
sustainability

Article

Agricultural Water Productivity-Based
Hydro-Economic Modeling for Optimal Crop Pattern
and Water Resources Planning in the Zarrine River
Basin, Iran, in the Wake of Climate Change

Farzad Emami and Manfred Koch *

Department of Geohydraulics and Engineering Hydrology, University of Kassel, 34125 Kassel, Germany;
manfred_kochde@yahoo.com or kochm@uni-kassel.de
* Correspondence: farzad.emami@student.uni-kassel.de; Tel.: +49-176-7270-2711

Received: 13 August 2018; Accepted: 25 October 2018; Published: 30 October 2018
����������
�������

Abstract: For water-stressed regions/countries, like Iran, improving the management of agricultural
water-use in the wake of climate change and increasingly unsustainable demands is of utmost
importance. One step further is then the maximization of the agricultural economic benefits, by
properly adjusting the irrigated crop area pattern to optimally use the limited amount of water
available. To that avail, a sequential hydro-economic model has been developed and applied to
the agriculturally intensively used Zarrine River Basin (ZRB), Iran. In the first step, the surface
and groundwater resources, especially, the inflow to the Boukan Dam, as well as the potential crop
yields are simulated using the Soil Water Assessment Tool (SWAT) hydrological model, driven
by GCM/QM-downscaled climate predictions for three future 21th-century periods under three
climate RCPs. While in all nine combinations consistently higher temperatures are predicted, the
precipitation pattern are much more versatile, leading to corresponding changes in the future water
yields. Using the basin-wide water management tool MODSIM, the SWAT-simulated water available
is then optimally distributed across the different irrigation plots in the ZRB, while adhering to
various environmental/demand priority constraints. MODSIM is subsequently coupled with CSPSO
to optimize (maximize) the agro-economic water productivity (AEWP) of the various crops and,
subsequently, the net economic benefit (NEB), using crop areas as decision variables, while respecting
various crop cultivation constraints. Adhering to political food security recommendations for the
country, three variants of cereal cultivation area constraints are investigated. The results indicate
considerably-augmented AEWPs, resulting in a future increase of the annual NEB of ~16% to
37.4 Million USD for the 65%-cereal acreage variant, while, at the same time, the irrigation water
required is reduced by ~38%. This NEB-rise is achieved by augmenting the total future crop area
in the ZRB by about 47%—indicating some deficit irrigation—wherefore most of this extension will
be cultivated by the high AEWP-yielding crops wheat and barley, at the expense of a tremendous
reduction of alfalfa acreage. Though presently making up only small base acreages, depending on
the future period/RCP, tomato- and, less so, potato- and sugar beet-cultivation areas will also be
increased significantly.

Keywords: agro-economic water productivity; hydro-economic modeling; CSPSO-MODSIM;
net economic benefits; optimal crop pattern; climate change; Zarrine River Basin; Iran

1. Introduction

Food and water security will pose a great challenge in the near future due to rapid growth of
population and often unsustainable water usage. The renewable water resources per capita in the
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Middle East and North Africa (MENA), as the most water- scarce regions of the world, are expected to
decline from 750 to 500 m3 by 2025, while the water withdrawals will increase by up to 50% [1].

Natural and anthropogenically induced climate change will act as an additional external driver
threatening the future food security by exacerbating the water shortage, and, concomitantly, the
decrease of crop production, as temperatures and irrigation water requirements increase [2]. All of this
holds particularly for the Middle East, including Iran, where groundwater reserves diminish at an
alarming rate [3].

Improving the management of agricultural water use is of utmost importance, as irrigation
water uses account for 70% of the global freshwater withdrawals, particularly due to the fact that
the irrigated areas have dramatically increased in the 20th century, providing now about 40% of the
world’s food [4,5]. In addition, agriculture has also an important role in the economy, in terms of the
Global Gross Domestic Product (GDP), especially in developing countries, although its share has been
decreasing over the last twenty years [6]. Thus for Iran the GDP contribution of agriculture decreased
from 23 to 9% [7], although the irrigated lands increased by 17% between 2003 and 2008 [8], confirming
the low economic productivity of agriculture. Moreover, about 90% of the food demands are derived
from agriculture supplies in Iran, but with a cost of exploitation of 92% of the available freshwater
resources [5], which indicates that the economic agricultural return on water use is outstandingly low
in Iran.

The agricultural production will also need to be increased globally by 70% up to year 2050, due to
a 40%-projected population increase [9]. The situation is even worse for developing countries where
the food production should be doubled by that time [10]. FAO predicts that only 10% of the global
production growth (21% in developing countries) can be achieved by agricultural land expansions
with the remainder coming from crop yield enhancements [11].

For a long-term sustainable water resources management for agriculture it is important to quantify
and evaluate the possible impacts of climate change scenarios on the future water availability and crop
production potentials. Previous publications evaluated the impacts of climate change on the water
resources using hydrologic simulation models that are based on GCM-predictions [12,13]. These and
numerous other studies indicate that climate change will have undeniable impacts on the hydrology,
namely, streamflow changes in a basin, which ultimately affects the water availability there.

For example, the impacts of climate change on the crop yield, food security, and crop water
demands in sub-Saharan Africa and the North China Plain are investigated by Chijioke et al. [14] and
Mo et al. [2], respectively, using different crop prediction and simulation models. These studies show
that climate change may have either beneficial or harmful effects on the crop extent and productivity
in irrigated or rain-fed agricultural lands. Other recent studies focus on the analyses of the impacts of
a changing climate and agricultural demands on the water management and crop production [15,16]
and indicate that climate change will lead to hydrologic changes and thus alter crop yields and crop
water productivity (CWP), so that some adaptation strategies are required.

Over recent years, many publications on optimizing crop pattern and water allocation to maximize
crop productions and economic benefits and to enhance the agricultural water management have
appeared. A multi-crop planning (MCP) optimization model that is based on a nonlinear programming
(NLP) algorithm was utilized for cropping pattern and water allocation by Bou-Fakhreddine et al. [17]
to maximize the net financial return. Firstly, two linear formulations and a relaxed version
were established from the NLP and then the MCP problem is solved by implementing two
meta-heuristic algorithms, Simulated Annealing (SA) and Particle Swarm Optimization (PSO).
Fazlali and Shourian [18] optimized water allocation by considering optimum cropping pattern
for the Arayez plain in Iran, using the Shuffled Frog Leaping Algorithm coupled with MODSIM [19]
and employing irrigations depths and cultivation areas as decision variables. However, the authors
did not consider the CWP index, impacts of climate change, and management of the conjunctive water
uses. In fact, few of these issues have been addressed by Fereidoon and Koch [20] who employed a
MODSIM-LINGO-PSO algorithm to maximize the economic benefits of Karkheh Dam in Iran, in terms
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of water allocation for agriculture, under the impact of future climate change. The authors separated
the optimization into a three-stage procedure, wherefore first the MODSIM allocates the available
water of Karkheh Dam, with its inflow being simulated by the SWAT-hydrological model. Then, a
linear optimization to maximize the crop yields in response to different assumed levels of available
water is carried out, and, finally, a PSO algorithm is used to maximize the economic return.

The purpose of the current research is to jointly optimize the crop pattern and irrigation planning
under climate change- and cropping pattern scenarios and so to maximize the net economic agricultural
benefits and increase the crop production, altogether considering the constraints of limited available
water resources. This objective is achieved by using an integrated hydro-economic model that consists
of a combination of the CSPSO (Constrained Stretched Particle Swarm Optimization) method and
MODSIM water management and planning model as a simulation-optimization approach.

The research area is the Zarrine River Basin (ZRB) belonging to the basin of Lake Urmia (LU),
which has been shrinking tremendously over the recent decades. The impacts of climate change
scenarios on the water resources and the crop production will be evaluated while considering the
crop pattern scenarios for the irrigated croplands using the available water supply sources, namely,
the Boukan Dam as the most important water management infrastructure of the region, as well as
inter-basin discharges from river reaches and groundwater shallow aquifers.

To simulate the basin’s water resources, i.e., the inflow of the Boukan Reservoir, interbasin flows,
groundwater recharges, and other hydrologic variables of the ZRB in response to the changing climate,
future (up to year 2098) downscaled climate predictors (min. and max. temperatures, precipitation)
are taken from the recent study of Emami and Koch [13], and entered into the river basin hydrologic
model, SWAT, which is firstly calibrated and validated for the discharge and then for the crop yields by
adjusting the crop parameters and crop water requirements. Next, a water planning and management
simulation model is prepared, using MODSIM for managing the conjunctive agricultural water uses
(Q) in the river basin, by respecting the water-distribution priority constraints imposed for the basin as
a whole. The model is then adjusted to allocate the available water to the major crop arable areas of
the ZRB based on the crop water productivity (CWP) and the net economic benefit (NEB) of the crop
production, both of which are combined in an index of agro-economic water productivity (AEWP).
Finally, to enhance the crop production and the economic efficiency of the MODSIM-recommended
water management policy, a Constrained Stretched Particle Swarm Optimization (CSPSO) algorithm is
developed and fully coupled with the MODSIM in order to maximize the total NEB of the ZRB as the
objective function and, consequently, the crop production, based on the AEWP- and Q-combination.
The optimal arable crop areas and corresponding irrigation schedules are determined while using
this CSPSO-MODSIM model under the constraints of arable areas for the irrigation plots and three
different cereal crop pattern scenarios when considering three impact scenarios of climate change
(RCP45, 60, and 85) for three future periods (near, middle, and far).

2. Study Region and Data

2.1. The Zarrine River Basin

The Zarrine River is the main inflow source of the LU, the largest inland wetland of Iran which
used to be the largest lake in the Middle East before it dwindled significantly in recent decades, with
detrimental effects on the surrounding ecosystems of the lake. The Zarrine River Basin (ZRB) is located
in northwestern Iran, south of LU between 45◦46′ E to 47◦23′ W longitude and 35◦41′ S to 37◦44′ N
latitude (see Figure 1). The total length of the main channel is about 300 km and most of its course
stretches through a mountainous area. The basin covers an area of about 12,000 km2, including parts
of Kurdestan and the West and East Azarbaijan provinces, wherefore its larger portion is mountainous
with an elevation of up to 3297 m and the smaller one is rather plain with an elevation going down to
1264 m. The big cities of the basin are namely Miandoab, Shahindej, Tekab, and Saghez.
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The climate of the region varies from semi-wet cold or wet-cold in the mountain areas to semi-dry
in the vicinity of LU. The average annual temperature varies between 8 and 12 ◦C while the annual
precipitation (rain and snow) in the basin varies between 200 mm/year in the lower catchment area
and 800 mm/year in the mountains. The maximum snowfall is recorded mostly in the south and west
of the basin with snow heights varying from 5 to 63 mm/year.

The Boukan Dam/Reservoir is the largest operating dam of the ZRB, with a gross storage
capacity of 760 Million m3 (MCM) and a live storage capacity of 654 MCM. 51% of its water is used
for agricultural irrigation and the remainder for the supply of drinking and industrial water and
environmental rights (826 MCM/year totally).

The agricultural areas within the basin cover a total area of 74,318 ha, all irrigated by both
groundwater and surface water resources, including water from the Boukan Reservoir, as the
crop-growing season there is mostly during the dry months between spring and autumn.

The current applied irrigation efficiency is about 38% for the areas that are irrigated by the surface
water from the dam and the river, and 50% for the areas using groundwater resources; all numbers that
are lower than the averages of most developing countries (45%) and developed countries (60%) [21],
indicating a non-efficient use of surface water due to outdated irrigation methods and systems with a
large loss of water through evaporation and seepage. However, advanced irrigation technologies that
enhance the irrigation efficiency, can have negative effect on river flow, as a higher efficiency rarely
decreases water consumption, which are usually associated with a reduction in recoverable return
flows and an increase in crop yields and crop transpiration [22,23].

It should also be noted that the area of irrigated land has been increased by 36% from 1976 to
2013 [24], and this in spite of a catastrophic 88% decrease of the LU surface and ensuing environmental
and ecological crises.

The irrigated croplands of the ZR Basin are demonstrated in Figure 2, including the current
irrigated croplands of the ZRB (green) and the future agricultural development plan of ZRB, namely
Rahimkhan (RK) Plain (light green) located in the downstream of the Boukan Dam.
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The main agricultural crops of the ZRB as well as the RK include alfalfa (ALFA), apple (APPL),
barley (BARL), potatoes (POTA), sugar beet (SGBT), tomatoes (TOMA), and wheat (WWHT), and
these are the ones that are considered in this study.

2.2. Data

The data needed for this study in the ZRB is gathered from different available sources. Most of
the data is required for the set-up of the SWAT-hydrologic model, namely, various geospatial maps
and hydro-climate time series.

The Digital Elevation Map (DEM) with a spatial resolution of 85 m was produced by the Iranian
surveying organization. The land-use classification map of the basin, demonstrating the situation in
year 2007, was obtained from the Agricultural Statistics and the Information Center of the Ministry of
Agriculture [25] and it has a resolution of 1000 m and distinguishes 10 land use classes. The soil map
of the watershed was extracted from the Food and Agriculture Organization (FAO) digital soil global
map, with a spatial resolution of 10 km of and eight types of soils within two layers.

The daily climate input data includes maximum and minimum temperatures and precipitation
over the period of 1987 to 2015 and was obtained from the Iranian Meteorological Organization
(IRIMO) for six synoptic stations that were located in or close to the ZRB (see Figure 1). Missing data
in the records were filled in using the inverse distance weighting (IDW) interpolation method. As the
daily data for other climate variables, including solar radiation, wind, and relative humidity, were
unavailable, they were generated using the weather generator (WGEN) module of SWAT model based
on monthly averages of the synoptic stations of Iran.

Daily streamflow data for six gauging stations of the Zarrine River (Figure 1) were obtained from
the Iran Ministry of Energy for the period 1987 to 2012.

The crop and irrigation data, namely, crop irrigation sources, planting, irrigation and harvesting
dates, or water demands were taken from Ahmadzadeh et al. and MOE [22,26]. The observed crop
yields are gathered from MOA [25] and the additional economic crop data were gathered from SCI
and MOA [27,28].
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3. Methodology: Development of an Integrated Hydro-Economic Model for Optimal Water
Management and Crop Pattern

3.1. Basic Concepts of an Optimal Hydro-Economic Model

Generally, the greater the water-use productivity and economic efficiency, the lower are the
conflicts over scarce water resources and the additional financial and environmental burdens in an
agriculturally exploited basin, like the ZRB. Enters the fundamental concept of hydro-economics,
which stipulates that water demands can be represented as value-sensitive water demand functions, so
that water-uses at different locations and times have varying economic benefits [29]. The next step is
then to set up a hydro-economic model, which is a solution-oriented model for investigating the water
management tradeoffs and improving the economic efficiency of water allocation by incorporating
the economic value of agricultural water in the heart of the water management model. This model
represents a spatially distributed water resources system, infrastructure, management options, and
economic values comprehensively [29]. In the third and final step, such a hydro-economic model may
be applied to simulate agricultural crop pattern strategies, with the goal to find that optimal multi-crop
pattern that somehow maximizes the economic crop profits, while adhering to the various constraints
of the limited water resources, hydrology, and various environmental regulations. Mathematically,
this amounts to the set-up of a classical constrained (nonlinear) optimization problem, wherefore
(1) the forward problem, i.e., the objective or cost function, is computed by the hydro-economic model,
simulating the hydrological constraints by classical hydrological models, and (2) the minimization of
that objective function is done by some kind of an optimization routine (e.g., [20]).

In this section, an innovative hydro-economic model for the ZRB is developed using such a
simulation-based optimization approach to coordinate multiple factors, including water allocation,
crop production pattern, and economic gains. More specifically, the optimization problem is defined
as a constrained optimization (CO) problem which searches for the optimal allocation of irrigated crop
pattern under the constraints of the limited water resources and other demands that should be satisfied.
Eventually, the objective of the optimization search algorithm is to maximize the agro-economic
productivity, i.e., the economic net benefit of a crop per unit water use, given that the latter is limited
in the study region and it may be even more so in the future under the impacts of imminent climate
change there [13].

The decision variables of the optimization are the cultivated areas of major crops for a
particular, politically given combination of required crop distribution and agricultural demand regions.
The constraints of the optimization algorithm in this study are defined based on the allowable range of
arable areas and cereal crop pattern limits (for more details see Section 3.8).

3.2. Modules of the CSPSO-MODSIM Integrated Hydro-Economic Model

The individual modules (hydrological, water management, agro-economic) of the hydro-economic
model are developed in this research while using different simulation models (GCM, QM, SWAT,
MODSIM) that were bound together with an optimization method (CSPSO). The flow chart of the
connection of the models and processes in the integrated hydro-economic model is presented in
Figure 3, from which the main steps are retrieved as follows:

- Predicting climate change weather scenarios using CMIP5-GCMs predictors that are subsequently
downscaling by QM.

- Simulating the future hydrologic changes and crop yields with the calibrated SWAT river basin
hydrological model using the QM climate projections as input drivers.

- Setting up the basin-wide water management and planning module, MODSIM, to allocate the
future agricultural water uses that are based on environmental/demand priority constraints.

- Optimizing the crop arable areas and the related irrigation schedule using the agricultural water
productivity- based hydro-economic model, CSPSO-MODSIM.
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Details of each of the above modeling steps are described in the following sub-sections.Sustainability 2018, 10, x FOR PEER REVIEW  7 of 31 
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3.3. Predicting Future Climatic Scenarios by Updated Quantile Mapping

Regarding the projections of future climate change scenarios, they are mostly taken from Emami
and Koch [13] who used several climate models (GCMs) of the CMIP5 archive [30], as mentioned in
the fifth IPCC report [31] to select the most suitable one based on a climate model’s skill to simulate
the past climate in terms of minimum and maximum temperatures and precipitation. For assessing
the impacts of climate change on the regional scale, the climate predictors of the selected GCM models
were then downscaled using a recently-coming-to-the-fore statistical downscaling method, namely,
QM (Quantile Mapping) [32,33], which proved to have better prediction performances than the more
commonly used classical statistical downscaling model (SDSM). We forego a detailed description of
the QM-downscaling method and refer the reader to [13].

In the first step of the QM method, the monthly biases of the future GCM-simulated climate
variables between year 2020 to 2098 are removed while using a trend-preserving bias correction,
namely, the ISI-MIP approach [32]. In this approach, the GCM-simulated temperatures (min. and max.)
are corrected applying an additive correction factor CTj and for the precipitation and a multiplicative
correction factor CPj to each month of a year (j = 1, . . . , 12) of the GCM-simulated precipitation. In the
second step a new, updated quantile mapping method [33] is used to correct the daily biases of the
temperatures and precipitation in each month (e.g., all Januaries) using EDCDFm and CNCDFm
CDF-(cumulative distribution function) matching methods, respectively. Emami and Koch [13] proved
that these QM-variants perform better than other statistical downscaling methods in removing biases
in the GCM-climate predictors for the study region by delivering much better correlations with the
observed predictands (temperatures and precipitation) at the high-resolution, local scale, and of all
this without almost no extra computational costs.
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3.4. SWAT-Simulation of the Hydrological Processes in the Agricultural Watershed

3.4.1. Model Setup and Calibration

The Soil Water Assessment Tool (SWAT) model is a physically-based, river basin-scale, time
continuous simulation model that operates on a daily time step. Although this model has originally
been developed to mainly simulate the impacts of land management practices in large and complex
watersheds [34], it is widely used as a long-term rainfall-runoff model and efficient hydrologic
simulator of water quantity and quality, so that it has increasingly being used to investigate climate
change impacts on agro-hydrological systems [12,35].

The SWAT model requires quite a wide range of input data, as described in Section 2.2.
To represent the large-scale spatial heterogeneity of the study basin more precisely, the SWAT modeled
domain, i.e., the major basin, is divided into several sub-basins, which are usually delineated with
the help of the topographic DEM using the ARCSWAT extension of ARCMap program. Then, each
sub-basin is parameterized using a set of HRUs (Hydrologic Response Units), which are based on
a unique combination of soil and land cover and management. For the SWAT-model of the ZRB,
11 sub-basins with a total of 908 HRUs have been defined.

After the parameterization of the SWAT-model’s input data entries is done by using the stochastic
sequential uncertainty fitting version 2 (SUFI-2) optimization algorithm, embedded in the SWAT-CUP
decision-making framework [36]. Various kinds of objective functions as measures for the goodness of
the fit of the modeled to the observed streamflow are available in the SUFI-2 algorithm, wherefore
Krause et al. [37] indicates that for a reliable calibration and validation of the model, a combination
of different efficiency criteria, such as the coefficient of determination R2, the Nash–Sutcliff efficiency
coefficient NSE, and bR2 (b is the slope of the regression line between observed and simulated
streamflow), should be considered.

In the present application, the calibrated input parameters of the model have been taken from
Emami and Koch [13], where further details of the calibration/validation as well as of the model setup
are presented. Basically, the optimal range of model input parameters was determined hierarchically
sub-basin-wise, from the utmost upstream sub-basin (11) outlet down to the main outlet of the basin.

Based on the SUFI-sensitivity analysis, 24 model parameters were shown to be sensitive
parameters for affecting the stream discharge, out of which the SCS curve number (CN2), the
groundwater delay time (GW_DELAY), and the moist bulk density of the soil (SOL_BD) turned
out to be the three most sensitive variables. With these optimized parameters, good fits of the modeled
to the observed discharges were obtained at the six streamflow stations (sub-basin outlets) for the
calibration (1998–2012) and the validation (1991–1997) periods, with average R2 > 0.7, NSE > 0.6 and
bR2 > 0.5, which, according to the classification that was proposed by Moriasi et al. [38], is considered
to be satisfactory. As the SUFI-computed uncertainty of the calibrated model that is quantified by
the P- and the R-factor (see [13,39]) has average values of R > 0.75 and P close to 1, there is enough
confidence in the calibrated SWAT-model for the ZRB.

3.4.2. Predicting the Impacts of Future Climate Change on the Hydrologic Cycle

It is important to evaluate the hydrologic responses to future changes of climate for improving
adaptive water management, as the variability of precipitation and temperature in terms of trends
and extremes will eventually increase the likelihood of severe and irreversible negative impacts on
the ecosystem, including lakes and rivers. To that avail, the future downscaled climatic scenarios i.e.,
the QM-bias corrected predictions of the minimum and maximum temperatures and precipitation are
employed as weather input drivers of the calibrated basin-wide hydrologic simulation model, SWAT.
As a result, the future hydrologic cycle and the available water resources of the ZRB under the climate
change can be assessed, especially the input of the dam, the Inter-basin discharge of the river reaches,
the groundwater recharges and the withdrawals of the shallow aquifers.
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3.4.3. Crop Yield Simulation and Calibration of the Potential Crop Yield

The SWAT model is also capable of simulating crop productions and yields efficiently, as has
been shown in many publications (e.g., [40,41]). To do this in the ZRB, the current management
operations of the various crops there are specified initially in the SWAT model, together with the
corresponding planting and harvesting dates and the irrigation sources, based on information that
was given by Ahmadzadeh et al. [22]. The crop yields for seven major crops in the ZRB are then
calibrated by adjusting a set of effective parameters in the model, until the averages of the simulated
crop yields of the basin match those of the observed ones (gathered from MOA [25]) in a reasonable
manner. These simulated crop yields are then extracted from the SWAT file output.hru to represent the
potential crop yields of the ZRB. The reservoir characteristics, irrigation losses and essential demands
are considered through the water use management (.wus) and reservoir (.res) SWAT- data files.

3.5. Agro-Economic Water Productivity and Net Economic Benefit

For a better management of the future water resources in a water-scarce region, such as the
ZRB, it is necessary to make the water supply- and/or the irrigation system as efficient as possible in
economic and water resources perspectives. Because of the competition of the different stakeholders
for the scarce freshwater resources in the region, not only for agriculture, a paradigmatic policy shift is
required from (a) maximizing productivity per unit of area to (b) maximizing productivity or economic
value per unit of consumed water [42], as both the irrigated agriculture’s land base and the water
supplies are continuously being depleted and reallocated, in order to produce even more agricultural
crops. To achieve this policy shift, the net benefits of the water used, should be enhanced by prioritizing
more economic efficient crops i.e., higher productivity per unit of water, while the water use should be
constrained to the allocated water resources for agricultural water-use.

The crop-water productivity CWPc (kg/m3) is defined as the ratio of amount of crop yield that
is produced Yc (kg/ha) to the amount of water applied per unit crop area Qc (m3/ha) during the
crop’s production [43]. The next step is then to define the agro-economic water productivity AEWPc

(USD/m3) as the ratio of net total economic value of crop NEBc (USD) to the total amount of water
Qt

c (m3) supplied under the priority constraints that were provided by MODSIM (see following
subsection) [44]:

AEWPc = NEBc/Qt
c = [(Pricec × Yc − Costc) × Ac]/Qt

c = (Pricec × Yc − Costc)/Irrc (1)

where Pricec (USD/kg) is the selling price of the crop, Costc (USD/ha) is the total production costs of
the crop, Ac (ha) is the crop cultivation area, Irrc = Qt

c/Ac (m) is the irrigation water height, and the
other variables are as defined above.

Based on the definitions above, optimizing the water resources allocation can be an important
measure for increasing agro-economic water productivity AEWPc in areas where the water is scarce
like ZRB. In this study, a water management model for deficit irrigation is developed to determine
the allowable agricultural water, which at the first stage the potable, industrial, and environmental
water demands (essential demands) are supplied according to their higher priorities as a constraint
and then the remaining available water will be allocated to the agricultural water-uses, i.e., different
crop demands based on their AEWPs. Finally, for boosting the net economic benefits NEBc as the
ultimate objective of this study, the combination of agro-economic water productivity AEWPc and total
allocated water Qt

c is maximized through an optimization algorithm. As in Equation (1), the Pricec

and Costc are constant for each crop, the total crop economic benefit will also be increased.

3.6. MODSIM Water Resources Management and Planning Module

The MODSIM simulation model is a generalized river basin network model for developing
basin-wide strategies of short-term water management, long-term operational planning, drought
contingency planning, water rights analysis, and conflict resolution between different water
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users [19,45]. This model has enjoyed widespread application across the world to simulate operations,
as mentioned [20,46–48].

The core idea behind MODSIM is to represent a complex river basin system by a flow network
consisting of coupled sequences of nodes and links, with the former symbolizing storage components,
such as reservoirs and aquifers, points of inflow, demands, diversions, and river confluences, and the
latter representing river reaches, pipelines, canals, and stream-aquifer interconnections defining stream
depletions from pumping and return flows from seepage and other water applications. Further network
elements of the model consist of unregulated inflows, reservoir operating targets, consumptive and
instream flow demands, evaporation and channel losses, reservoir storage rights and exchanges,
and stream-aquifer modeling components. In addition, various surface and ground water resources
with their inter-relationships can be represented by highly nonlinear, non-convex, or discontinuous
equations [49]. Details on how each of the components is modeled and calculated in the model can be
found in Fredericks et al. [19].

The model sequentially solves a linear optimization problem within the confines of mass balance
throughout the network over the planning period by means of a highly efficient network flow
optimization (NFO) algorithm solved with the Lagrangian relaxation algorithm RELAX-IV [50].
More specifically, the following constrained flow optimization problem is solved for each time interval
(t = 1, . . . , T) over the planning horizon:

Minimize ∑
k∈A

ckqk (2)

Subject to

∑
k∈Oi

qk − ∑
k∈Oi

qk = bit ; for all nodes i∈N (3)

lk ≤ qk ≤ uk ; for all links k ∈ A (4)

where A is the set of all links in the network; N is the set of all nodes; qk is the integer valued flow
rate in link k; ck are cost weighting factors, i.e., the water right priorities per unit flow rate in link k; bit
is the (positive) gain or (negative) loss at node i at time t; Ii the set of all links terminating at node i
(inflow links); Oi the set of all links originating at node i (outflow links); and, lk and uk are lower and
upper bounds, respectively.

The cost factor ck for accounting for active storage and demand links priorities are generally
calculated while using the following formula:

ck = −(50,000 − 10 × PRk) (5)

where PRk is the integer priority ranking that ranges between 1 and 5000 for the reservoirs or the
demands, where the negative sign states that high-rank nodes (1, 2, etc.) are given more weights in the
minimization of the cost function (Equation (2)).The cost factor may also include economic factors that
are defined in this study for the crop demand links as the cost of the crop water supply (ccc) based on
the agro-economic water productivity index AEWPc (Equation (1)), i.e., ccc = −AEWPc, which means
that more water should be allocated to a crop that provides more economic benefits than others for the
same amount of water supplied.

The schematic network of the MODSIM ZRB model with the various demand nodes are
represented in Figure 4. These demand nodes can be categorized into four groups: (1) the network of
the dam croplands (ZRB), suffixed _ZRB, (2) the future development croplands of the RK, suffixed _RK,
(3) the crop demands supplied from the reach, suffixed _rch, and (4) the demands supplied from the
groundwater aquifers, wherefore two aquifer storages are defined cumulatively for the upstream-,
suffixed _gwup, and downstream, suffixed gwdown areas of the Boukan Dam. The conjunctive water
uses, i.e., surface- and groundwater irrigation are linked by connecting the river network nodes and
the shallow aquifer storages with the corresponding demand nodes. Other non-agricultural water
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demands include the potable demand of Boukan and Tabriz (about 60% of its potable demand) cities,
the industrial demands of the dam, the Legzi water transfer, the other agricultural water rights, the
environmental rights of the Boukan Dam, and the LU environmental water demand.
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The hydrologic inputs for the MODSIM-model are captured from the flow results of the SWAT
model, including the inflow of the dam, the river discharges and the inter-basin flows (the inter-basins
7-3 and 2-1 describe the generated water in sub-basins 7 to 3 and sub-basins 2 to 1, respectively), the
storage of the shallow aquifers, the recharges (GW_Rchg), the contributing flows to the surface water
and the drainage (GWQ + Drainage). The different types of the water demands, water transfers (such as
the transfer to the RK Plain from the Simineh River), the return flows from the agricultural water use
(about 10% to the same source, groundwater aquifers or the Zarrine River) are all initially defined
based on values that are given by MOE [25] and the irrigation and water requirements of the various
crops and irrigation losses are adjusted based from provisional values of Ahmadzadeh et al. [22].
The MODSIM ZRB simulation model is customized on the MODSIM 8.5 platform using the custom
coding module in VB.NET routine, with further details being provided in Section 3.8.

3.7. Constrained Stretched Particle Swarm Optimization (CSPSO) Search Algorithm

The Particle Swarm Optimization (PSO) method that was proposed first by Kennedy and
Eberhart [51] is a stochastic evolutionary social behavior-based optimization algorithm for solving
nonlinear global optimization problems in an efficient way. The main idea behind the development
of the PSO is social sharing of information among individuals of a population in nature (the flock
or swarm), in order to provide an evolutionary advantage for all individuals to move towards some
optimum [52–54].

A PSO model consists of a number of N particles (the swarm) moving around in the D-dimensional
search space, with each particle representing a possible solution to a numerical problem. In this
D-dimensional search space, the actual location of the i-th particle (i = 1, . . . , N) can be represented by
a D-dimensional vector of position Xi = (xi1, xi2, . . . , xiD) and the position change (velocity) by another
D-dimensional vector Vi = (vi1, vi2, . . . , viD). The best candidate solution that is the best previously
visited position of the particles of the swarm is denoted as Pi = (pi1, pi2, . . . , piD).
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Assuming that the g-th particle is the best and denoting the iteration by the superscript n, the
swarm is manipulated according to the following two equations [55,56]:

vn+1
id = χ

(
ωnvn

id + c1rn
1 (pn

id − xn
id) + c2rn

2

(
pn

gd − xn
id

))
(6)

xn+1
id = xn

id + vn+1
id (7)

ωn =

(
ωmax −ωmin)× n

nmax
(8)

vmin ≤ vid ≤ vmax (9)

where d = 1, . . . , D, with D the number of decision variables; i = 1, . . . , N, with N the size of the
swarm; r1, r2 are uniformly distributed random numbers in [0, 1]; n = 1, 2, . . . , the iteration number;
c1, c2 acceleration coefficients that are, respectively, the cognitive and social components of the particle
velocity, representing the impact of self-knowledge and the collective effect of the population; χ a
constriction parameter that is employed, alternatively to the inertia parameter ω to limit the velocity
to the range [vmin, vmax].

By incorporating a recently proposed technique called Function Stretching into the classical PSO,
Parsopoulos and Vrahatis [53] arrived at the SPSO method, which has the capability to alleviate the
attractions of local minima of the objective function and so to rise the success rates for finding a truly
global solution of the problem.

The basic idea of SPSO is to use a two-stage transformation of the original objective function f (x),
which can be applied immediately after a local minimum x of the function f (x) has been detected,
defined as follows:

G(x) = f (x) + γ1‖x− x‖(sign( f (x)− f (x)) + 1) (10)

H(x) = G(x) + γ2
sign( f (x)− f (x)) + 1
tanh(µ(G(x)− G(x)))

(11)

where γ1, γ2, and µ are arbitrary user-defined constants. The first transformation stage, G(x) elevates
the function f (x), eliminating so most of the local minima, whereas the second stage, H(x) stretches the
neighborhood of x upwards, as it assigns higher function values to those points. The location of the
global minimum is left unchanged, as both stages do not alter the local minima located below x.

Further details of the implementation of the of CSPSO-methodology and its extension for solving
the constrained optimization (CO) problem of the maximization of the net economic benefit of the total
cultivated crops in the area under the constraints of limited water resources, water right priorities, and
crop area limitations are present in the following sub-section.

3.8. Optimizing the Net Economic Benefit with the CSPSO-MODSIM Model

3.8.1. Formulation of the Constrained Optimization Problem

The ultimate objective of the hydro-economic optimization model is to maximize the economic
productivity of the sum of all the crops in an irrigation plot under the constraints of limited water
resources and crop areas available. By summing up Equation (1) for all cmax crops, the objective
function is:

Z = NEBt =
cmax

∑
c′=1

(Pricec ×Yc − Costc) =
cmax

∑
c=1

AEWPc × Qt
c , (12)

(with the notations as given for Equation (1), so that the final optimization problem can be stated,
as follows:

Maximize Z <=> Minimize (−Z), (13)
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wherefore, for application of classical optimization (minimization) routines, like CSPSO, the objective
function Z is replaced by its negative.

This, yet unconstrained optimization formulation will be extended to a constrained one by adding
appropriate constraints, as discussed below:

First of all, the actual crop yield Yc entering Equation (12) is dependent on the amount of irrigated
water available, which, in turn, depends on the actual water allocation (simulated by MODSIM). Thus,
if the irrigation water amount applied, Qc, is less than the crop water requirement, WRc, the actual
crop yield, Yc, will not reach its potential (maximum) crop yield Ymaxc. This is epitomized by the
following FAO-equation for the water production function [57]:

Yc = Ymaxc × (1− Kyc × (1−Qc/WRc)), (14)

where Ymaxc is the potential crop yield, estimated by SWAT as mentioned earlier, WRc is the crop
water requirement, Qc is the MODSIM-simulated allocated irrigation water, Kyc is a FAO-based yield
response factor describing the effect of a reduction of irrigation water on the crops yield losses, with
values being gathered from Steduto et al. [58]. The crop water requirements WRc were determined
using NetWat software from CropWat application series of the Iranian Water Directive (IWD) that was
developed by the Iran government for estimating the effects of future climate change [59]. Equation (14)
shows clearly that unless the crop water requirement WRc is fully met by irrigation water Qc, the actual
crop yield Yc will be less than its potential crop yield Ymaxc.

The second kind of constraints for the optimization problem (14) model arises then firstly from
the fact that the sum of all croplands cannot exceed the total arable area of the irrigation plot, i.e.,

∑7
i=1 AZRBi ≤ AtZRB (15)

∑7
i=1 ARKi ≤ AtRK (16)

∑2
i=1 Archi + ∑5

i=1 Agwi ≤ Atups (17)

where AtZRB = 684.2 km2, AtRK = 125 km2, and Atups = 250 km2 are the future total arable areas supplied
by the Boukan Dam irrigation network (ZRB), of the RK plain and of the agricultural areas upstream
of the dam, respectively, according to the SWAT-land use map and based on information of MOE [25].
The sums in Equations (15)–(17) run over seven different areas, as this is the number of the major crops
cultivated in the region, which are, in alphabetic order, alfalfa, apple, barley, potatoes, sugar beets,
tomatoes, and wheat, although the apple croplands are assumed to be constant to current cultivated
areas because it is irreplaceable as orchard and have very low economic value.

Further constraints that are varied later in the modelled scenarios pay attention to the fact that
a high-benefit (low water costs) crops cannot be solely cultivated over the whole ZRB, but there are
constraints on areas attributed to the various crops, not to the least to satisfy the population’s food
demands. More specifically, for each arable crop an allowable range of area size Ac is defined, wherefore
the maximum values are taken from MOE [25] and for the minimum areal sizes two alternatives are
investigated. In both of them, denoted as Smin1 and Smin2 in Table 1, the minimum areas devoted to
the two cereals (barley, wheat) of the Boukan Dam network plot (BARL_ZRB and WWHT_ZRB) are set
to the current arable area, whereas for the other crop/area demand nodes, the minimum is assumed to
have (1) no limitation (=0) for Smin1, and (2) 60% of the maximum arable area for Smin2. Based on
these two numbers, the corresponding areal sizes for the different crops have been computed for the
different irrigation plots and listed in Table 1.



Sustainability 2018, 10, 3953 14 of 32

Table 1. Area constraints (km2) for the two minimal-area scenarios (Smin1 and Smin2) devoted to the
different crops for the three irrigation demand areas (ZRB, RK, and upstream areas of the Boukan Dam).

Crop/Area Name
Amin

Amax Crop/Area Name
Amin

Amax
Smin1 Smin2 Smin1 Smin2

ALFA_ZRB 0.0 19.9 154.2 SGBT_RK 0.0 3.0 5.1
APPL_ZRB * 109.2 TOMA_RK 0.0 5.1 8.4
BARL_ZRB 64.5 64.5 166.0 WWHT_RK 0.0 36.5 60.8
POTA_ZRB 0.0 10.9 35.6 APPL_gwdown * 2.1
SGBT_ZRB 0.0 21.6 35.6 ALFA_gwup 0.0 14.2 23.7

TOMA_ZRB 0.0 14.5 59.3 POTA_gwup 0.0 3.3 5.5
WWHT_ZRB 237.6 237.6 415.1 SGBT_gwup 0.0 3.3 5.5
APPL_RK * 0.0 TOMA_gwup 0.0 5.5 9.1
ALFA_RK 0.0 13.2 22.0 BARL_rch 0.0 15.3 25.6
BARL_RK 0.0 14.2 23.6 WWHT_rch 0.0 38.4 63.9
POTA_RK 0.0 3.0 5.1

* As apples turn out to have a very low economic value, areas of apple orchards are not further varied.

Finally, as the production of cereal crops, i.e., barley (BARL) and wheat (WWHT) has strategic
importance in the ZRB as well as for Iran overall, three cereal crop pattern scenarios are considered
further in this study, namely, that the sum of the cropland areas devoted to barley (ABARL) and wheat
(AWWHT) will be a portion X of the maximum-minimum range above the minimum areas, i.e.,

ABARL + AWWHT ≥ Amin + X × (Amax − Amin) (18)

where X is the limiting production factor of the cereal crop pattern scenario and is set to, respectively,
X = 0.35, 0.5, and 0.65 for the three scenarios investigated, and Amin and Amax are the sum of the area
limits of the different demand plots for the two crops (barley and wheat) (Table 1).

3.8.2. Integration of MODSIM and CSPSO Algorithms

To solve the optimization problem, Equation (13), which is subject to the four constraints,
Equations (15)–(18), by means of the CSPSO method, a penalty function method is used
(e.g., Parsopoulos and Vrahatis [54]). The latter allows for converting a constrained optimization
problem to an unconstrained optimization one by adding the constraints as a weighted penalty to the
objective function (Equation (13)) in the form:

Minimize (−Z + h×∑nc
i=1 PFi) (19)

where nc is the number of constraints, PFi is the penalty factor of i-th constraint (Equations (15)–(19)),
which takes the binary values 0 or 1, depending on whether the constraint is satisfied or violated,
respectively, and h is the static penalty weighting factor value, which is found to be 1,000,000 by trial
and error based on a convergence analysis as well as PSO-literature recommended values.

Other parameters to be specified in the various CSPSO-equations of the previous sub-section
are taken in agreement with recommended literature values as (e.g., [54,55]): N = 40 (swarm size),
n = 500 (maximum iteration number); c1 = 1.2 and c2 = 0.8 (acceleration coefficients), γ1 = 5000, γ2 = 0.5,
µ = 10E-10 (three constraints of function stretching) and χ = 1 (constriction parameter).

Finally, to arrive at the CSPSO-MODSIM integrated hydro-economic model (see Figure 3), the
MODSIM water management tool is embedded in the CSPSO-optimization method as an inner layer of
the iteration process. Thus, in the first iteration, the search algorithm generates the decision variables
of the arable crop areas that should meet the ranges specified in Table 1. In the next step, the water
demands and their priorities are designated to the MODSIM model based on the initial irrigation
depth (estimated with SWAT) and the AEWPs (Equation (1)). Then, the optimal irrigation depths of the
crops are estimated in MODSIM using Equations (2)–(4), with flow inputs from SWAT. The actual crop



Sustainability 2018, 10, 3953 15 of 32

yields are predicted using Equation (14) and returned to the CSPSO model, together with the optimal
irrigation depths, to calculate the fitness/penalty function, Equation (19). This procedure, coded in the
MATLAB© environment, is repeated for each iteration of the CSPSO, using the swarm-intelligence,
until the penalized objective function converges to the maximum net economic benefit of the total
crop production in the three irrigation plots. Usually, after 400–500 iterations, no noticeable further
improvement in the objective function was obtained.

4. Results and Discussion

4.1. Historical and Future Climate Projections

The min. and max. temperatures—as well as the precipitation- predictors of the CGCM3—and
the CESM-CAM5 GCM from the CMIP5-GCMs archive were found, respectively, by virtue of the
skill score multi-criteria method, to be the most suitable climate predictors and used then for further
QM-downscaling. This task was carried out for three RCP-scenarios (RCP45, RCP60, and RCP85).

The QM-downscaling model was calibrated and validated for each month of the year
(e.g., January) for the time periods 1987–1998 and 1999–2005, respectively. The validation of the
model was considered satisfactory, as the CDFs of the bias-corrected min/max temperatures and
precipitation fit the CDF of the corresponding observed variables. In addition, the reliability of the
QM-downscaled predictors was also evaluated by comparing them with the observed data for the
period 2006–2015, using the goodness of fit measures coefficient of determination (R2), standard error
(SE), and index of agreement (IA), which are summarized for the three RCPs that were investigated in
Table 2 (for further details see [13]).

Table 2. Goodness of fitness measures of the QM-model for the different RCPs for the time
period 2006–2015.

Climate Variable Statistical Measure
RCP Scenario

RCP45 RCP60 RCP85

Temperature
R2 0.81 0.88 0.78
SE 5.80 3.75 6.10
IA 0.91 0.95 0.88

Precipitation
R2 0.23 0.31 0.19
SE 24.2 21.1 23.5
IA 0.68 0.81 0.63

Figure 5 shows the spatial distributions of the observed/QM-downscaled average annual
temperatures and precipitation in the ZRB for the historical reference period (1987–2015).

GCM/QM-downscaled climate predictions for three RCP scenarios (RCP45, RCP60, and RCP85)
are shown for three future periods, near (2020–2038), middle (2050–2068), and far future (2080–2098), in
Figures 6–8, respectively. One may notice from these figures that the trends in all future RCP-scenarios
are approximately the same, such that, as compared with the historical references period (see Figure 5),
both the temperature and the precipitation are mostly increased.

In particular, for the near future period (Figure 6), RCP45- and RCP60-scenarios turn out to
be wetter than RCP85, with RCP45 having at the same time a moderate temperature rise, RCP60
practically no temperature rise, and RCP85 exhibiting a rather high temperature increase.



Sustainability 2018, 10, 3953 16 of 32

Sustainability 2018, 10, x FOR PEER REVIEW  15 of 31 

The QM-downscaling model was calibrated and validated for each month of the year (e.g., 
January) for the time periods 1987–1998 and 1999–2005, respectively. The validation of the model 
was considered satisfactory, as the CDFs of the bias-corrected min/max temperatures and 
precipitation fit the CDF of the corresponding observed variables. In addition, the reliability of the 
QM-downscaled predictors was also evaluated by comparing them with the observed data for the 
period 2006–2015, using the goodness of fit measures coefficient of determination (R2), standard 
error (SE), and index of agreement (IA), which are summarized for the three RCPs that were 
investigated in Table 2 (for further details see [13]). 

Table 2. Goodness of fitness measures of the QM-model for the different RCPs for the time period 
2006–2015. 

Climate Variable Statistical Measure 
RCP Scenario 

RCP45 RCP60 RCP85 

Temperature 
R2 0.81 0.88 0.78 
SE 5.80 3.75 6.10 
IA 0.91 0.95 0.88 

Precipitation 
R2 0.23 0.31 0.19 
SE 24.2 21.1 23.5 
IA 0.68 0.81 0.63 

Figure 5 shows the spatial distributions of the observed/QM-downscaled average annual 
temperatures and precipitation in the ZRB for the historical reference period (1987–2015). 

GCM/QM-downscaled climate predictions for three RCP scenarios (RCP45, RCP60, and RCP85) 
are shown for three future periods, near (2020–2038), middle (2050–2068), and far future (2080–2098), 
in Figures 6–8, respectively. One may notice from these figures that the trends in all future 
RCP-scenarios are approximately the same, such that, as compared with the historical references 
period (see Figure 5), both the temperature and the precipitation are mostly increased. 

In particular, for the near future period (Figure 6), RCP45- and RCP60-scenarios turn out to be 
wetter than RCP85, with RCP45 having at the same time a moderate temperature rise, RCP60 
practically no temperature rise, and RCP85 exhibiting a rather high temperature increase. 

 
Figure 5. Spatial distributions of average 1987–2005 observed/bias corrected precipitation (left) and 
temperatures (right) in the ZRB. 

Observed/bias-corrected predictors 

Figure 5. Spatial distributions of average 1987–2005 observed/bias corrected precipitation (left) and
temperatures (right) in the ZRB.Sustainability 2018, 10, x FOR PEER REVIEW  16 of 31 

 
Figure 6. Spatial distributions of average precipitation (top) and temperature (bottom) in the ZRB 
during the near future period (2020–2038) for three RCPs. 

 
Figure 7. Similar to Figure 6, but for the middle future period (2050–2068). 

For the middle future period (Figure 7), and as compared with the near future period (Figure 6), 
the RCP45-scenario will be drier again, going hand in hand with a small temperature rise, whereas 
RCP60 will become wetter while temperature will rise moderately. For RCP85, the trend is 
straightforward, with both a temperature and precipitation increase. 

Finally, the far-future period (Figure 8) must be highlighted as most critical, as, when compared 
with the middle-future period (Figure 7), on one hand, the temperature increases another 3% to 14%, 
and, on the other hand, the precipitation decreases by another 4% to 22%, depending on the RCPs, 
with RCP85, as the most extreme, at the upper ends of these ranges. 

Near Future 2020–2038 

Middle Future 2050–2068 

Figure 6. Spatial distributions of average precipitation (top) and temperature (bottom) in the ZRB
during the near future period (2020–2038) for three RCPs.

For the middle future period (Figure 7), and as compared with the near future period (Figure 6), the
RCP45-scenario will be drier again, going hand in hand with a small temperature rise, whereas RCP60
will become wetter while temperature will rise moderately. For RCP85, the trend is straightforward,
with both a temperature and precipitation increase.

Finally, the far-future period (Figure 8) must be highlighted as most critical, as, when compared
with the middle-future period (Figure 7), on one hand, the temperature increases another 3% to 14%,
and, on the other hand, the precipitation decreases by another 4% to 22%, depending on the RCPs,
with RCP85, as the most extreme, at the upper ends of these ranges.
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4.2. Climate Change Impacts on the Hydrology of the ZRB

To evaluate the future climate impacts on the hydrology of the ZRB, the calibrated SWAT model
was driven by the QM-downscaled GCM-temperatures and precipitation predictors of the previous
section to simulate, among other hydrological components, the inflow to the Boukan as the major
irrigation water reservoir in the ZRB. The annually aggregated SWAT-modelled inflow hydrograph of
the Boukan Dam over the historical and future predicted periods under the three RCPs, together with
their linear trend lines, is presented in Figure 9.
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One may notice from the figure that there is a consistent decreasing inflow trend over the whole,
i.e., historic and future time periods, though the trend is stronger for the former—where the inflow
has decreased by a factor of two from a maximum of ~2000 MCM/year in the 1990s to less than
1000 MCM/year at the present time—than the latter. Also, the negative trend is more pronounced for
the more extreme RCP85 climate scenario than for the other two, RCP45 and RCP60.
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In addition, the results of the statistics of the average annually accumulated of the SWAT-simulated
monthly inflow to the Boukan Dam, starting from the minimum over various percentiles to the
maximum, together with the resulting water balance components, surface runoff (SWQ), lateral
subsurface flow (LWQ), groundwater inflow (GWQ), and water yield (WYLD = SWQ + GWQ + LWQ),
are presented for the three future periods under the three RCPs in Table 3.

Table 3. Statistics of the inflow of the Boukan Dam, basin water balance components, total water
demand (WD) (MCM/year), and WaSSI-index for historic and future periods under different RCPs,
with % -values denoting relatives to the historic reference period.

Scenario
Statistics of Dam Inflow Basin Parameter

Min 25th Perc * Mean 75th Perc * Max SWQ GWQ LATQ WYLD WD WaSSI

Historic 154 704 990 1217 2213 553 1010 457 2020 1375 0.68

N
ea

r RCP45 −29% −49% −9% −18% 66% −13% −18% −16% −16% 1288 0.76
RCP60 >100% −16% 29% 39% 49% 13% 5% −8% 4% 1288 0.61
RCP85 64% −9% 21% 62% 27% −24% −2% 21% −2% 1288 0.65

M
id

dl
e RCP45 27% 23% 44% 67% 22% 11% 15% 21% 15% 1373 0.59

RCP60 2% −41% 23% 47% 54% 2% −2% 3% 1% 1373 0.67
RCP85 58% −8% 35% 62% 31% 2% 4% 24% 7% 1373 0.64

Fa
r

RCP45 19% −36% −23% −14% −30% −37% −46% −11% −36% 1501 1.16
RCP60 54% −29% −2% 12% −6% −24% −32% 13% −20% 1501 0.93
RCP85 19% −36% −25% −14% −30% −63% −67% −26% −57% 1501 1.73

* Perc stands for percentile.

As can be seen from the table, the highest increase and decrease of the annual dam inflow are
predicted for RCP60 an RCP85, respectively. When compared with the minimum and the mean
historical dam inflow, those values will be increased in the near and middle future, except for RCP45
in the near future, whereas they will decrease by 2% to 23% for the far future period. The maximum
dam inflow will augment by 22% to 66% in the time period 2020–2068, but decrease again by 6% to
31% after 2080. The low (25%)—quantile of the dam inflow will also experience a decrease, except for
RCP45 in the middle future, whereas the high (75%) quantile will mostly increase, except of the far
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future period. The trends of the water balance components, e.g., of the water yield, are the same as the
mean dam inflow.

The last column of Table 3 lists the Water Supply Stress Index WaSSI is defined as the ratio of the
total water demand WD (extracted from Emami and Koch [13]) (second to last column) of all sectors
to the total water supply from surface and groundwater sources, i.e., the water yield WYLD (third to
last column). Obviously, low values of WaSSI < 1 mean low water stress and WaSSI-values reaching 1
and above indicate high stress. Based on the WaSSI-indices that were computed in this way, Table 3
shows that the water stress in the ZRB will be higher than that of the historical period for the near- and
middle-future periods and rise to an even alarming level (WaSSI > 1) in the far-future period.

4.3. Crop Yield Simulation

As a major ingredient of the CSPSO-MODSIM crop pattern optimization model, the potential
and actual crop yields of the major crops in the ZRB must be correctly known as these simulated and
adjusted in the iterative optimization process, based on the prioritized water allocation and while
using the FAO Equation (14) for the crop yield.

To simulate the crop production processes with the SWAT model, firstly the scheduled irrigation
management operations are entered in its management module (.mgt). The most important
management operations include planting, irrigation operation, and harvest operation, for which the
needed data has been taken from Ahmadzadeh et al. and MOE [22,25], i.e., the irrigation operations
are defined for the HRUs with the major crops and using their monthly crop water requirements (WRc),
in terms of their irrigation depths, listed for the seven crops in Table 4. These crop water depths are
then later employed in the FAO equation, together with the available, prioritized water allocation Qc,
to update the actual crop yield in the CSPSO-MODSIM model iteration process.

Table 4. Monthly crop water requirements for the major crops in the ZRB and their irrigation intervals.

Month
Monthly Crop Water Requirement (mm)

ALFA APPL BARL POTA SGBT TOMA WWHT

April - - - - 200 - -
May 270 310 260 115 300 - 360
June 270 310 260 350 300 210 360
July 270 310 - 350 300 210 -

August 270 310 - 350 300 210 -
September 270 310 - 350 300 210 -

Sum 1350 1550 520 1515 1700 920 720
Irrigation interval (days) 15 15 10 10 10 10 10

The crop yields are computed in the SWAT-model, based on crop parameters that are specified
in the crop.dat input file. A set of initial crop yield effective parameters, as described in Table 5, are
adjusted based on literature values [22,60] and fine-tuned during the calibration/sensitivity analysis
of the model to minimize the residuals of observed-simulated annual crop yields. The resulting final
values of the crop parameters are also listed in Table 5. The SWAT-simulated crop yields are later
applied as potential crop yields, Ymaxc in the FAO Equation (14), as it was found that the amount of
irrigation water dispersed to a crop was more than compensating its crop water need so that the crop
yields remained the same when an unlimited source of irrigation water was applied.
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Table 5. List of effective crop yield parameters adjusted in the SWAT-calibration process.

Parameter Dimension Definition

Final Calibrated Value

A
LF

A

A
PP

L

B
A

R
L

PO
TA

SG
B

T

T
O

M
A

W
W

H
T

BLAI m2/m2 Maximum potential leaf area index 5.0 5.5 3.4 4.5 5.0 4.5 4.0

HVSTI Dimensionless Harvest index for optimal growing conditions 0.7 0.6 0.3 1.15 2.0 1.4 0.4

DLAI Dimensionless Fraction of growing season when leaf area
begins to decline 0.99 0.99 0.60 0.90 0.92 0.95 0.5

FRGRW1 Dimensionless
Fraction of the plant growing season
corresponding to the 1st point on the optimal
leaf area development curve

0.02 0.1 0.15 0.15 0.05 0.15 0.05

LAIMX1 m2/m2 Fraction of the maximum leaf area index
corresponding to FRGRW1 0.01 0.4 0.01 0.10 0.05 0.50 0.05

FRGRW2 Dimensionless
Fraction of the plant growing season
corresponding to the 1st point on the optimal eaf
area development curve

0.15 0.5 0.45 0.30 0.5 0.35 0.45

LAIMX2 m2/m2 Fraction of the maximum leaf area index
corresponding to FRGRW2 0.95 0.95 0.95 0.95 0.95 0.95 0.95

Tbase ◦C Minimum (base) temperature for plant growth 20 20 25 22 18 22 20

Topt ◦C Optimal temperature for plant growth 4 7 0 7 4 10 0

EXT_COEF Dimensionless Light extinction coefficient 0.57 0.65 0.65 0.65 0.65 1.0 0.65

BIO_E Kg·m2 (ha·MJ) Radiation-use efficiency or biomass-energy ratio 16 50 35 45 30 60 30

Using the calibrated crop parameters, the crop water requirements and the irrigation time scheme,
as specified in Tables 4 and 5, the average crop yields over the time period 1987–2012 are simulated
and compared with the observed average crop yields in the ZRB. The regression—and the bar—plot
of Figure 10 indicate that the SWAT-model simulates the observed actuals crop yields—which as
mentioned are in fact potential crop yields, Ymaxc—in a satisfactory manner.
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For the economic analysis of the crop productions, various crop economic values including the
guaranteed selling price by the government, production costs, crop yields, crop areas, irrigation depths,
and potential AEWP of the seven major crops in the ZRB, gathered from [26,27] and listed in Table 6,
are required. The table includes also potential future crops to be discussed later.
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Table 6. Current selling prices, production costs, crop yields, crop areas, crop water requirements and
initial agro-economic water productivity (AEWP) of the presently cultivated major crops as well as of
potential future crops in the ZRB.

Specification
Present Crops Used Potential Future Crops

ALFA APPL BARL POTA SGBT TOMA WWHT Canola Pistachio Saffron

Price (USD/kg) 0.21 0.07 0.25 0.13 0.06 0.14 0.32 0.5 7 1750
Cost (USD/ha) 978 5501 420 1144 643 2056 503 329 4020 7250

Potential crop yield
(kg/ha) 7499 23,627 2660 14,235 22,970 21,391 3619 1998 650 5

Area (km2) 217 111 65 11 22 14 237 - - -
WRc (mm) 1350 1550 520 1515 1700 920 720 659 500 300

AEWP (USD/m3) 0.04 −0.25 0.05 0.05 0.04 0.10 0.09 0.10 0.11 0.21

From Table 6 one may notice that the average total potential AEWPc for the current crop-areas
situation is about 0.37 USD/m3, excluding APPL, grown in orchards and which are, for that reason,
not considered in the multi-crop optimization and just applied as a demand node in the MODSIM
model. In fact, APPL has a negative AEWPc, which means that its production cost is more than its
selling price. In contrast, TOMA and WWHT have the highest—and BARL and POTA the lowest—yet
positive agricultural economic water productivities AEWPc. If all the crop water requirements can be
fulfilled completely and the potential crop yields be reached, the potential economic net benefit of the
six crops (except APPL) will be ~32.2 Million USD, but with an expense of 735 MCM total water use.

4.4. Maximization of Future Net Benefits under Different Cultivation-Area Constraints

4.4.1. Approach

In this section the CSPSO-MODSIM hydro-economic algorithm is executed under the two
minimum arable cultivation-area constraints (Smin1 and Smin2, see Table 1) and three different
possible levels of cereal production rates (X = 50%, 35%, and 65%) to find the most suitable crop
pattern, i.e., the one providing the average annual maximum net economic benefit, NEBt. This is done
for the three RCP climate scenarios and the three (near, middle, far) future target periods.

The models starts by firstly ascribing initial values for 18 decision variables, i.e., the cultivated
areas (Ac) of the 6 = 7 − 1 major crops (the apple demand node is excluded, because an
orchard cannot be replaced by other crops) in each of the three demand areas (see Figure 4)
(3 × 6 = 18 variables)—depending on the ranges of the individual crop areas for the two minimum
area scenarios (Smin1 and Smin2), as specified in Table 1.

In the subsequent step, the MODSIM model is run, starting with the initial agricultural water
productivities, AEWPc (Equation (12)), based on the current conditions (see Table 6). Then, the allocated
water for each crop is captured from the MODSIM model under the different, and, while using the FAO
Equation (14), the actual crop yield, the actual AEWP, and the main objective function Z, i.e., the total
NEBt (Equation (12)), is estimated (updated) and the process repeated as part of the iteration scheme
of the CSPSO-MODSIM process, wherefore the decision variables (crop areas) are adjusted based on
the CSPSO-swarm information, until the maximum (=negative minimum) net annual economic benefit
(=total NEBc) (averaged over the simulation horizon and based on the allocated water supply) will
be reached.

4.4.2. Optimal Future Net Annual Economic Benefits NEBt and AEWP

Results for the optimal future annual economic benefits NEBt obtained for the two minimum
arable cultivation-area constraints (Smin1 and Smin2) under the various scenarios/time periods are
shown in Table 7, wherefore, for simplification and strategic implications, the results in each group
have been averaged over all three future time periods.

As can be seen from the table, for the Smin1—minimum crop area scenario, for both of the Smin1

and Smin2—minimum crop area scenarios, the 65%-rate for cereal production is recommended over
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the total future period (up to year 2100) and this holds for all three RCPs and it is also in line with the
increasing food demands of the country. However, as in the Smin1-scenario the minimum cultivated
area for all non-cereal crops is set to zero (see Table 1), such a drastic extension of the cereal cultivation
area might not generally be acceptable and will more likely increase the social dissatisfaction of the
farmers and stakeholders in that region.

In contrast, for the Smin2-scenario, the optimal NEBt turns out to be quite higher than for the
Smin1-scenario. Therefore, the results of Smin2 are favored here, and for this reason they only will
be discussed further in the following paragraphs. Thus, one may notice from the table that the total
optimal NEBts will be particularly high for the medium-emission scenarios, RCP45 and RCP60, with
an annual net income of ~35.3 and 37.4 Million USD, respectively, which is up to 16% higher than
the average potential net economic benefit of the historical period (=32.2 Million USD, see Table 6),
whereas for the high-emission scenario, RCP85, there will be no production gain.

Moreover, the highest annual economic benefits of the recommended crop patterns are expected
to be in the middle future period, and this holds for all three RCPs, whereas the least crop production
gain will be in the far future period, 2080–2098, as expected.

Table 7. Optimal Z (=total annual NEBt)—values (Million USD) for three kinds of cereal
production-rates (X = 35%, 50% and 65%) under the two minimum arable cultivations areas constraints
(Smin1 and Smin2) for three future periods and three RCPs.

Smin1 Smin2

RCP Future Period

X
35

%

X
50

%

X
65

%

Se
le

ct
ed

RCP Future Period

X
35

%

X
50

%

X
65

%

Se
le

ct
ed

RCP45

Near 27.2 29.7 32.2

X
=

65
%

RCP45

Near 29.8 32.4 34.3

X
=

65
%

Middle 32.0 34.3 37.1 Middle 35.1 37.4 39.6
Far 27.2 28.4 29.8 Far 29.9 31.0 31.8

Average 28.8 30.8 33.0 Average 31.6 33.6 35.3

RCP60

Near 27.2 32.4 34.4

RCP60

Near 30.0 34.7 36.2
Middle 30.2 33.6 36.7 Middle 36.8 38.2 40.3

Far 29.3 31.0 34.6 Far 32.7 34.1 35.5
Average 28.9 32.3 35.2 Average 33.2 35.7 37.4

RCP85

Near 27.1 29.4 32.1

RCP85

Near 30.1 32.7 35.7
Middle 32.1 33.9 38.8 Middle 35.7 37.7 40.1

Far 18.4 18.5 20.3 Far 20.4 20.6 22.1
Average 25.9 27.3 30.4 Average 28.7 30.3 32.6

In Table 8, the results for the now-on considered Smin2—scenario are analyzed further in terms
of the average optimal total AEWP for the six major crops of the ZRB and total agricultural supplied
water Q per year. As can be seen from this table, for the selected scenario Smin2, the total AEWP is with
0.37 USD/m3 the highest for the 65%- rate cereal-production scenario. Interestingly, for RCP85 the total
AEWP will be the highest, i.e., it will have the lowest required water supply. This confirms that the
algorithm will increase the AEWPs in the case of future water shortage. In fact, the total agricultural
supplied water Q in this selected 65%-scenario will be decreased from the current 735 MCM/year
(see explanations for Table 6) to 517 MCM/year for RCP45 and RCP60, and to 426 MCM/year
for RCP85.

However, if the ultimate agricultural crop cultivation objective were to be shifted from maximum
economic value to minimum agricultural water use, the 35% and 50% cereal production- rate scenario
should be selected, respectively, for the near-middle and far future periods, which means that the
“water-hungry” cereal production areas should not be extended that much.
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Table 8. Total annual water use Q and average optimal total (for all crops considered) AEWP for
the three cereal production-rates under the Smin2—cultivation scenario for three future periods and
three RCPs.

RCP Future Period
Total Q (MCM/year) Average Total AEWP (USD/m3)

X = 35% X = 50% X = 65% X = 35% X = 50% X = 65%

RCP45

Near 434 489 487 0.41 0.40 0.44
Middle 529 600 588 0.40 0.37 0.41

Far 456 488 477 0.39 0.38 0.40
Average 473 526 517 0.40 0.38 0.42

RCP60

Near 537 576 589 0.34 0.36 0.40
Middle 470 487 471 0.47 0.47 0.48

Far 511 492 491 0.38 0.42 0.45
Average 506 518 517 0.39 0.41 0.44

RCP85

Near 524 502 499 0.35 0.39 0.43
Middle 528 504 525 0.41 0.45 0.50

Far 240 242 253 0.51 0.51 0.52
Average 430 416 426 0.40 0.44 0.46

4.4.3. Optimal Simulated Future Optimal Crop Pattern for Crop-Area Constraint Scenario Smin2

For a proper appraisal of the simulated future optimal crop pattern proportions, the historical
ones, retrieved from a current land-use map of the region, are presented in the two pie-charts of
Figure 11 for the Boukan Dam network demand area (_ZRB) and the dam upstream demand area
(_gwup and _rch) (see Figure 4, for notations). As the RK-Plain is assumed as a developing agricultural
demand only for the future, it is not considered here. These pie-charts indicate that the major crops in
the ZRB are, in descending order, WWHT, ALFA, BARL, SGBT, TOMA, and POTA.

The future optimal crop pattern proportions of the ZRB basin obtained under the 65% cereal
production-rate/crop-area constraint scenario Smin2 are presented for the three future time periods
in three pie charts of Figures 12–14 for RCP45, RCP60, and RCP85, respectively. Comparing visually
these pie charts with the historic ones of Figure 11, the most striking feature is that the blue pie wedge,
representing the ALFA crop area, will be diminished tremendously in favour of the (orange/yellow)
cereal wedges, and this holds for all future time periods/scenarios, which, obviously, is a consequence
of the low agro-economic water productivity, in conjunction with a high water consumption of the
ALFA crop.
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The pie charts of Figures 11–14 are quantified more clearly in Table 9, which lists the percentile
optimal arable areas (Ac) of the six crops considered for the three irrigation plots in the ZRB, i.e., the
18 decision variables of the CSPSO-MODSIM model. Several conclusions can be drawn from the
inspection of the multitude of numbers in the table.
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Table 9. Optimal crop areas (km2 and %, relative to those of the historical period) for the Smin2-scenario
under the 65% cereal area constraint for the three irrigation plots (see Figure 4), the three future
periods/RCPs.

Crop Irrigation Plot Historic
RCP45 RCP60 RCP85

∆Ac *
Near Mid Far Near Mid Far Near Mid Far

ALFA

Boukan_down 1 152 117 77 115 131 106 91 57 144 120
RK plain 0 22 22 19 13 22 19 21 22 17

Boukan_up 2 66 24 24 24 24 24 24 24 24 24
Total crop

217
163 122 157 167 152 133 103 189 161 −67

Area −25% −44% −28% −23% −30% −39% −53% −13% −26% −31%

BARL

Boukan_down 65 70 65 74 99 71 82 79 80 97
RK plain 0 24 24 18 22 15 19 14 24 24

Boukan_up 6 26 26 18 26 26 23 26 25 26
Total crop

71
119 114 110 147 112 123 119 128 147 53

Area 68% 61% 55% 107% 58% 73% 68% 80% 107% 75%

POTA

Boukan_down 11 21 11 32 17 11 12 12 11 11
RK plain 0 5 5 5 5 5 5 5 5 5

Boukan_up 3 6 6 6 6 6 6 6 3 6
Total crop

14
31 22 43 27 22 23 23 19 22 12

Area 121% 57% 207% 93% 57% 64% 64% 36% 57% 84%

SGBT

Boukan_down 22 30 36 33 36 36 36 35 25 36
RK plain 0 5 5 5 5 5 5 5 5 5

Boukan_up 1 6 6 6 6 6 6 6 6 6
Total crop

23
40 46 44 46 46 46 45 36 46 21

Area 74% 100% 91% 100% 100% 100% 96% 57% 100% 91%

TOMA

Boukan_down 14 54 59 27 25 43 29 59 18 27
RK plain 0 8 8 7 8 8 8 8 8 8

Boukan_up 2 9 9 9 9 9 9 9 9 9
Total crop

16
71 77 43 42 61 47 77 36 45 39

Area 344% 381% 169% 163% 281% 194% 381% 125% 181% 247%

WWHT

Boukan_down 237 389 415 360 377 415 380 415 406 392
RK plain 0 56 61 60 59 58 56 42 59 55

Boukan_up 54 54 38 57 38 38 52 38 38 38
Total crop

291
500 514 476 474 512 487 496 504 486 203

Area 72% 77% 64% 63% 76% 67% 70% 73% 67% 70%

Total arable area 632
925 895 873 904 905 860 862 912 906 262
46% 42% 38% 43% 43% 36% 36% 44% 43% 41%

* ∆Ac: difference of the average crop acres (in km2 or in %) over the future periods and of those of the historic
period. 1 Irrigation plot downstream of the dam; 2 Irrigation plot upstream of the dam.

First of all, the total future arable area is, when compared with its historical value of
632 km2, increased to up to 900 km2, depending slightly on the future period and the RCP
assumed, with the lowest extension of 36% being recommended for the far future/RCP60- and
the near future/RCP85-time/RCP-, but of about 45% in the near future/RCP45- and the middle
future/RCP85-scenarios.

Secondly, most of this arable area increase is made up by an extension of the cultivation areas
of the two cereals, namely, WWHT, with ∆Ac = 203 km2, i.e., nearly a doubling from its historical
value, and, less so, of BARL, with ∆Ac = 53 km2, in line with their importance as strategic crops in the
ZRB. In fact, this is not surprising, as these cereals have, as compared with the other crops considered,
rather low crop water demands, which, together with their relative high prices, lead to high AEWPs,
particularly, for WWHT (see Table 6).

Thirdly, there is a tremendous reduction of the total ALFA crop area of more than −30%. This is
the reason why, for fulfilling the demands of the alfalfa production in the region, Naraqi et al. [61]
recommended to cultivate alfalfa in the riverside of Aras River, which is more suitable for this crop,
and then transport it to the feeding stocks.

Fourthly, also significantly augmented by several 100%, though from a small base acreage, are
the TOMA—cultivation areas, essentially, for the same reasons as for the cereals above. Somewhat
smaller acreage increases, though still a doubling of the trifling base values, are experienced for the
POTA and SGBT crop areas, namely, for the wetter RCP45- and RCP60-scenarios, with more water
becoming available then.
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4.4.4. Optimal Future Crop Water Irrigation Depths under Crop-Cultivation Scenario Smin2

The average annual crop water irrigation depths IRRc applied, in % relative to the crop water
demands WRc, of the historic reference period (see Table 4) for the optimal crop pattern under area
limitation constraints Smin2 are listed in Table 10 for the three future periods under the three RCPs.
The table indicates that for the note of the future periods and RPCs is the irrigation water supplied
that is able to satisfy the crops water demand for the historic period. In fact, the overall crop water
demands are supplied on average by only 44–81% for RCP45, 48–90% for RCP60, and 25–73% for
RCP85, i.e., the future water resources in the basin are too limited to support the agriculture up to its
full potential. The table shows also that relative to the crop water demands of the reference period,
for the future periods these are satisfied less for alfalfa and barley than for the other crops, wherefore
wheat- and potato-crop water demands are supplied at the highest rates.

Table 10. Average annual crop water irrigation depths IRRc supplied in %, relative to the crop water
demands WRc of the historic reference period (Table 4) (in mm/year) for the optimal crop pattern
under Smin2—constraint for the future periods under the three RCPs.

Period RCP
Crop

ALFA BARL POTA SGBT TOMA WWHT

Historic 1350 520 1515 1700 920 720

Near
RCP45 51% 59% 53% 58% 44% 68%
RCP60 67% 57% 90% 62% 82% 81%
RCP85 69% 66% 65% 60% 49% 73%

Middle
RCP45 72% 78% 76% 71% 62% 81%
RCP60 48% 57% 68% 61% 55% 65%
RCP85 59% 65% 63% 68% 69% 69%

Far
RCP45 69% 66% 65% 60% 49% 73%
RCP60 59% 65% 63% 68% 69% 69%
RCP85 36% 25% 51% 38% 51% 27%

Based on the annual percentages of Table 10, the future the optimal irrigation depths (IRRc) are
estimated on the monthly scale by multiplying the monthly crop water requirements, WRc of Table 4
by the corresponding percentage factors. As an example, the results are listed for the scenario RCP45
and the middle future period in Table 11.

Table 11. Optimal monthly irrigation water applied (mm/month) for the different crops for RCP45 in
the middle future (2050–2068) period.

Month
Crop

ALFA BARL POTA SGBT TOMA WWHT

April - - - 124 - -
May 181 148 104 186 - 292
June 181 148 315 186 172 292
July 181 - 315 186 172 -

August 181 - 315 186 172 -
September 181 - 315 186 172 -

Sum 905 296 1364 1054 688 584
Irrigation
interval
(days)

15 10 10 10 10 10
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4.5. Implications and Concluding Remarks

Interestingly, in connection with the afore-mentioned agro-econometric predictions for the ZRB, it
has been recommended by the Lake Urmia Restoration Committee [62] to decrease the agricultural
demands of the LU basin by about 40%, based on new executive strategies of demand management to
avoid an imminent ecological and environmental disaster of the lake and the surrounding ecosystem.
In fact, such a reduction of the future agricultural water irrigation is approximately found here, as,
following Table 10, about 62% of the total agricultural demands of ZRB can be supplied for the RCP45
and RCP85 scenarios.

The recommended LU-disaster mitigation strategies [62] include an increase of the irrigation
efficiency, better river bed and bank management, deficit irrigation, improvement of the Zarrine
irrigation network, and completion of irrigation secondary networks with surface and modern
techniques, and last, but not least, suggestions to replace some high water-consuming crops, like sugar
beet and potato, with some less consuming ones, such as canola or sorghum.

Moreover, an increase of the crops’ AEWPc can be generally also achieved by adopting proven
agronomic and water management practices, such as deficit irrigation or modern irrigation technologies
(e.g., pressured systems and drip irrigation). Furthermore, to improve the economic yield one may
need to (a) switch from low- to high-value crops, for example, from apple to pistachio, (b) lower the
costs of inputs (labor, water technologies), and (c) attempt to get multiple benefits of the irrigation
water, e.g., using (cheaper) recycled wastewater [62]. However, these adaptation strategies may have
some further impacts that should be investigated, e.g., wastewater recycling will adversely increase
the total water depletion.

It has also been proposed by Naraqi et al. [61] to replace parts of the low economic-value field
crops and orchards with crops of higher economic benefits of less water use, such as canola, pistachio,
or saffron. The initial AEWPc and other economic characteristics of these crops are also listed in
Table 6 [26,27] and one can notice that these are indeed several times higher than the AEWPC of the
ZRB major crops (see Table 6) analyzed heretofore. It may also be recommendable to develop further
greenhouse vegetable cultivations.

5. Summary and Conclusions

In this paper, a complex, integrated hydro-economic model is developed as a crop pattern
and irrigation planning tool consisting of a sequential combination of QM-climate downscaling,
SWAT-hydrological modelling, MODSIM optimal water allocation, and a Constrained Stretched
Particle Swarm Optimization (CSPSO) optimization search algorithm for maximizing the economic
benefits of a multi-crop cultivation pattern. More specifically, the ultimate objective is then to optimize
the future crop pattern of the major crops in the ZRB and their crop water irrigation depths in terms
of net total economic benefits of the crop production, while considering the impact scenarios of the
climate change and the cereal crop pattern scenarios.

To do this, climate change in the ZRB is first predicted using a statistical downscaling method,
two- step updated QM (Quantile Mapping) bias correction technique that is based on the most suitable
GCM outputs for the min./max. temperatures and precipitation namely CGCM3 and CESM-CAM5
of CMIP5 archive to assess the impact scenarios of the climate change (RCP 4.5, 6.0, and 8.5) in three
19-years future periods (near, middle, and far). In the next step, the downscaled weather variables are
applied to the calibrated and validated basin-wide hydrologic model, SWAT, to simulate the future
available water resources including the reservoir inflow and hydrologic changes. The crop yield
potentials are also simulated using the SWAT model with applying the irrigation depths based on their
monthly crop water requirements and adjusting the crop parameters.

According to the predicted impacts of climate change, RCP60 an RCP85 are expected to have the
highest increase and decrease, respectively, of the inflow to the Boukan Dam. For all RCPs, the Boukan
Dam inflow will be increased in the near and middle future, in comparison with the minimum and the
mean historical dam inflow, except for RCP45 in the near future, whereas it is predicted that they will
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decrease by 2% to 23% for the far future period. The lowest available water resources are predicted for
the far future regarding rather low precipitation and high temperature, especially for RCP85, which
has the highest decrease of freshwater. The performance of the SWAT model for the streamflow and
the crop yield simulation is quite satisfactory. The ratio of water demand across the water supply, i.e.,
the WaSSI (water stress) indices of the ZRB-simulated scenarios are predicted to be higher than the
historical period for the near and medium periods, while the highest water stress is expected for the
far future period.

To set up a water planning simulation module, the MODSIM model is then customized to
allocate the available water based on priority constraints set for the ZRB. Finally, the CSPSO-MODSIM
hydro-economic simulation-optimization model is developed by coupling this customized MODSIM
model with a Constrained SPSO optimization algorithm, wherefore the objective function is here the
total net economic benefit (NEBt)—which basically is the product of the total agro-economic water
productivity (AEWPt) and the total amount of water supplied Qt-under the constraints of different
cereal crop pattern scenarios and the total arable areas existent for the three irrigation plots considered,
i.e., the Boukan Dam downstream irrigation network, the plot upstream of the dam, and the RK
plain. A penalty function method is employed to convert the constrained optimization problem to an
unconstrained one, which can then be solved while using the classical SPSO algorithm.

The results of the application of the hydro-economic CSPSO-MODSIM model indicate that the
optimal total net economic benefit (NEBt) from all major crops in the ZRB basin (not including APPL,
which is grown in orchards and cannot easily be altered over the short run) can be improved by
appropriate adjustments of the different crop cultivation areas from that of the historical period
(32.2 Million USD), to 35.3 and 37.4 Million USD for the two medium emission scenarios RCP45 and
RCP60, respectively, but remain invariant for the extreme RCP85 (32.6 Million USD), though with an
average reduction of the agricultural water use Q of 38%.

This overall increase of the future maximal NEBt is based on optimal crop pattern areas as decision
variables that hint of a significant extension of the total arable area from its historical value of 632 km2

to up to 900 km2, i.e., a relative increase that varies, depending on the future period/RCP, between
36% and 46% and so helps to guarantee the food security in the ZRB. Moreover, the strongest average
increases of acreage of about 75%, amounting to an extension of approximately 250 km2, are reserved
for the strategic crops BARL and WWHT, owing to the 65%-devoted areal model constraint for these
cereals and also to their rather high estimated AEWPs and low water demands Q.

However, this large extension of the two cereal acreages is made primarily at the expense of the
crop area for ALFA, which, because of its low AEWP and rather high water demand, will be decreased
by more than 30% in the future, so that it becomes economically more efficient to import portions of
that crop from a neighbour catchment, such as the Aras River Basin.

POTA-, SGBT-, and TOMA-crop areas, in particular, will, relative to their historic values, also
be also tremendously increased, though less in absolute numbers than those of the cereals above.
In this vegetable group, the TOMA share of crop pattern exhibits the largest extension of about 250%,
owing to its high water productivity (AEWP) and this holds for all three RCPs investigated. For the
wetter RCP45- and RCP60-scenarios, the POTA- and SGBT-crop areas will, because of more available
water, be doubled as well. On the other hand, for the most extreme RCP85-scenario, BARL- and
SGBT-areal shares will augment by an average 85%, whereas the POTA-acreage will then have the
lowest percentile increase of only 50%.

Thus, in summary, to improve the total net income from agriculture in the ZRB, it is recommended
to replace the high-consuming water and low agro-economic water productivity crops, such as ALFA,
APPL, and SGBT with crops of less water demand and higher economic benefits that, in addition to
the other major crops of the ZRB investigated here (BARL, WWHT, TOMA, POTA) could be some new
region-specific crops, such as canola, saffron, and pistachio, which all have high absolute selling prices
and relatively high AEWPs.
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In conclusion, the sequential SWAT-MODSIM-CSPSO hydro-economic optimization model
developed here turns out to be an efficient tool for quantitative studies of agricultural economics and
water resources management, namely, in semi-arid basins with agricultural cultivation under deficit
irrigation. Moreover, by driving the model by future climate predictors, climate change impacts on
agricultural productivity can be evaluated, and the latter eventually be optimized under the vagaries
of climate change. Using a model, as the one proposed here, will allow water resources authorities
and other stakeholders, not only in agriculture, to find the most suitable regional water- and land
management strategies and optimal land-use planning scenarios for future years.

As a caveat, though, it may be noted that the accuracy of the present hydro-economic optimization
model could be improved by implementing more sophisticated crop yield forecasting methods, such
as to allow the estimation of different crop-yield response factors Kyc for each stage of the crop growth;
optimization of the crop production function; and, consideration of all the spatial and temporal changes
of land use classes and their related water demands in the model.
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