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Abstract: Understanding the driving factors of land-use spatio-temporal change is important for
the guidance of rational land-use management. Based on land-use data, household surveys and
social economic data in 2000, 2005, 2010, and 2015, this study adopted the Binary Logistic Regression
Model (BLRM) to analyze the driving factors of land-use spatio-temporal change in a large artificial
forest area in the Ximeng County, Yunnan province, in Southwest China. Seventeen factors were
used to reflect the socio-economic and natural environment conditions in the study area. The results
show a land use pattern composed of forestland, dry cropland, and rubber plantation in Ximeng
County. Over the past fifteen years, the area of artificial forests increased rapidly due to the “Grain
for Green” policy, which has led to increases in rubber plantations, tea gardens, eucalyptus forests,
etc. In contrast, the area of natural forest and dry cropland decreased due to reclamations for
farming and constructions. The BLRM approach helped to identify the main driving factors of
land-use spatio-temporal change, which includes land-use policies (protection of basic farmlands and
natural reserves), topography (elevation and slope), accessibility (distance to the human settlements),
and potential productivity (fertility and irrigation). The study revealed the relationship between
land-use spatio-temporal change and its driving factors in mountainous Southwest China, providing
a decision-making basis for rational land-use management and optimal allocation of land resources.

Keywords: land use; spatio-temporal change; driving factors; binary logistic regression model
(BLRM); artificial forest area; southwest China

1. Introduction

Land use change, as one of the most important aspects of global change, is a significant
manifestation of human activity having an impact on the natural environment [1]. Intensive land
use, such as the expansion of construction land, deforestation, the introduction of artificial forests,
etc., has changed soil quality, biodiversity, and ecosystem services, and has even threatened global
and regional ecological security [2]. There is an interactive coupling relationship between land use
and its driving factors [3]. The importance of these changes has prompted international efforts to
identify the factors determining land-use spatial distribution, so as to mitigate the negative effects. At
present, with rapid population growth, in order to improve economic income and alleviate poverty, the
large planting of artificial forests in mountainous of Southwest China has changed land-use structures.
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The introduction of artificial forests is bound to have a great impact on local ecology, among other
aspects [4]. Zhao [5] reported that the ecological structure and function would change when a large
area of artificial forest was planted. In particular, the plantations of rubber and eucalyptus may
threaten biodiversity, livelihoods, and ecosystem services [6,7]. Therefore, it is helpful to understand
the ecological structure and function by researching the driving factors of the land use distribution in
artificial forest area.

Generally, land-use patterns have changed or been maintained according to socio-economic factors
for a long time [8]. Socio-economic factors include human-induced conditions, such as the development
of local infrastructure, political support or restriction, and local culture. Road construction enhances
the connectivity between the marketplace and raw material or products, and consequently, has reduced
the cost and stimulated land use changes, such as abandoning rice cultivation in favor of producing
rubber. Rosa reported that, with the development of infrastructure, deforestation tended to occur
along with the construction of roads, while afforestation occurs far from roads [9]. Moreover, the
distances to settlements such as villages, towns, and urban centers, is often uses in analyses of land-use
distribution. Land use for agriculture and construction can also indicate the development level of
local communities [8]. Liu [10] showed that the population migrating from rural to urban settings
has resulted in the expansion of built-up areas in many developed zones in China. In addition, the
advancement of agricultural and planting technologies has greatly improved land productivity, and
thus, led to some cultivated land being converted to forestland [11]. Political factors also play a key
role in land use change. Policies, such as the creation of nature reserves, cultivated land protection, and
policy subsidies, can restrict or encourage behavior patterns for land use so as to affect the land-use
decisions [12]. Although local culture is one of many factors, the mechanism of cultural influence on
land-use spatial distribution is not yet well understood.

Natural environmental factors are also important factors for land use changes [8]. For example,
there is a strong relationship between slope, elevation, climate, hydrological effects, forest distribution,
construction costs, and so on [13]. Since crop yield is the main consideration of farmers in agricultural
areas, the potential productivity of land (soil properties, precipitation, and illumination intensity)
is of serious concern. Natural environment factors also have a significant impact on land-use
spatio-temporal change. However, they are ignored in much research because changes of these
factors are often not obvious over a short time frame. In short, land-use spatio-temporal change is
the outcome of the combined action of natural environment and social economy. Therefore, accurate
identification of the main causes of land-use spatio-temporal change can be achieved only when
influences of both the two sets of factors are jointly considered in land-use change analysis.

Presently, the research methods of identifying the driving factors of land use change
usually include Detrended Canonical Correspondence Analysis [14], Generalised Linear Regression
Models [15], Distance-based Linear Models [16], and Field Survey and Interview Methods [17].
These methods mainly determine the linear relationship between driving factors and land-use
spatial distribution, while in fact the relationship is nonlinear. In this case, the Binary Logistic
Regression Model (BLRM) may be helpful to handle the regression problems of dependent variables
as non-continuous variables, so variables and dependent variables are expressed as a nonlinear
relationship to determine the quantitative relationship [18]. For example, Xie [19] used the logistic
regression model to analyze the driving factors of land use change in an ecological functional area in
North China, and Wu [20] used the model to illustrate land use change and the driving mechanisms
of the urban-rural fringe in the Yangtze River Delta. However, most studies do not take into account
the dual influences of socio-economic (especially policy factors) and natural environment factors. The
large areas of artificial forest in Southwest China have received limited attention.

Inspired by these studies and based on land-use data, household survey, and social economic
data in 2000, 2005, 2010, and 2015, this study also adopted the BLRM to analyze the driving factors
of land-use spatio-temporal change in a large artificial forest area in the Ximeng County, Yunnan
province, Southwest China. The objectives of this study are to: (1) Identify the driving factors of land
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use change from 2000 to 2015; (2) Identify the contribution of each factor to the distribution of the main
land types.

2. Methods

2.1. Study Area

Ximeng County (99°18'-99°43' E; 22°25'-22°57" N) is located in the Yunnan Province,
southwestern China, with 89 km of border with Myanmar; covers an area of about 1258 km? (Figure 1).
The county is mountainous, ranging in elevation from 590 to 2459 m. It is influenced by subtropical
oceanic monsoons. The mean annual temperature is about 15 °C; rainfall is very abundant, and the
mean annual precipitation is 2758 mm. But the seasonal rainfall is uneven, with the majority being
concentrated in the summer and autumn. The region is characterized by a large area of evergreen
broad-leaved forests and a rich biodiversity. There are three main rivers in the county: the Nanka,
Nankang, and Kuxing Rivers. Parts of the Nanka River serve as the border between China and
Myanmar. The other two rivers flow from north to south into the Nanka river. In socio-economic
aspects, the region is dominated by mountain agriculture; the level of economic development is
relatively low, and the rural per capita annual net income was ¥ 6567 in 2015.
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Figure 1. The Location of Ximeng County in Yunnan Province of Southwest China (land use in 2015).

2.2. Data Acquisition and Processing

This study used BLRM to analyze grid-level determinants of land use change in Ximeng County.
We focused on both socio-economic and natural environment factors at a 100 x 100 m grid scale.
Landsat 5 TM data in 2000, 2005, 2010, and Landsat 8 OLI data in 2015, were collected from
http://www.gscloud.cn/. All those data were corrected by atmospheric and geometric correction.
Ten land types were extracted with classification of human-computer interaction in the ENVI 4.8 and
ArcGIS 10.1 software: dry cropland, paddy field, rubber plantation, forestland, shrubs, grassland, tea
garden, eucalyptus forest, construction land, and waters. Field work was done in the study area and
samples of land types were collected (96 sampling points, mainly involving the land types which were
difficult to distinguish and which changed a lot). The accuracies were 79.9%, 82.3% 83.4%, and 86.7%
and the kappa coefficients were 0.85, 0.87, 0.91, and 0.92 in 2000, 2005, 2010, and 2015, by comparing
the collected samples and the classified results.
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In addition, the Land Use General Plan (2010-2020), Statistical Yearbook, precipitation data,
topographic data, and soil data were collected from the Land Resources Bureau, Meteorological
Bureau, Statistical Bureau of Ximeng County.

2.3. Analysis Methods

2.3.1. Analysis Methods of Land-Use Spatio-Temporal Change

Based on the study of Ma [21] and Wu [22], quantitative change characteristics of land types were
used to determine the absolute variation in land-use change rates:

S=Upy—Us 1)
ub_uH

a

K= x 100% )

where S is the absolute variation in the area of a certain land type in the study period; K is the change
rate of a land type; U, and U, is the area of a land type at the beginning and the end of the study
period.

A land-use transition matrix was adopted to analyze land-use transitions quantitatively; and
spatial transition rate was used to analyze the characteristics of land use change spatially:
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where Sj; is the area of the land type i converted to the land type j during the study period; ST is the
spatial transition rate of land use in the study period; S; is the area of i-th land type at the beginning of
the study period; and 7 is the quantity of the land type. The ST is calculated in 100 x 100 m grid scale
to reflect the characteristics of spatial transition.

2.3.2. Analysis Methods of Driving Factors

The study of land use change and its driving factors is very important for the adjustment of
land-use structure and spatial distribution. In this regard, many scholars have relied on dynamic
time series to analyze the correlation between driving factors and land use change [23]. This method
solves the linear relationship between driving factors and land use change. However, in many cases,
especially when the dependent variable is a categorical variable rather than a continuous one, linear
regression is inapplicable, since it lacks the processing ability of spatial factors which are categorical
variables. Land use change is an intricate process; it is a nonlinear relationship which affects the
priority of the distribution at a specific location between the driving factors and the land-use spatial
distribution [24]. In terms of computing, with or without explanatory variables, the logistic regression
model can assume the probability of a set of binary results as the conditional probability by logical
reasoning [25]. The B in the model reflects the influencing extent of the conditional probability
with various factors (i.e., the relative importance) [26], and the OR shows the degree of correlation
between them. Therefore, this study uses BLRM to deal with variable data by establishing a non-linear
relationship between non-continuous data of spatial distribution of land use and continuous data of
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driving factors in 2000, 2005, 2010, and 2015, in order to reflect the role of driving factors on land-use
spatial distribution over a period of fifteen years.
By using the BLRM, the distribution probability of a certain land type is calculated [27].
The distribution probability of land use is expressed as:
exp(a + P1x1,i + Poxoi + ... + PuXp,i)

Pi(Y; = 1|xi) = i
i(Y; = 1Jxi) 1+ exp(a+ P1xy,i + Poxzi+ - + Pun,i) X

Pi

1—Pi ©)
where P; (Y; = 11x;) is the distribution probability of a land type in a grid; p; is the regression
coefficient of the driving factor x; and expresses the degree of influence of each factor on regional
land-use distribution; OR is the ratio of occurrence probability to nonoccurrence probability; and « is

the intercept.
As for the effectiveness test of logistic regression, Pontius [28] proposed that the Receiver
Operating Characteristic Curve (ROC) method was a common method. The independent variables

OR =

have a good interpretability on the dependent variable when the ROC value is larger than 0.7. Moreover,
the percentage of correct parts is tested by the Percent Corrected Prediction (PCP) [29]. The bigger the
PCP value, the closer simulated result is to reality. To compare the various factors, all the independent
variables, except the categorical variables of basic farmlands preservation policy (xg) and nature reserve
policy (x9), are standardized by z-score standardization in the software SPSS.

3. Results Analysis and Discussion
3.1. Characteristics of Land-Use Spatio-Temporal Change

3.1.1. Characteristics of Quantitative Change

The main land types in Ximeng County were forestland, dry cropland, and rubber plantations.
In 2000 and 2005, the land types were mainly forestland and dry cropland. Forestland accounted for
64.15% and 57.15% of total area, whereas dry cropland accounted for 22.77% and 23.90%. In 2010 and
2015, the proportion of forestland continued to decrease to 51.03% and 48.41%, the proportion of dry
cropland decreased slightly to 22.32% and 22.64%, while the proportion of rubber plantation increased
significantly to 11.40% and 12.74%. In short, a large area of rubber was artificially planted, which
dominated the changing pattern of the land-use structure from 2000 to 2015 (Table 1).

In terms of the absolute variation of land types, the areas of rubber plantation, tea garden,
eucalyptus forest, paddy field, construction land, and waters showed increasing trends, while the
areas of forestland, grassland and shrubs showed decreasing trend. The dry cropland changed with
fluctuations. As for the change rate (K), the land types with the fastest growth rates were rubber
plantations, tea gardens, eucalyptus forests, and waters in 2000-2015. The change rate of other land
types was not obvious. Among them, the area cardinal number of forestland and dry cropland was too
large at the beginning year, which influenced the change rate in study period (Table 1).

3.1.2. Characteristics of Spatial Change

From 2000 to 2015, a large-scale planting of rubber, tea, and eucalyptus dominated the land-use
transitions in Ximeng County (Table 2 and Figure 2). The increased area of tea gardens (2894.69
hm?) and rubber plantation (15,633.62 hm?) were mainly converted from dry cropland and forestland.
The increased area of eucalyptus forest (1840.74 hm?) was mainly converted from forestland, dry
cropland, and grassland. The area of construction land increased (274.28 hm?) by mainly occupying
forestland and dry cropland. The area of waters increased (181.29 hm?) because of the construction of
Hydropower Stations in Nanhong River and Fumunai Reservoir in Mengxu Town which submerged
forestland and dry cropland.
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Table 1. Land Use Quantity Change in Ximeng County.

Land Types Area (hm?) Absolute Variation in Area (hm?) Change Rate of Land Use (%)
2000 2005 2010 2015 2000-2005 2005-2010 2010-2015 2000-2015 2000-2005 2005-2010 2010-2015 2000-2015
Eucalyptus forest 657.70 2447.19 2478.53 2498.44 1789.49 31.34 19.91 1840.74 272% 1% 1% 280%
Grassland 6314.79 4693.85 4142.60 4117.98 —1620.94 —551.25 —24.62 —2196.81 —26% —12% —1% —35%
Tea garden 924.03 2019.31 3410.24 3818.72 1095.28 1390.93 408.48 2894.69 119% 69% 12% 313%
Shrubs 69291 540.83 487.56 457.10 —152.08 —53.27 —30.46 —235.81 —22% —10% —6% —34%
Dry cropland 28,643.65 29,044.09 28,072.58 28,485.27 400.44 —-971.51 412.69 —158.38 1% —3% 1% —1%
Construction land 1631.99 1857.06 1902.53 1906.07 225.07 45.47 3.54 274.08 14% 2% 0% 17%
Paddy field 5768.05 6385.24 6672.21 7332.60 617.19 286.97 660.39 1564.55 11% 4% 10% 27%
Waters 68.40 68.53 101.53 249.69 0.13 33.00 148.16 181.29 0% 48% 146% 265%
Rubber plantation 394.90 6852.30 14,339.36  16,028.52 6457.40 7487.06 1689.16 15,633.62 1635% 109% 12% 3959%
Forestland 80,701.48 71,889.5 64,190.77  60,903.53  —8811.98  —7698.73  —3287.24 —19,797.95 —11% —11% —5% —25%
Table 2. The Transition Matrix of Land Use from 2000 to 2015 (Measure Unit: hm?).
Land Types Eu;zi;;};:us Grassland Tea Garden Shrubs  Dry Cropland Con]s;r:ccltlon Paddy Field = Waters Plle{l ltlllt)abtie(:n Forestland Total in 2000
Eucalyptus forest 618.10 0.12 2.23 0.00 1.81 0.00 17.76 0.00 0.00 17.68 657.70
Grassland 87.59 2713.41 2493 6.05 2555.28 4.33 115.75 6.96 22.68 777.80 6314.79
Tea garden 1.27 443 798.75 1.22 35.41 1.75 3.71 0.00 2.28 75.22 924.03
Shrubs 18.95 13.37 4.35 300.75 169.99 1.56 14.11 0.23 17.80 151.80 692.91
Dry cropland 215.51 519.34 1870.30 16.43 13,027.50 170.72 595.60 23.06 8037.43 4167.76 28,643.65
Construction land 0.01 0.86 13.82 1.54 123.59 1273.04 39.42 0.08 25.88 153.75 1631.99
Paddy field 0.36 50.00 30.40 15.33 324.56 55.75 4700.91 1.11 119.58 470.04 5768.05
Waters 0.00 0.81 0.00 0.00 2.69 0.41 0.00 59.84 0.40 424 68.40
Rubber plantation 0.00 0.00 0.00 3.30 1.12 0.71 1.37 0.25 346.75 41.40 394.90
Forestland 1556.65 815.64 1073.93 112.48 12,243.31 397.80 1843.97 158.15 7455.71 55,043.84 80,701.48

Total in 2015 2498.44 4117.98 3818.72 457.10 28,485.27 1906.07 7332.60 249.69 16,028.52 60,903.53 125,797.91
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Figure 2. Land use/land cover change in Ximeng County: (a) Land-use distribution; (b) Spatial
transition rate (ST) of land use in four periods.

Meanwhile, there was also a large area of forestland and dry cropland that was converted to
other land uses (Table 2 and Figure 2). The decreased area of forestland (19,797.95 hm?) was mainly
converted to dry cropland and rubber, while there was 4167.76 hm? compensation from dry croplands
by the “Grain for Green” policy. There were similar values of dry cropland between the area converted
to other land types and that converted from other land types, making the amount of dry croplands
more or less stable.

The spatial transition rate of land use is between 0 and 100 in Ximeng County (Figure 2b). The
larger the value, the more obvious the land use changes. It can be seen that the regions with high
spatial transition rates were similar to the planting areas of rubber, tea, and eucalyptus. Most of
these artificial forests were planted along with the rivers or roads and occupied lots of farmlands and
forests. The increase in rubber plantations contributed most to the spatial transition rate from 2000
to 2015 (Figure 2). Meanwhile, the spatial transition rate of land use had different characteristics at
each time stage. In 20002005, eucalyptus was planted a lot in the northern area, and rubber was
mainly planted along with the Nanka River and Nankang River in central and southwest area. At the
same time, the expanding of cultivated land was also obvious on the basis of data from 2000. These
changes caused a high spatial transition rate. In 20052010, land-use transitions mainly occurred in
the central, southwest, and mid-eastern areas with the planting of rubber and tea. This resulted in
the more gathered distribution of cultivated land. In 2010-2015, land-use transitions occurred in most
areas of the county (yellow parts), but there were fewer areas with concentrated changes (red parts).
Areas with high spatial transition rates also mainly involved changes of rubbers, tea, farmlands and
forests in mid-eastern and mid-western regions. Artificial forests were mainly planted close to the
border with Myanmar in the first five years, and then in other areas of the county close to the main
rivers and roads. Overall, land-use spatial change mainly occurred along the Nanka, Nankang and
Kuxing Rivers by the large-scale planting of artificial forests.

In summary, there were four spatio-temporal characteristics among the main land types: (1)
Large-scale planting of artificial forests such as, rubber, tea and eucalyptus had largely replaced
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forestland and dry cropland. (2) Due to the “Grain for Green” policy and the large-scale planting of
artificial forest, a large area of dry cropland was converted to forestland and rubber plantation. But at
the same time, forests had been cut down and converted to dry cropland because local households
were expanding farming activities to maintain their livelihoods. (3) The construction land expanded
significantly by occupying forestland and dry cropland. (4) The increased water areas mainly came
from forestland and dry cropland due to reservoir submerging.

3.2. Driving Factors of Land Use Change

As introduced above, driving factors of land use change were selected from both socio-economic
and natural environment aspects (Table 3). Variables such as technology and culture were ignored due
to data unavailability. In this study, all data is processed to a regular grid scale of 100 x 100 m in the
ArcGIS 10.1 (ESRI, Redlands, USA) before being added to the BLRM. Except for the xg, x9, and x14, all
other factors are continuous variables.

Table 3. Factors determining the land-use spatio-temporal changes in Ximeng County.

Category Subcategory Variable Code
Distance to the main road X1
o Distance to the rural road X2
Accessibility
Distance to the town X3
Socio-economic factors Distance to the rural settlement X4
Population X5
Development of local community
Rural per capita net income Xg
Land use spatial configuration Distance to previous land use X7
Basic farmlands preservation polic bé
Political restriction P potcy 8
Nature reserve policy X9
Slope X10
Topography Elevation x11
Aspect X12
Natural environment factors Soil organic matter X13
Soil types X14
Potential productivity Annual mean precipitation X15
Distance to river X16
Distance to irrigation canal X17

3.2.1. Socio-Economic Factors

Socio-economic factors, including accessibility, development of local community, land-use spatial
configuration and political restriction, are selected to reflect mankind'’s ability to exploit the natural
environment in the study.

(1) The accessibility of certain land areas, indicating the distance to roads, railways, ports,
villages, and centers of economic activity, is frequently used as one of main socio-economic
factors [30]. The accessibility of rural areas and markets is related to market expansion and
the commercialization of agriculture, which can affect the profitability of land use and farmers
willingness to land use [31]. There are many rivers and streams as irrigation sources rather
than transportation in the study area. Therefore, the distance to rivers is analyzed as a natural
environment factor for agriculture-related land use changes. Based on accessibility, the distance to
main roads, to local rural roads, to towns, and to rural settlements are selected. The data of roads,
towns, and rural settlements was adopted from “The Land Use General Plan of Ximeng County
(2010-2020)”, and the Euclidean distance of those data are used to describe the accessibility.

7
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(2) The development of local communities, regarding population, income, labor, and technology, can
also influence deforestation and the abandoning of cultivated lands, and thus, influence land-use
spatial distribution. As the indexes of local community development, population and rural per
capita net income are selected from Statistical Yearbook of Ximeng County in 2000, 2005, 2010,
and 2015.

(3) The expansion of land always bases on the previous land use, or presents enclave expansion,
such as the spatial expansion of construction land. Land-use spatial allocation is also influenced
by previous land uses and surrounding land. Therefore, the proximity to previous land use is
also considered as a variable.

(4) Policy factors are considered in many studies on land use changes [32]. The cultivated land and
the ecological land in the study areas are generally restricted to changes under the protection
policies of basic farmland preservation and nature reserves. Thus, they are introduced in the
regression model as dummy variables.

3.2.2. Natural Environment Factors

Natural environment factors are the basic parameters for determining land-use spatio-temporal
changes including topography and land potential productivity, especially for agricultural areas like
the case area in this study. Generally, forestland on low elevation and gentle slope is more likely
to be reclaimed for other uses, while cultivated land on high elevation and with steep slopes is
more likely to be abandoned and converted to artificial forest such as rubber plantation [30]. So,
elevation and slope are the main natural elements affecting the land-use spatio-temporal change. The
potential productivity of land, influenced by soil properties and climate conditions, affects the land-use
spatio-temporal change according to economic factors. Therefore, slope, elevation, and aspect deriving
from the DEM data, soil organic matter, and soil types deriving from the soil thematic map, and annual
mean precipitation deriving from the interpolation results of weather station data in each town in
Ximeng County, are considered in our regression model. Depending on the physical and chemical
properties of the soil and the degree of ripening, the soil types (xg) are divided into six categories
(from 6 to 1): paddy soils, yellow-brown earths, yellow earths, red earths, lateritic red earths and
humid-thermo ferralitic. Moreover, since rivers play a key role in the irrigation of the study area, the
distance to a river and the distance to an irrigation canal can also influence the potential productivity
of land, and are also selected as natural environment factors in the model.

3.3. Driving Factors Analysis of Land-Use Spatio-Temporal Change

According to the characteristics of land-use spatio-temporal change in Ximeng County, the main
land types were forestland, dry cropland, and rubber plantations. Drastic changes in the proportion of
rubber plantation, tea garden, dry cropland, forestland and construction land are the major causes
of the regional land-use spatio-temporal change. Thus, it is necessary to analyze the driving factors
of these main land types with major changes (cultivated land consists of dry cropland and paddy
fields). In the BLRM, the basic farmland preservation policy (xg) and nature reserve policy (x9) were
re-encoded in the software SPSS 22 as categorical variables. Being located on basic farmlands was
coded as 0, while being in non-basic farmlands was coded as 1; being located in nature reserves was
coded as 0, while being in non-natural reserves was coded as 1.

3.3.1. Testing the BLRM

The ROC values (got by “ROC curve” processing between probability value (P) of BLRM and
spatial distribution of each land type) of forestland, cultivated land, rubber plantation, tea garden, and
construction land were all more than 0.7 (Table 4), indicating that the established BLRM was good for
the analysis. The PCP values of cultivated land and forestland were 70% to 85%. It is effective to use
BLRM to predict the change of cultivated land and forestland. The PCP values of construction land,
rubber plantations, and tea gardens were all more than 90% (Table 4), meaning that the model had an
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ideal prediction ability for these three land types. Similarly, their standard errors (S.E.) were all less
than 1.0 (Tables 5-9), meaning that the model was reliable.

Table 4. The ROC and PCP value of BLRM.

2000 2005 2010 2015
Land Uses
ROC PCP ROC PCP ROC PCP ROC PCP

Forestland 0.784 73.80% 0.813 75.40% 0.852 78.00% 0.925 85.10%
Cultivated land 0.842 79.70% 0.837 80.00% 0.804 77.60% 0.876 82.80%
Rubber plantation 0.970 99.70% 0.949 94.90% 0.952 92.10% 0.960 92.40%
Tea garden 0.915 99.30% 0.879 98.40% 0.901 97.20% 0.986 98.40%
Construction land 0.932 98.70% 0.929 98.60% 0.924 98.50% 0.979 98.90%

Table 5. Results of BLRM of Forestland.

2000 (ROC =0.784)

2005 (ROC = 0.813)

2010 (ROC = 0.852)

2015 (ROC = 0.925)

Variable

B S.E. OR B S.E. OR B S.E. OR B S.E. OR

X1 0.149 0.008 1161  —0.043 0.009 0.958 0.155 0.008 1167 —0.037 0.008 0.964

X 0.201 0.010 1.222 0.243 0.010 1.275 0.130 0.100 1.138 0.001 0.042  1.001

X3 0.035 0.009 1.035 —0.457 0.011 0.633 —0.079 0.009 0924 —0.018 0.008 0.982

X4 0.535 0.010 1.708 0.600 0.010 1.821 0.562 0.010 1.753 —0.126  0.010 0.882

X5 N1 N N —0.228  0.008 0.796  —0.073 0.008 0930 —0.015 0.003 0.985

Xg —0.199  0.008 0.820 —0.271  0.009 0.763 —0.043 0.008 0.958 0.191 0.011 1.210

xg 1.375 0.014 3.956 1.857 0.016 6.407 1.601 0.014 4.959 2.257 0.032 9.553

X9 —0.624 0.083 0.536 —0.214 0.079 0.807 —0.270 0.078 0.763 —0.589 0.137  0.555

X10 0.187 0.007 1.205 0.229 0.007 1.258 0.208 0.007 1.231 0.026 0.002 1.026

xX11 0.310 0.008 1.364 0.530 0.013 1.699 0.566 0.010 1.761 0.002 0.000 1.002

X12 —0.085 0.007 0918 —0.139 0.007 0.870  —0.050 0.007 0951 —0.001 0.000 0.999

X13 0.063 0.007 1.065 N N N N N N —0.017 0.002 0.983

X14 N N N —0.107  0.011 0.899 N N N —0.215 0.023  0.807
X15 N N N —0.432 0.010 0.649 N N N N N N
X16 N N N 0.433 0.011 1.542 0.093 0.011 1.097 N N N
X17 —0.172  0.007 0.842  —0.060 0.008 0942 —0.151 0.008 0.860 N N N

Constant o« 0.548 0.083 1.730  —0.757 0.080 0469 —0.233 0.079 0792 —0.831 0236 0436

1 N means the value was eliminated because its  value was too small; indexes which eliminated all values in four
years are not included in this table.

Table 6. Results of BLRM of Cultivated Land.

2000 (ROC =0.842)

2005 (ROC = 0.837)

2010 (ROC = 0.804)

2015 (ROC = 0.876)

Variable
B S.E. OR B S.E. OR B S.E. OR B S.E. OR
X1 —0.167 0.009 0.846 —0.214 0.009 0.808 —0.117 0.009 0.889 0.088 0.009  1.092
X —0.499 0.013 0.607 —0.337 0.012 0.714 —0.238 0.011 0.788 —0.662 0.048 0.516
X3 0.059  0.010 1.061 N N N —0.056 0.010 0945 —0.108 0.009 0.898
X4 —0.552 0.012 0.576 —0.458 0.011 0.632 —0.514 0.011 0.598 —0.057 0.011 0.945
X5 0.041 0.010 1.042 0.153 0.008 1.166 0.183 0.008 1.201 0.090 0.004  1.094
Xg 0.146  0.011 1.157 N1 N N N N N —0.204 0.013 0.815
Xg —1.995 0.016 0.136 —2.156 0.015 0.116 —1.813 0.015 0.163 —2.074 0.031 0.126
X9 0.843 0.121 2323 0.882 0.113 2.415 0.848 0.109 2.334 1.332 0.204  3.790
X10 —0.170 0.008 0.844 —0.154 0.008 0.857  —0.187 0.008 0.829 —0.017 0.002 0.983
X11 —0456 0.012 0.634 —0.431 0.009 0.650 —0.169 0.012 0.845 —0.001 0.074 0.999
X12 0.059 0.008 1.061 N N N 0.101 0.008 1106 —0.139 0.151 0.870
X13 N N N N N N —0.032  0.008 0.968 N N N
X14 N N N N N N —0.038 0.011 0.962 0.256 0.021 1.292
X15 N N N N N N —0.127  0.009 0.880 0.200 0.090 1.221
X16 —0.120 0.012 0.887 N N N N N N 0.073 0.062 1.076
X17 N N N —0.030 0.008 0970 —0.078 0.008 0.925 N N N
Constant «  —1.028 0.122 0.358 —0.815 0.114 0443 —0934 0.110 0393 —0982 0291 0375

1 N means the value was eliminated because its  value was too small; indexes which eliminated all values in four
years are not included in this table.
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Table 7. Results of BLRM of Rubber Plantation.
Variable 2000 (ROC = 0.970) 2005 (ROC = 0.949) 2010 (ROC = 0.952) 2015 (ROC = 0.960)
B SE.  OR B SE.  OR B SE.  OR B SE.  OR
X1 —0.721 0.085 0.486 N1 N N 0.179 0.016 1.196 —-0.119 0.017 0.888
X 0.233 0.079  1.262 0.137 0.023 1.147 —0.213 0.020 0.808 —0.407 0.084 0.666
X3 N N N 0.748 0.018 2.114 0.910 0.018 2.485 0.154 0.014 1.166
Xy —0.508 0.102 0.602 —0.322 0.025 0.725 —0.175 0.021 0.839 0.043 0.020 1.043
X5 —1.520 0.113 0.219 —0.113 0.020 0.893 0.197 0.013 1.217 —0.044 0.006 0.957
Xe 1.240 0.125 3455 —0.211 0.038 0.810 0.347 0.014 1415 —-0.008 0.019 0.992
Xg 2.805 0.309 16.528 N N N —1.016 0.027 0.362 —1.445 0.051 0.236
X10 0.280 0.052 1.324 0.044 0.016 1.045 0.115 0.013  1.121 0.011 0.003 1.011
X11 —1.973 0.142 0139 —2.579 0.045 0.076 —2.805 0.035 0.061 —0.009 0.184 0.991
X12 —0.344 0.060 0709 —-0.105 0.016 0.901 0.041 0.013  1.042 N N N
X13 —0916 0.077 0400 —0.079 0.020 0.924 0.043 0.016  1.044 0.022 0.004 1.023
X14 —1.257 0.167 0.285 —0.606 0.038 0.546 —0.224 0.028 0.799 —0.634 0.045 0.530
X15 N N N N N N 0.999 0.027 2.716 0.002 0.173  1.002
X16 N N N —0.573 0.034 0.564 —0.652 0.025 0.521 N N N
X17 N N N 0.207 0.019 1.229 0.265 0.016 1.303 0.074 0.007  1.077
Constant « —12.598 0.382 0.000 —6.136 0.052 0.002 —4.355 0.036 0.013 3.376 0.416  29.263

1 N means the value was eliminated because its B value was too small; indexes which eliminated all values in four
years are not included in this table.

Table 8. Results of BLRM of Tea Garden.

2000 (ROC = 0.915)

2005 (ROC = 0.879)

2010 (ROC = 0.901)

2015 (ROC = 0.986)

Variable
B SE. OR B S.E. OR B SE. OR B SE. OR
X1 —0.972 0.063 0379 —0.373 0.033 0.689 —0.214 0.032 0.807 —0.121 0.028 0.886
X —0.875 0.083 0.417 —0.498 0.051 0.608 N1 N N N N N
X3 —0.163  0.051 0.850 —0.691 0.032 0.501 —0.457 0.043 0.633 —0.114 0.021 0.893
Xy —0.410 0.054 0.664 —0.752 0.038 0.472 —3.748 0.086 0.024 —0.127 0.032 0.881
X5 —0.908 0.066 0.403 —0.265 0.027 0.767 —0.080 0.030 0923 —0.054 0.010 0.948
X 0.603 0.065 1.827 0.064 0.024 1.066 N N N —0.180 0.027 0.835
Xg —1.460 0.074 0.232 —1.210 0.050 0.298 2.714 0.121 15.091 —1.659 0.080 0.190
X9 N N N 0.617  0.198 1.854 —0569 0.189 0566 2117 0.597 8.309
X10 —0.294 0.041 0.745 —0.257 0.027 0.773 —0.680 0.032 0.506 —0.026 0.005 0.974
x11 0.752 0.060 2,121 0.880 0.049 2411 N N N N N N
X1 0.391 0.040 1478 0.123 0.025 1.131 N N N 0.030 0.372 1.030
X13 —0.154 0.042 0.857 —0.111 0.026 0.895 N N N 0.016 0.007 1.016
X14 N N N —0.165 0.038 0.848 —0.155 0.032 0.856 —0.117 0.052 0.889
X15 N N N N N N —0.267  0.038 0.766 N N N
X16 0.684 0.058 1982 0.437 0.040 1.548 0.296 0.040 1.344 0.099 0.153 1.104
X1y 0.125 0.036 1.133 —0.124 0.027 0.883 0.250 0.028 1.284 0.157 0.011 1.170
Constant x  —5.918  0.086 0.003 —5.158 0.206 0.006 —-9.314 0.239 0.000 —9.707 0.772  0.000

1 N means the value was eliminated because its B value is too small; indexes which eliminated all values in four
years are not included in this table.

Table 9. Results of BLRM of Construction Land.

2000 (ROC = 0.932)

2005 (ROC = 0.929)

2010 (ROC = 0.924)

2015 (ROC = 0.979)

Variable
B S.E. OR B S.E. OR B S.E. OR B S.E. OR
X1 —0.220 0.035 0.803 —0.162 0.031 0.851 —0.214 0.032 0.807 —0.129 0.031 0.879
X3 —0.220 0.034 0.803 —0.302 0.032 0.739 —0457 0.043 0.633 —0.139 0.025 0.870
Xy —4.219 0.104 0.015 —3.786 0.088 0.023 —3.748 0.086 0.024 —0.035 0.029 0.965
X5 0.113 0.030  1.120 N1 N N —0.080 0.030 0.923 N N N
Xg 2.373 0.115 10.728 2.709 0.123 15.008 2.714 0.121  15.091 2.223 0.200 9.238
X9 N N N N N N —0.569 0.189 0.566 —0.521 0.227 0.594
X10 —0.709 0.035 0492 —0.710 0.033 0492 —0.680 0.032 0.506 —0.123 0.007 0.884
X1 0.319 0.042 1376 0212 0.046 1.236 N N N —0.493 0.206 0.611
X14 —0.244 0.040 0.783 —0.240 0.038 0.787 —0.155 0.032 0.856 0.091 0.072 1.095
X15 N N N N N N —0.267 0.038 0.766 —0.305 0.241 0.737
X16 N N N 0.131 0.042 1.139  0.296 0.040 1.344 N N N
X17 0.215 0.029 1240 0.225 0.028 1.252  0.250 0.028 1.284 0.019 0.009 1.019
Constant «  —10.318 0.163  0.000 —10.004 0.156 0.000 —9.314 0.239  0.000 —-2.167 0.685 0.115

! N means the value was eliminated because its § value is too small; indexes which eliminated all values in four
years are not included in this table.
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3.3.2. Driving Factors Analysis of Main Land Types
(1) Driving factors analysis of forestland

According to results of the BLRM (Table 5), the main driving factors of spatial distribution of
forestland in 2000 were basic farmlands preservation policy (xg), nature reserve policy (xy), distance
to rural settlements (x4) and elevation (x11). The coefficient f and OR value of xg were the largest,
i.e., 1.375 and 3.956 respectively, and the p and OR of xg were —0.624 and 0.536 respectively. This
indicated that the forestland was mainly distributed outside the basic farmlands and inside the nature
reserves. The coefficient of x4 (8 = 0.535, OR = 1.708) and x17 (8 = 0.310, OR = 1.364) indicated that
the distribution of forestland was positively correlated with the distance to the rural settlement and
elevation. In addition, the distance to a main road (x7), distance to a rural road (x;), distance to a town
(x3) and soil organic matter (x13) had smaller influences on the spatial distribution of forestland.

In 2005 and 2010, the main driving factors were basic farmlands preservation policy (xg), distance
to the rural settlement (x4) and elevation (x17). The influence of nature reserve policy (x9) decreased
with the reduction of coefficient 5. However, there was still a large influence of xg, x4 and x71. The xg
(8 =1.857,1.601; OR = 6.407, 4.959), x4 (B = 0.600, 0.562; OR = 1.821, 1.753) and x1; (B = 0.530, 0.566; OR
=1.699, 1.761) showed a strong positive relationship with the distribution of forestland.

In 2015, the distribution of forestland was mainly affected by basic farmland preservation policy
(xg) and nature reserve policy (x9). The B and OR of xg were the largest, i.e., 2.257 and 9.553 respectively.
The B of xg was —0.589 and the OR was 0.555. The forestland was well protected by nature reserves,
and mainly distributed outside the basic farmland areas (Table 5).

In short, the spatio-temporal change of forestland was mainly affected by the basic farmland
preservation policy, nature reserve policy, distance to the rural settlement, and elevation from 2000
to 2015. Basic farmlands and natural reserves are policy factors. Basic farmlands limit the scope of
high-quality arable land, and have very small probability of being transfered to other land-types.
Exploitation and utilization are prohibited in nature reserves. The Mengsuo Longtan and Sanfozu
County Nature Reserve, with 50.48 km? of protected forests, limits external interference. However, the
impact of nature reserves is not so obvious. The distribution of forestland has positively correlated
with distance to the rural settlement and elevation, which is prone to distribution in regions which
are far from rural settlements. This mainly because rural settlements and high-quality arable land are
usually distributed in regions which are flat and adjacent, and the areas far from rural settlements are
less affected by humans. Meanwhile, low altitude areas where near rivers are planted with rubber.
Forestland was distributed in the high mountains where less interference from human beings occurs.

(2) Driving factor analysis of cultivated land

From 2000 to 2015, the spatial distribution of cultivated land was mainly affected by the basic
farmlands preservation policy (xg), nature reserve policy (x9), distance to a rural settlement (x4) and
to a rural road (x;), although the effect of each variable was different. The absolute value of 8 of xg
were the largest, with —1.995, —2.156, —1.813, and —2.074 in these four years, indicating that the basic
farmlands preservation policy strongly determined the distribution of cultivated land. The B of xg
(0.843, 0.882, 0.848, 1.332) indicated that the distribution of cultivated land was also affected by the
nature reserve policy, and the influencing degree increased in 2015. According to the 8 of x4 (—0.552,
—0.458, —0.514, —0.057) and x;, (—0.499, —0.337, —0.238, —0.662), the distribution of cultivated land
was negatively correlated with the distance to a rural settlement and to a rural road. There were
significant differences in influence of these four factors. Based on the size of B and OR, when the
factors changed, the influence is: xg > x9 > x4 > x5 (Table 6).

To summarize, the spatio-temporal changes of cultivated land were mainly determined by the
policy of basic farmlands and nature reserves, and the distance to a rural settlement and to a rural road.
The first two factors have the greatest influence. Liu [33] showed that urban expansion and regional
economic development played a principle role in the decrease of cultivated land. But since the State
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Council approved “Notice on the Guidance on Basic farmlands Protection in the Country” in 1992, and
issued “Regulations on the protection of basic farmland” in 1994, the delineation of basic farmland
preservation areas has been carried out nationwide, implementing extremely stringent protection
regulations. Policies play a decisive role in the distribution of cultivated land. Nature reserves forbid
farming, and the extent of this restriction has become more and more forceful in recent years. Other
social factors, such as the distance to a rural settlement and to a rural road have a strong influence
on farmlands. The distribution of cultivated land is negatively correlated with them because of the
effect of accessibility, tending to distribute in regions close to the residential areas and roads. Liu [34]
studied the driving forces of farmland change in Nanjing, concluding that the distribution of cultivated
land was related to the distance to rural settlements and roads. Spatial distance has always been the
main factor affecting the behavior of farmers. The expansion of rural settlements, roads and other
construction lands accelerates the change rate of cultivated land. Farmers tend to plant crops in regions
which are closer to residential zones or which have good accessibility. Until 2015, the influence of
distance to rural settlements reduced, and that of distance to rural roads increased. This means that
the improvement of traffic conditions and rural roads provides more convenience for farming and the
transportation of agricultural fertilizers and products.

(38) Driving factors analysis of rubber plantation

In 2000, the spatial distribution of rubber plantations was positively correlated with the basic
farmlands preservation policy (xg), with the highest f and OR (2.805, 16.528). Rubber plantations
showed a preference for distribution outside basic farmlands (Figure 2a). According to the 3 of
elevation (x11, B = —1.973), population (x5, = —1.520), and soil type (x14, B = —1.257), the spatial
distribution of rubber showed a negative relationship with x11, x5, and x14. This implies that rubber
plantations tended to be distributed in low altitude areas with low population densities, with the
additional requirement of good soil type.

In 2005, as in 2000, the spatial distribution of rubber plantations was negatively correlated with
elevation (x11, B = —2.579) and soil type (x14, B = —0.606). In addition, it was negatively correlated
with distance to river (x4, § = —0.573), and positively correlated with distance to a town (x3, B = 0.748).
Rubber plantations tended to be distributed in regions which were close to rivers but far from towns.

In 2010, the spatial distribution of rubber plantations was negatively correlated with elevation
(x11, B = —2.805), the basic farmlands preservation policy (xs, B = —1.016), and the distance to a river
(x16, B = —0.652). It was positively correlated with annual mean precipitation (x5, § = 0.999) and the
distance to a town (x3, f = 0.910). Areas with abundant rainfall which were far from towns tended
to be planted with rubber. The negative correlation with xg indicates that rubber plantations were
distributed in areas with coding “0”, meaning that part of the rubber even occupied farmlands with
large-scale planting (Figure 2a).

In 2015, the basic farmland preservation policy (xs, B = —1.445) and soil type (x14, B = —0.634)
played important roles in the distribution of rubber plantations. It indicated that rubber occupied part
of basic farmlands where the soil conditions were suitable (Table 7).

In short, from 2000 to 2015, there were fluctuations in the driving factors of the spatial distribution
of rubber plantations. The main reason was that the planting scale of rubber plantations increased over
these fifteen years. It had a small planting area in 2000; then, the scale increased dramatically in 2005
and 2010, and its extent was mitigated in 2015. Therefore, the most representative variables in 2005 and
2010 were used to explain the characteristics of the spatial distribution of rubber. These changes were
mainly affected by elevation and distance to a town and to rivers. In some cases, the basic farmland
preservation policy, annual rainfall, and soil types were also important driving factors. Ray [35] proved
that the climate was an important factor affecting the distribution of rubber plantations. In general,
humid climate conditions are conducive to the growth of rubber, and the areas with a deficit of soil
water will limit its growth [36]. Areas of low elevation have a good condition with water, heat, and
light, which is more appropriate to cultivating rubber. Therefore, rubber plantations will tend to be
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distributed in low-altitude areas that are close to the rivers and have enough precipitation and water
(Figure 2a). Changes of soil type need a long time, so this may have a smaller influence than other
climate factors [37]. The species distribution not only depends on the natural environment, but also
on land use, cultural customs, and other social characteristics. Rubber plantations are different from
cultivated land. Their management is more extensive, so they show a distribution which is similar to
that of natural forest. In consideration of farmers’ behavior, the regions close to residential zones will
focus more on farmlands, so rubber has to be distributed in areas with suitable transportation. But
with large-scale planting, part of rubber occupies high-quality farmlands as well.

(4) Driving factors analysis of tea garden

In 2000, the factors affecting the spatial distribution of tea gardens were mainly basic farmland
preservation policy (xg, p = —1.460), distance to a main road (x;, f = —0.972), population (xs,
B =—0.908), and distance to a rural road (x, p = —0.875). They all showed a negative relationship,
indicating that tea gardens occupied some basic farmlands and tended to be distributed in areas near
to roads and with fewer human activities. This was positively correlated with elevation (x11, f = 0.752),
indicating that tea gardens tended to be distributed at high altitudes.

In 2005, the factors changed somewhat. The main driving factors were the basic farmland
preservation policy (xg, p = —1.210), elevation (x11, = 0.880), distance to the rural settlements (x4,
B =—0.752), and distance to a town (x3, B = —0.691). The spatial distribution of tea gardens was
negatively correlated with these, except for elevation.

In 2010, the main driving factors were distance to a rural settlement (x4, f = —3.748) and basic
farmland preservation policy (xg, f = 2.714). With the development of planting technology for tea
gardens, the restriction of distance to a town (x3) and elevation (x;1) decreased.

In 2015, the nature reserve policy (x9) became a main factor, and showed a positive correlation
with the spatial distribution of tea gardens. The distance to a rural settlement (x4) was not the main
factor, along with the development of transportation and planting technology (Table 8).

In short, as with rubber plantations, the factors affecting the spatial distribution of tea gardens
were different from 2000 to 2015. It was not obvious in terms of the characteristics of spatial distribution
in 2000, because of the small planting scale of tea gardens in 2000. So, the main driving factors in
2005 and 2010 were used to explain the characteristics of the spatial distribution of tea gardens. The
spatio-temporal changes of tea gardens in Ximeng County were mainly affected by distances to rural
settlements and the basic farmland preservation policy. The influence of elevation and distance to a
town has reduced in the last two years. Domestic scholars studied the ecological sustainability of tea
gardens. For example, Jin [38] took natural conditions to evaluate the ecological sustainability of tea
gardens in Lincang (southwest of Pu’er city in Yunnan). He thought that elevation (1300-1800 m) and
the presence of terraced slopes (below 30 degrees) yielded the most suitable areas for tea growing.
Yang [39] analyzed the effect of urban centers, roads, and other social factors to discuss the distribution
of tea gardens in Pu’er, and showed that natural site conditions were the decisive factors for tea
planting. Nevertheless, this study suggests that although the distribution of tea gardens is strongly
related to natural factors such as elevation, socio-economic factors have become the main driving
factors because of the increase of planting scale in recent years. Relatively speaking, the requirements
of management and maintenance of tea gardens are higher than those of rubber plantations. Tea
gardens are mainly distributed in areas close to towns and rural settlements affected by the reachability
of farmers’ management. And the reduced costs of tea gardens associated with the development of
roads and technology in recent years. At the same time, the policy of basic farmlands and nature
reserves also places strong restrictions on the distribution of tea gardens, in spite of the fact that some
basic farmlands are occupied by tea gardens and the increasing market demand (Figure 2a).
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(5) Driving factors analysis of construction land

In 2000, 2005, and 2010, the main driving factors of the spatial distribution of construction land
were distance to a rural settlement (x4), basic farmland preservation policy (xg), and slope (x1p).
Additionally, nature reserve policy (x9) also played a key role in 2010. In BLRM, the coefficient of
x4 (B=—4.219, —3.786 and —3.748), xg (B = 2.373,2.709 and 2.714), and x1¢ (8 = —0.709, —0.710 and
—0.680) meant that the distribution of construction land was negatively correlated with distance to a
rural settlement and slope, while being positively correlated with basic farmland preservation policy.
And the size of 8 revealed that when these factors changed, the influence was: x4 > xg > x19.

In 2015, the main driving factors were the basic farmland preservation policy (xg, f = 2.223),
nature reserve policy (xg, f = —0.521), and elevation (x11, B = —0.493). The basic farmland preservation
policy maintained a strong positive correlation. Nature reserve policy and elevation showed a negative
correlation. The data indicated that construction land tended to be distributed in low altitude areas
and was influenced by the nature reserves (Table 9).

In short, the spatio-temporal change of construction land in Ximeng County is mainly affected
by the distance to a rural settlement, basic farmland preservation policy, and slope. Construction
land is negatively correlated with distance to a rural settlement. On the one hand, rural settlements
are a part of construction land. The expansion of construction land is based on the original urban
and rural settlements, so construction land tends to be distributed in flat areas which are suitable for
the construction. On the other hand, with the increase in population, the development of roads and
commercial sectors, rural settlements are continuously expanding. Although the influence of basic
farmlands has decreased, it is also the main limitation of the expansion of construction land. Due to
the limitation of basic farmland protection policy which prohibits construction in basic farmlands,
construction land tends to be distributed in areas outside basic farmlands. Yang [40] carried out a
suitability assessment of construction land in mountainous regions. He thought that good conditions
for construction work existed where the slope was below 8 degrees, due to the steep slope in some
areas not only increasing the cost of construction, but also causing geological disasters. Due to
the destruction of the environment and other consequences, slope becomes one of the important
indicators for restricting the distribution of construction land. In recent years, the influence of nature
reserve policy and elevation have increased. Nature reserves prohibit human activities. In 2015,
the distribution of construction land was negatively correlated with elevation, which tended to be
distributed in low-altitude areas. The main reason for this is that the study area is located in a
mountainous area and is not suitable for the survival of mankind in a very high elevation region.
Furthermore, elevation has a close relationship with slope. The places with high altitude tend to have
steep slopes and are not suitable for construction.

Socio-economic factors and natural environment factors which related to the land-use
spatio-temporal change in Ximeng County are selected to established the BLRM. The results of the
study are same as those of Doorn [41] and Prishchepov [42], etc. In general, both natural environment
and socio-economic factors are the driving factors of land use change, but socio-economic factors have
a more direct influence than natural environment factors. There is a strong influence for most land
types by socio-economic factors, (e.g., policy and accessibility). However, natural environment factors,
(e.g., elevation and slope), only affect the spatio-temporal change of a certain land type notably in a
long period. Although the change of different land types shares some main driving factors in time and
space, there are quite a few differences in terms of influence.

3.4. Discussion of Research Frame and Prospect

As a whole, land-use spatio-temporal change and the approaches are very important research
directions. Lee [43,44] launched an innovative series of R packages, such as CARBayes and
CARBayesST, which can fit models with different spatio-temporal structures by Conditional
Autoregression Priors. These can help to realize spatio-temporal modeling of land use, such as
spatio-temporal structure, interaction, clustering, autoregression, and so on. Chen [45] established
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three scenarios and simulated the industrial structure and spatio-temporal evolution of Township
and Village Enterprise (TVE) on three scales. This can help to prevent the different development
problems of TVEs in Beijing. And Abercrombie [46] used the Hidden Markov Model (HMM) to
distinguish real land cover change from spurious land cover change in a classification time series
which showed that the HMM method provides label sequences that are more accurate. Accordingly,
Chen [47] revealed that the heterogeneity of land use change is complicated due to the multi-scale effect
of water-land systems, resources management, and interactions of land-use behavior and benefits.
Generally speaking, the spatio-temporal variation of land use and its related contents have become
an important research hotspot. Based on its complexity, multi-scale analysis, multi-method synthesis,
multi-viriate comparison, and multi-drivers influence will become the main ways to study land-use
spatio-temporal change in the future.

This study is also based on the frame of land-use spatio-temporal change, in combination with
driving factors. Land-use spatio-temporal change was analyzed by methods of land-use change rate,
land-use transition matrix, and spatial transition rates in Ximeng County from 2000 to 2015. A Binary
Logistic Regression Model was used to analyze the driving factors of land use change. Then, the main
driving factors were summarized by temporal panel data. This can also help to provide a good support
for government decision-making. In general, the research of LUCC is an intricate system of engineering.
It is a workable and explicable way using the principles of BLRM to investigate the possible effects of
the factors on land use change. And based on the results, future spatio-temporal evolution could be
simulated in the next study by some models, such as those discussed in above paragraphs.

4. Conclusions

(1) The main land types were forestland, dry cropland, and rubber plantations in Ximeng County.
In 2000-2015, artificial forest, such as rubber plantations, tea gardens, and eucalyptus forest,
were largely planted alongside the main rivers and roads in the central, southwest, mid-western,
mid-eastern, and northern areas of the county. Meanwhile, the area of natural forest and dry
cropland reduced. A large area of farmlands was converted to forestland by the “Grain for Green”
policy. Additionally, there was still a phenomenon of deforested-land reclamation elsewhere due
to the living pressures of farmers. The expansion of construction land occupied forestland and
dry cropland, and the construction such as the Second-cascade Hydropower Station in Nanhong
River and Fumunai Reservoir in Mengxu Town occupied forestland and dry cropland, thereby
increasing the area of waters.

(2) The driving factors of land use change had the common characters overall, but there were
multiple influences in different periods in Ximeng County. The land-use spatio-temporal change
in Ximeng County was mainly affected by policy (e.g., basic farmlands and natural reserve),
topography (e.g., elevation and slope), accessibility (e.g., distance to rural settlements) and
potential productivity (e.g., fertility, irrigation). Among them, policy factors are mandatory for
land use; the topography sometimes determines the foundation of human activities; accessibility
determines the convenience of human activities; the potential productivity of land determines the
output of artificial forests and cultivated land. In summary, socio-economic factors have faster,
stronger, and more direct influences than natural environment factors.

(3) A Binary Logistic Regression Model (BLRM) can analyze the driving factors of land-use
spatio-temporal change by determining non-continuous variables. It can handle the regression
problem of non-continuous variables by revealing the quantitative relationships between land use
changes and the driving factors at each scale level from a more microscopic point of view; then,
the variables and dependent variables are expressed as non-linear relationships to determine the
correlation between driving factors and land-use spatial distribution in a given period.
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