit can be found, and whether the power system
has sufficient flexible resources to ensure nonnegative flexibility within the uncertainty set can be
confirmed before determining whether to invest in flexible resources. In this step, it is assumed that
the power system has only ramp rates as flexible resources.

Constraints

The constraints are composed of 3 parts: (i) conventional generators and renewable energy output,
(ii) power balance, and (iii) power system flexibility.

(i) Output of Conventional Generators and Renewable Energy Sources

The output of a conventional generator is determined within the range of minimum and maximum
limits of the generator. In addition, the output of renewable energy changes in accordance with the
capacity factor:

Ppre
gi ≤ Ppre

gi ≤ Ppre
gi ∀i ∈ NG (5)

Ppre
re,i = CF× Prated

re,i ∀i ∈ NRE (6)

where Ppre
gi and Ppre

gi are the minimum and maximum outputs of the ith generator, respectively, and

Prated
re,i is the rated capacity of renewable energy sources.

(ii) Power Balance

The output of a conventional generator is determined within the range of minimum and maximum
limits of the generator. In addition, the output of renewable energy changes in accordance with the
capacity factor:

∑
i∈Nd

Pdi = ∑
i∈NG

Ppre
gi + ∑

i∈NRE

Ppre
re,i + PFD (7)

where Pdi is the demand at load i. The left-hand side of Equation (7) indicates the total load, and the
right-hand side indicates the total sum of power generation and the amount of flexibility deficit. When
a flexibility deficit occurs owing to a lack of flexible resources, it can meet the power balance using
Ppre

FD .

(iii) Power System Flexibility
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In [14], the method for securing power system flexibility is intended to keep the amount of
available flexibility higher than the flexibility requirement. The available flexibility means the total
amount of flexible resources required to respond to variations in the net load, and the flexibility
requirement means the net load ramp. Eventually, to ensure flexibility, the power system should secure
flexible resources in advance to prevent a flexibility deficit. In this paper, the flexibility requirement is
a variation in renewable energy by applying its variability rate, and the available flexibility simply
considers the total sum of the ramp rates, which can be expressed as follows:

∆Ppre
re,i = Ppre

re,i ×Variability Rate ∀i ∈ NRE. (8)

R
preup
gi = Min(Ramprateup

gi , Ppre
gi − Ppre

gi ) ∀i ∈ NG (9)

Rpredown
gi = Min(Rampratedown

gi , Ppre
gi − Ppre

gi ) ∀i ∈ NG (10)

∑
i∈NRE

∆Ppre
re,i − ∑

i∈NG

R
preup
gi ≤ PFD (11)

∑
i∈NRE

∆Ppre
re,i − ∑

i∈NG

Rpredown
gi ≤ PFD (12)

where ∆Ppre
re,i is the ramp of renewable energy as the requirement of flexibility, and R

preup
gi and Rpredown

gi
are the upward and downward reserves, respectively, at the ith generator that are able to offer active
power over a certain period of time depending on the ramp rate. Therefore, Equation (8) defines the
flexibility requirement, and Equations (9) and (10) are the available flexibility at the ith generator,
enabling an increase and decrease in output within the time interval. Equations (11) and (12) determine
the amount of flexibility deficit. When the left-hand side is lower than zero, the flexible resources
are adequate to ensure nonnegative flexibility. However, when the left-hand side is higher than zero,
the power system has inadequate flexible resources to respond to the net load ramp.

2.2.2. Determining the Capacity of Flexible Resources to Ensure Nonnegative Flexibility

Objective Function

The objective function is composed of the sum of the cost of thermal generation and ESS
installation. The cost of thermal generation is the same as the quadratic equation given above.
The cost of ESS installation can be expressed based on its capacity multiplied by its cost coefficient.
The magnitude of the cost coefficient is sufficiently large to minimize the required capacity of the ESS
to prevent a flexibility deficit from the net load ramp. The objective function is formulated as follows:

max
CF∈U

min
y∈Ω(CF,Ppost

gi )
Cost(Ppost

gi , PESS) (13)

Cost(Ppost
gi , PESS) = ∑

gi∈NG

(
αgi + βgi·P

post
gi + γgi·(Ppost

gi )
2
)
+ cESS·PESS ∀i ∈ NG (14)

where cESS denotes the cost efficiency of installing the ESS, and Ppost
gi and PESS denote the output of

the ith thermal unit and the amount of the required ESS, respectively.
The cost of charging and discharging an ESS is neglected in the objective function because it is

much lower than that of installing the ESS. In addition, the cost of installation may considerably affect
the value of the objective function compared with charging and discharging the ESS. When the initial
flexibility deficit is found in the previous stage, installing an ESS is needed to secure sufficient flexible
resources. In this stage, the minimum capacity of the ESS needed to ensure nonnegative flexibility
within the uncertainty set is shown.
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Constraints

The constraints consist of four parts: (i) conventional generators and renewable energy output,
(ii) power balance, (iii) power system flexibility, and (iv) an ESS.

(i) Energy Output of Conventional Generators and Renewable Energy Sources

The constraints on the output of a conventional generator and renewable energy sources are the
same as in Equations (5) and (6), which can be expressed as follows:

Ppost
gi ≤ Ppost

gi ≤ Ppost
gi ∀i ∈ NG (15)

Ppre
re,i = CF× Prated

re,i ∀i ∈ NRE (16)

(ii) Power Balance

The constraint of a power balance is almost the same as in Equation (7), except that the flexibility
deficit is substituted with the charge and discharge of the ESS, which can be represented as follows:

∑
i∈Nd

Pdi = ∑
i∈NG

Ppre
gi + ∑

i∈NRE

Ppre
re,i + (Pdis

ess − Pcha
ess ) (17)

where Pdis
ess and Pcha

ess are the magnitude of discharging and charging the ESS to protect the flexibility
deficit within the uncertainty, respectively. Here, Pdis

ess can respond to an upward flexibility deficit, and
Pcha

ess is able to cope with a downward flexibility deficit. Therefore, the power system is reinforced by
the ESS, avoiding a flexibility deficit.

(iii) Power System Flexibility

The constraint of the power system flexibility is almost the same as in Equations (8)–(12) except for
an additional part, the charging and discharging ESS in Equations (21) and (22), which is formulated
as follows:

∆Ppost
re,i = Ppost

re,i ×Variability Rate ∀i ∈ NRE. (18)

R
preup
gi = Min

(
Ramprateup

gi , Ppost
gi − Ppost

gi

)
∀i ∈ NG (19)

Rpredown
gi = Min

(
Rampratedown

gi , Ppost
gi − Ppost

gi

)
∀i ∈ NG (20)

∑
i∈NRE

∆Ppost
re,i −

(
∑

i∈NG

R
postup
gi + Pdis

ess

)
≤ PFlex (21)

∑
i∈NRE

∆Ppost
re,i −

(
∑

i∈NG

Rpostdown
gi + Pcha

ess

)
≤ PFlex (22)

where PFlex denotes the additional required flexibility. If PFlex = 0, minimum flexibility is ensured
within the uncertainty set by installing the minimum ESS. In this paper, PFlex is set to zero because the
minimum capacity of the ESS is calculated to secure adequate flexible resources with the uncertainty set.

(iv) Energy Storage System (ESS)

When a net load ramp caused by variability in renewable energy sources occurs, it may be
necessary to supply or absorb electricity. Thus, the capacity of an ESS can be composed of the sum of
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the charge and discharge required to avoid a flexibility deficit unless sufficient ramp rates exist as a
flexible resource in the previous stage, which can be expressed as follows:

PESS = ηcha
ess ·Pcha

ess +
1

ηdis
ess
·Pcha

ess (24)

0 ≤ Pcha
ess , Pdis

ess (25)

where ηcha
ess and ηdis

ess are the efficiency of the charging and discharging ESS. Indeed, losses occur when
the ESS is charging and discharging. To calculate the capacity of the ESS, the efficiency should be
considered in the problem.

2.3. Description of the Proposed Method

This paper presents a counterplan to prevent a flexibility deficit with flexible resources including
ramp rates and ESS, which is coordinated with robust optimization. The process is composed of three
parts: (i) constructing the uncertainty set with the capacity factor of renewable energy, (ii) searching the
initial point of the flexibility deficit within the uncertainty, and (iii) calculating the capacity of the ESS to
secure flexibility within the uncertainty set. First, based on historical or predicted data about renewable
energy sources, the uncertainty set of the capacity factor is constructed. Whether the initial point of the
flexibility deficit is found by the robust optimization within the uncertainty set is then examined. If an
initial point exists, the power system needs additional flexible resources to secure flexibility under
high-level penetration of renewable energy against the net load ramp. After searching for the initial
point, based on the robust optimization, how much ESS capacity is needed to ensure nonnegative
flexibility from the net load ramp can be calculated. The proposed method is shown in Figure 2.
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3. Simulation and Results

This section describes verification of the proposed method using a power system in the Republic
of Korea. After determining the interval of the capacity factor as the uncertainty set, the system checks
whether a flexibility deficit occurs or whether sufficient ramp rates exist to provide flexible resources,
which is considered a ramp rate in this step. Next, the capacity of flexible resources required by
the power system to prevent a flexibility deficit is determined. This study was implemented using
MATLAB 2017a, YALMIP20180612 as the optimization model language [38], and CPLEX 12.7 as the
optimization solver. YALMIP can solve the robust optimization problem based on MATLAB with a
variable solver including CPLEX and GROUBI.

3.1. Data Description

This study was conducted on a power system in the Republic of Korea. The offline generators
were not considered because the flexibility was provided using in-service generators within a short
period of time. There are 143 conventional generators in service, with a total capacity of approximately
93.175 GW. The system is composed of a gas turbine, hydropower, coal-fuel, liquefied natural gas
(LNG), and nuclear units. The generation cost depends on the cost coefficient of the generators.
Table 1 shows the generator data including number of generators, average ramp rates, maximum and
minimum outputs, and cost coefficients.

Table 1. Data of in-service generators. Liquefied natural gas (LNG)

Total
Number

Ramp Rate
(MW/h)

Pmin
(MW)

Pmax
(MW)

ai
(
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According to [1,2], the total capacity of renewable energy will be from 11.3 GW in 2017 to 58.5 GW
in 2030, when solar and wind power will be the main renewable resources and make up more than
88% of the total capacity of renewable energy. In this study, the output of renewable energy source is
related to the capacity factor, which is considered an uncertainty set by assuming a range of 20–40%.
In addition, the peak load predicted for 2030 is considered and is predicted to be 100.5 GW, assuming
that the load will increase by an average of 1.3% per year [2].

3.2. Searching for the Initial Point of Flexibility Deficit with Robust Optimization

The proposed robust optimization in step 2 is applied to find the initial point of the flexibility
deficit within the uncertainty set. In this simulation, for a flexible resource, only the ramp rates are
considered by assuming that there are no other flexible resources, such as an ESS. The result is shown
in Table 2. The initial point of the flexibility deficit occurs at a capacity factor of 0.3051, which means
the power system requires additional flexible resources such as ramp rates, an ESS, and the demand
response to prevent a flexibility deficit. In addition, it has the highest value within the range of the
capacity factor because the objective function has a negative sign.

Table 2. Initial point of flexibility deficit.

Capacity Factor Value of Objective Function

Robust 0.3051 −179,890
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The above results were analyzed in more detail by increasing the capacity factor by 0.005, from 0.2
to 0.4, using a deterministic method, which is represented in Figures 3 and 4. Figure 3a is divided into
three parts: a section ensuring a flexibility deficit (A), a section with an increase in the flexibility deficit
(B), and a section with a nearly uniform flexibility deficit (C). Unless a flexibility deficit exists, the more
the capacity factor of renewable energy increases, the greater the total decrease in power generation,
which can affect the cost of power generation or the absolute value of the objective function. So, in
section A, the value of the objective function gradually increases by increasing the capacity factor of
renewable energy, since the objective function has a negative sign, shown in Figure 3b. However, after
the initial point of the flexibility deficit, the absolute value of the objective function can increase, owing
to the penalty of the deficit. Thus, section A has a higher cost than sections B and C, because not only
is there no flexibility deficit, but the objective function also has a negative sign. The initial point of the
flexibility deficit is also located at the capacity factor of renewable energy = 0.3 between section A and
section B from the deterministic approach. Through this result, the robust and deterministic approach
is almost the same.

Sustainability 2018, 10, x FOR PEER REVIEW  10 of 16 

deficit (B), and a section with a nearly uniform flexibility deficit (C). Unless a flexibility deficit exists, 
the more the capacity factor of renewable energy increases, the greater the total decrease in power 
generation, which can affect the cost of power generation or the absolute value of the objective 
function. So, in section A, the value of the objective function gradually increases by increasing the 
capacity factor of renewable energy, since the objective function has a negative sign, shown in Figure 
3b. However, after the initial point of the flexibility deficit, the absolute value of the objective function 
can increase, owing to the penalty of the deficit. Thus, section A has a higher cost than sections B and 
C, because not only is there no flexibility deficit, but the objective function also has a negative sign. 
The initial point of the flexibility deficit is also located at the capacity factor of renewable energy = 0.3 
between section A and section B from the deterministic approach. Through this result, the robust and 
deterministic approach is almost the same. 

 
(a) 

  
(b) 

Figure 3. Results of deterministic optimization per 0.005 increase in capacity factor for step 2: values 
of objective function (a) within the interval of the capacity factor and (b) of section A. 

  

Figure 3. Results of deterministic optimization per 0.005 increase in capacity factor for step 2: values of
objective function (a) within the interval of the capacity factor and (b) of section A.



Sustainability 2018, 10, 4159 11 of 16

Owing to the flexibility deficit, sections B and C need additional flexible resources to respond to
the net load ramp. Section B shows an increase in the flexibility deficit because of insufficient ramp
rates as flexible resources. Although section C is also an interval with a flexibility deficit, its interval
seldom has an increase in flexibility deficit owing to the increase in ramp rates caused by a reduction in
power generation. An increase in the generation of renewables can increase variation and uncertainty,
while it can affect the decrease in net load and total power generation and the increase in ramp rates.

1 

 

 
Figure 4. Results of deterministic optimization per 0.005 increase of capacity factor for step 2.

3.3. Determining the Capacity of Eenergy Storage System(ESS) to Ensure Nonnegative Flexibility

The capacity of an ESS to ensure nonnegative flexibility through the proposed robust optimization
applied in step 3 was determined. The results are compared between deterministic and robust
optimizations, shown in Table 3. Using a deterministic approach, the results show that the cost is small
when the capacity factor is 0.2. The cost of the capacity factor, 0.4, is about 42.06 times higher than
that of the capacity factor, 0.2, which occurs from the ESS installation to ensure nonnegative flexibility.
Indeed, when the capacity factor is 0.4, many more flexible resources are needed than with a capacity
factor of 0.2. It is reasonable that there is a need for flexible resources caused by an increase in the
variation of renewable energy when the capacity factor is higher. Reviewing the results of robust
optimization, when the capacity factor is 0.3749 within the uncertainty set, the necessary capacity of
the ESS has a maximum value of 1875.7 MW. This means the system requires the largest capacity of
the ESS installation within the uncertainty set.

Table 3. Comparison between deterministic and robust results.

Capacity Factor Value of Objective Function Installation of ESS (MW)

Deterministic 0.2000 215,279 0
Deterministic 0.4000 9,056,140 1777.4

Robust 0.3749 9,545,556 1875.7

To analyze this result in detail, the previous deterministic approach is used, which is a method
for increasing the capacity factor from 0.2 to 0.4 by steps of 0.05. The results are shown in Figure 5.
Within the range of the capacity factor, the results based on a deterministic approach show that the
value of the objective function is the smallest when the capacity factor is 0.300 and the highest when
the capacity factor is 0.375, as shown in Figure 5a. In section A, the cost of power generation decreases
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through an increase in the capacity factor of renewable energy and a decrease in total generation
and net load, shown in Figure 5b. The point at a capacity factor of 0.300 is the smallest value of the
objective function and is located near the initial point of the flexibility deficit. In section C, the value
of the objective function gradually decreases because the ramp rates increase by reducing the power
generation. The maximum point of the value of objective function is placed at a capacity factor of
renewable energy = 0.375 between sections B and C from the deterministic approach. Also, the capacity
factor is almost the same as the result of robust optimization. Sections B and C both require additional
flexible resources to prevent a flexibility deficit. However, section B increases the flexibility deficit
and section C no longer increases the flexibility deficit by increasing the capacity factor of renewable
energy. Due to this fact, in section C, the value of the objective function decreases by increasing the
capacity factor of renewable energy, shown in Figure 5c. The details of this are introduced in Figure 6.
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objective function (a) within the interval of the capacity factor, (b) of section A, and (c) of section C.

In section A, the total sum of ramp rates increases owing to a decrease in the net load through an
increase in the renewable energy output. In section B, the total sum of ramp rates gradually decreases
because of a decline in the number of generators required to maintain supply and demand. In addition,
in section C, the total sum of ramp rates increases again because the number of generators out of
service no longer increases. This may be why the necessary capacity of an ESS is not the highest at the
maximum capacity factor despite the increase in variability and uncertainty from renewable energy.
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4. Conclusions

A deterministic optimization cannot consider uncertainty, which can undermine the reliability of
the solution owing to an inability to reflect the uncertainty. In previous studies using deterministic
optimization and stochastic programming, in order to consider uncertainty such as that found with
renewable energy, it was necessary to make scenarios. For example, all capacity factors of renewable
energy constructed by a planner are reviewed to decide how the system will be reinforced for
stable operation despite variation and uncertainty, which may require much effort to do. However,
robust optimization does not require creating scenarios or using much effort because it needs the
uncertainty set. Therefore, it is proper to use robust optimization to include uncertainty. In actuality,
in power system planning and operation, because it is extremely difficult to take into account all
possible scenarios, it is reasonable to prepare a countermeasure for the worst case. Therefore, robust
optimization is a suitable model in power system planning and operation.

This paper presents a robust optimization model to secure flexible resources and prevent the
occurrence of a flexibility deficit from the variability and uncertainty of renewable energy. This model
considers the capacity factor of renewable energy as the uncertainty set and is divided into two steps:
(i) searching for the initial point of the flexibility deficit and (ii) determining the capacity of the ESS
to ensure nonnegative flexibility. In the first step, it is determined whether a flexibility deficit point
occurs within the interval of the capacity factor when only considering ramp rates as flexible resources.
This step takes place before determining whether to invest in flexible resources. In the next step,
the necessary capacity of the ESS is calculated, which can ensure nonnegative flexibility within the
uncertainty set. Through this study, the results of the worst case using a deterministic approach and
robust optimization are similar. Indeed, searching the worst case using a deterministic approach may
require many things, from making to studying scenarios, but robust optimization may be able to
reduce the effort of considering the worst case without creating scenarios.

Future work will include more detailed modeling, including power flow limits of transmission
lines and unit commitment to improve the quality of the solution. It will also be necessary to contain
realistic conditions to guarantee a solution.
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