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Abstract: In agroecosystem management, conflicts between various services such as food provision
and nutrient regulation are common. This study examined the trade-offs between selected ecosystem
services such as food provision, water quantity and quality, erosion and climate regulations in an
agricultural catchment in Western Switzerland. The aim was to explore the existing land use conflicts
by a shift in land use and management strategy following two stakeholder-defined scenarios based on
either land sparing or land sharing concepts. The Soil and Water Assessment Tool (SWAT) was used
to build an agro-hydrologic model of the region, which was calibrated and validated based on daily
river discharge, monthly nitrate and annual crop yield, considering uncertainties associated with land
management set up and model parameterization. The results show that land sparing scenario has the
highest agricultural benefit, while also the highest nitrate concentration and GHG emissions. The land
sharing scenario improves water quality and climate regulation services and reduces food provision.
The management changes considered in the two land use scenarios did not seem to reduce the conflict
but only led to a shift in trade-offs. Water quantity and erosion regulation remain unaffected by the
two scenarios.

Keywords: SWAT model; model parameterization; land sharing; land sparing; water quantity;
water quality; greenhouse gas emissions; agriculture; multifunctionality

1. Introduction

Ecosystem services (ES) are benefits that humans receive from their environment.
Processes driving the provision of ES are simultaneously interacting in a complex dynamic [1].
Human well-being depends on sustainable ecosystem functioning [2]. Different categories of ES
include provisioning, regulating and maintenance and cultural services [3]. A common management
problem is that increases in benefits from one service often result in decreases in the provision of other
services. Agricultural systems, in particular, provide many examples of conflicts between multiple ES,
for example nutrient management affecting crop yield and nutrient runoff. Increased food provision
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often degrades other ES such as water quality and water quantity regulation [4]. Studies of land
management impacts on conflicts and synergies in ES provision are needed to support planners and
policy-makers in their efforts to improve the sustainability of agricultural management [5].

Various land management strategies are used to achieve a balance between ES such as integrating
the provision of different functions in the same space or by segregating the regulation of several
services in separate spatial compartments. The concept of land sharing (i.e., integrating the provision
of multiple ES on the same land) and land sparing (i.e., spatially segregating the provision of different
ES—usually segregating agricultural production from nature protection) provide two opposing ideas
for how to achieve a balance [6,7]. As considerable agricultural subsidies are spent on measures
promoting either of the two approaches, it is worth investigating if a shift in management strategy can
better mitigate conflicts between ES.

In this study, we evaluated changes in land use and management practices representing shifts
towards land sharing or land sparing. The Soil and Water Assessment Tool (SWAT) [8] was used
to evaluate land management scenarios defined by local stakeholders. SWAT was deemed to
be an appropriate tool for this study as it can simulate agricultural management practices, crop
growth, hydrology and water quality processes at a catchment scale [9]. SWAT is a semi-distributed,
process-based, complex and physically based model, which is capable of simulating multiple ecosystem
functions simultaneously and allowing for quantifying impacts of land use and management changes
on the ES indicators of concern (Table 1). Based on the assessed implications of selected ES, we discuss
the benefits and drawbacks of a shift in strategy towards either of the two scenarios.

Table 1. Selected ecosystem services (ES) and representative indicators.

Ecosystem Services Indicators

Water quantity regulations Low flow [m3/s], defined as 5th percentile of daily river discharge for the
entire period [10]

Water quality regulation Yearly nitrate concentration [mg N/L] in the outlet of the catchment

Erosion regulation Yearly transported sediment [t/ha]

Food provision
Agricultural benefit [Mio CHF/year] = benefit from crop production −
applied fertilizer cost + milk production benefit from assumed livestock in
the model

Climate regulation Greenhouse gas (GHG) emissions [CO2 equivalent kt/year]

2. Materials and Methods

2.1. Case Study

The Broye catchment is in the South-Western part of the Swiss Central Plateau, where agricultural
production plays a dominant role and potential adverse effects on water quality and availability are
of significant concern. The catchment covers an area of 630 km2 (Figure 1). Mean elevation of the
basin is about 664 m above sea level (lowest point 372 and highest 2369 m above sea level) and the
mean slope is 10.7% (6.1◦). Average precipitation is 865 mm per year and the average temperature is
9.6 ◦C with an average maximum value of 14.2 ◦C and an average minimum value of 5.1 ◦C (data from
the Payerne station for the period 1981–2015; Figure 2). The average daily discharge at the Payerne
station is 8 m3/s for the period 1981–2015 with a maximum value of 147 m3/s and a minimum value
of 0.4 m3/s. Approximately 67% of the area is agricultural land including arable, meadow and pasture
land uses cultivated for food and fodder production (Figure 1).
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Figure 1. Land use map of the Broye catchment which is predominantly used as agricultural land.
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Figure 2. Broye catchment SWAT model with 27 sub basin, climate (Payerne, Moudon-Origine
and Semsales), discharge (Payerne) and water quality (Domdidier) stations.

Following previous studies in this region [11] and by perceptions of regional stakeholders,
five indicator variables were selected to represent five ES of concern in the study area (Table 1).

2.2. Data and SWAT Model Setup

Our approach for the model application consisted of four main steps (Figure 3). These include
(i) SWAT model setup; (ii) SWAT model parameterization (calibration and validation); (iii) development
of land management scenarios and finally (iv) applying a parameterized SWAT model to land
management scenarios and carrying out post-processing methods for calculating ES indicators and
statistical analysis.

Primary data used to setup the SWAT model includes a digital elevation map (DEM), a soil map
and a database of soil parameters, a land use map and a database of crop parameters, river segments
and climate data (Table 2). Available data for SWAT model calibration and validation were daily river
discharge measurements, nitrate concentrations and crop yields of the main arable crops. To specify
land management for the current situation and the generated land use scenarios, data containing crop
and permanent grasslands shares, an irrigation map, a land use map and a soil suitability map were
used (Table 2).

The Broye catchment was divided into 27 sub-basins and 815 hydrological response
units (HRUs). Each HRU has been delineated with the homogenous soil, land use and slope.
Agricultural management inputs consist of management plans in arable and permanent
grasslands areas. The specification of land management in arable regions requires information on crop
rotations, irrigation and the amount and timing of fertilizer applied to each crop. For this study, crop
rotations were generated stochastically based on available information on crop shares at the municipal
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level [12], accounting for crop rotation recommendations [13]. Spring crops (potato, sugar beet,
grain maize and silage maize) were irrigated automatically based on crop demand in designated
irrigation areas [14]. Grasslands were divided into pasture and meadow of two intensity levels
according to [15] and [12]. The two intensity levels for pasture (with variation in livestock density
and respective nutrient inputs) and meadows (with a change in the number of cuts and the amount
of applied fertilizer) were defined based on [16]. Pasture management was defined as four livestock
units per hectare during the grazing period for intensive pastures and one livestock unit per hectare
for extensive pastures. Meadow management was assumed as four cuts per year and 30 [kg N] organic
fertilizer per cut for intensive meadows and two cuts per year and 25 [kg N] organic fertilizer per cut
for extensive meadows.

Current management of the area was defined as the baseline scenario and the model was calibrated
and validated for daily river discharge [m3/s] and monthly nitrate load [kg N] with baseline land
management inputs. SWAT outputs used for impact analysis of land management scenarios were:
daily river discharge [m3/s], average yearly nitrate concentration [mg/L] (calculated with daily nitrate
loads [kg N] and daily river discharge [m3/s]), yearly transported sediment [t/ha], yearly crop yield
[t/ha], annually applied nitrogen [kg N] and annually leached nitrate [kg N] (applied nitrogen and
leached nitrate were used for calculating GHG emissions).

Figure 3. Schematic overview of applied approach.
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2.3. SWAT Model Parameterization

The 35 years of available data were divided into three parts. The first five years were used
as model warm up period (1981–1985). The remaining 30 years were divided into 18 years for
calibration (1986–1990, 1996–2000, 2006–2010, 2013–2015) and 12 years for validation (1991–1995,
2001–2005, 2011–2012). This division ensured a better representation of the climate variability between
the calibration and validation periods. The SWAT model was calibrated for daily river discharge
[m3/s] in Payerne station (1981–2015) and for monthly instream nitrate load [kg N] in Domdidier
station (1986–2010). Nitrate concentrations were sampled four times a month from Domdidier station,
while river discharge observations were not collected from the site. Observed discharge from the
closest discharge station, Payerne, was used to relate measured concentrations to simulated nitrate
mass. A point source was added in the middle part of the catchment before Payerne station to
account for contributions from water treatment plants and other sources to reduce systematic error in
underestimating simulated river discharge. To this purpose, the measured river discharge of Payerne
station was filtered by “Baseflow Filter Program” [17] and added as a point source to the system
before parameterizing.

Table 2. Data and sources used in model setup, parameterization and land management scenarios.

Section of Use Data Details and Sources

SWAT model setup

Digital elevation map (DEM) 25 m [18]

River network [18]

Land use map 100 m [15]

Soil map [19]

Weather stations:
- P: Payerne
- M: Moudon-Origine
- S: Semsales

Daily climate data 1981–2015 (35 years):
Precipitation P,M,S, temperature P,M,S wind speed P,
solar radiation P [20]

SWAT model parameterization
(calibration and validation)

Water quantity Daily river discharge [m3/s]
(Payerne station 1981–2015) [21]

Water quality Monthly nitrate concentration [mg/L]
(Domdidier station 1986–2010) [21]

Crop yield Estimated crop yield in the area [22]

Development of land
management scenarios

Crop rotations

Municipality level data consisting of area of
8 dominant crops (winter wheat, winter barely,
winter rapeseed, corn, silage corn, potato, sugar beet
and temporary ley [12]
Crop management (sowing and harvesting
dates and fertilizer) [16,23]
Feasibility table of rotations [13]

Irrigation Map of irrigated areas [14]

Permanent grasslands (meadow
and pasture)

Management assumptions for 2 intensity levels [16]

Meadow:

- Intensive: 4 cut/year, 30 kgN fertilizer per cut
- Extensive: 2 cut/year, 25 kgN fertilizer per cut

Pasture:

- Intensive: 4 livestock unit/ha and grazing period
- Extensive: 1 livestock unit/ha and grazing period

Soil suitability map To select areas with low fertility [19]

SWAT model was calibrated and validated with Sequential Uncertainty FItting ver.2 (SUFI-2)
algorithm [24] provided in the SWAT-CUP software package as a semi-automated inverse modelling
for the combination of calibration and uncertainty analysis [25]. Due to non-unique results of the
inverse modelling, outputs are expressed as the 95% prediction bounds (95PPU). For quantifying
the quality of the parameterization, SWAT-CUP uses two indices (i) the P-factor quantifying the
percentage of measured data bracketed by the 95PPU (ranging between 0 and 1, which 1 is indicating
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100% bracketing of measured data); and (ii) the R-factor measuring the thickness of the 95PPU bound,
which is defined as the average difference between the upper and lower 95PPU divided by the standard
deviation of the measured data. A value around 1 or lower is suggested as a practically acceptable
value [25]. Ideally, high P-factor values and low R-factor values are desirable. In this study, the selection
of acceptable parameter sets was also based on an adequate representation of low flow. This additional
criterion slightly decreased the R-factor (narrower boundaries) and consequently, also the P-factor.

With a multi-objective and stepwise calibration strategy, the SWAT model was first parameterized
for water quantity (river discharge [m3/s]) in a daily time step, followed by water quality
(monthly instream nitrate load [kg N]) in monthly time step. Finally, crop yield was calibrated
by adjusting SWAT crop parameters (harvest index and bio-efficiency) to decrease PBIAS and to
increase Willmott index [26].

In each step, two iterations with 2000 simulations were used for parameterizing the SWAT
model to increase Nash Sutcliff Efficiency (NSE) for daily river discharge and to reduce PBIAS for
monthly nitrate load. In a third step, a subset of the sets of parameters were selected for further
model applications based on the selection criteria for satisfactory performance listed in Table 3 [27].
The selected sets of parameters were checked for calibration and validation periods for all objectives.
In total, 233 sets of parameters were selected to represent model non-uniqueness and applied to the
three land management scenarios.

Table 3. Calibration and validation criteria.

Variable Criteria

Daily river discharge [m3/s] NSE > 0.5
River low flow (5th percentile of daily discharge) [m3/s] PBIAS < ±25%
Monthly nitrate load [kg N] PBIAS < ±70%

2.4. Development of Land Management Scenarios

Two workshops were conducted with regional stakeholders to derive visions for the
implementation of land sharing and land sparing strategies. Suggested management changes in
comparison to the current land use situation are listed in Table 4. These stakeholder suggestions were
transformed into model inputs based on GIS operations using ArcGIS [28]. Table 5 shows a summary
of applied transformation rules.

Table 4. Suggested land management and land use changes from stakeholders’ workshop.

Land Management Scenarios Stakeholders’ Suggestions

Land sharing

- No irrigation
- Extensification: all permanent grasslands transformed to extensive,
increase share of ley and grain legumes within rotations
- No land use change

Land sparing

- Unlimited irrigation in lowlands (slope is lower 7.5% in arable area)
and highly fertile soils
- Intensification: all permanent grassland with highly fertile soil
transformed to intensive, increase share of potato, increasing fertilizer
by 25%
- Transforming arable areas with highly fertile soil on steep slope
(slope higher 7.5%) to intensive meadow
- Low fertile areas turned to the nature protection areas (forest)

For each land management strategy, changes in land use and land management have been defined
(Table 5). Land use change was only applied to the land sparing scenario and consisted of transforming
low fertile areas to forest and arable lands on steep slope to permanent grassland. Variations in land
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management consist of changes in the level of intensity for permanent grasslands and in managing
arable lands such as crop rotations, irrigated areas and applied fertilizers.

Table 5. Applied transformations on Soil and Water Assessment Tool (SWAT) model inputs.

Scenario Land Use/Management in
Baseline Scenario Slope [%] Soil Fertility Transformed Land

Use/Management

Land sharing

Arable, 143 kg N/ha fertilizer - - Arable, 132 kg N/ha fertilizer

Intensive permanent grasslands 1 - - Extensive permanent grasslands
Extensive permanent grasslands 1 - -

Land sparing

Arable, 143 kg N/ha fertilizer

Slope lower 7.5
Low Forest

High Arable, unlimited irrigation,
180 kg N/ha fertilizer

Slope higher 7.5 Low Forest

High Intensive meadow

Intensive permanent grasslands - - Intensive permanent grasslands
Extensive permanent grasslands - -

1 Intensive permanent grasslands include intensive pastures and meadows and extensive permanent grasslands
include extensive pastures and meadows.

Changes in the intensity level of arable lands are applied to crop rotations based on suggestions
in Table 4. In land sparing, potato shares are increased to increase the arable benefit and in land
sharing, temporary ley and grain legumes shares are increased to reduce the intensity level of
arable management. For each HRU, crop sequences are generated stochastically following regional
planting rules described in Reference [13] and reproducing crop shares at the spatial level of postcode
areas using R program [29]. Due to the stochastic nature of the crop rotation generation process
(different crop sequences can fulfil the requirements of planting rules and crop shares), 10 replicates of
rotations were produced. With these 10 replicates, we account for land management setup uncertainty.
The parameterized SWAT model was applied to evaluate land management scenarios on the basis of
these 10 replicates and 233 sets of parameters selected as described in Section 2.3.

2.5. Agricultural Financial Benefit

Agricultural benefits are estimated based on simulated crop yields and area of
permanent grassland. The financial benefit from arable land was estimated based on market prices
for dry yield (see Appendix A Table A3) minus costs to fulfil crop-specific fertilizer requirements
(1.02 CHF/kgN) [30]. Detailed information on crop rotations in the different land management
scenarios and crop prices is provided in Appendix A Table A2. For estimating benefits from permanent
grassland, we assumed grazing by dairy cows in pastures with varying stocking densities depending
on management intensities (Table 2). The total number of livestock units (i.e., dairy cows) was
multiplied by an annual milk production value of 8000 [kg/head] according to [30] to derive a proxy
for livestock productivity. The assumed milk price was 0.55 [CHF/kg] [30].

2.6. Greenhouse Gas Emissions

GHG emissions are calculated based on the methodologies in the national agricultural greenhouse
gas inventory of Switzerland [31]. According to this standardized procedure, CH4 and N2O missions
from enteric fermentation and manure management of dairy cows are estimated by multiplying
the number of livestock units by an emission factor of 4.1 and 0.40 t CO2 equivalents per head and
per year, respectively. Based on applied amounts of mineral and organic fertilizer on arable land
and grassland, direct emissions of N2O are estimated, assuming a loss of 1% kg N2O-N per kg of N
input [31]. Indirect N2O emissions after volatilization of NH3 and NOx from mineral and organic
fertilizers are estimated assuming emissions of 0.67 and 2.56 kg CO2 equivalents per kg N input,
respectively [31]. Furthermore, 5.3 kg CO2 equivalents per kg N are assumed to be emitted during the
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production of mineral fertilizers [32]. Accordingly, for each of the three land management scenarios the
total nitrogen amount applied on arable land is multiplied by this emission factor from the greenhouse
gas inventory. Indirect NO2 emissions after leaching of NO3 are estimated by multiplying the NO3 load
calculated by the SWAT model with the N2O emission factor of 0.0075 kg N2O-N per kg N leached [31].

2.7. Uncertainty Analysis

Two different sources of uncertainty are assessed in this study: (i) SWAT model parameterization
uncertainty and (ii) land management setup uncertainty. To account for the first source, SWAT
model parameter uncertainty is represented by uncertainty bounds (95PPU) based on 233 selected
sets of parameters (see Section 2.3). For the second source, 10 replicates of land management
scenarios are produced to assess management setup uncertainty. Analysis of variance (ANOVA)
was used to partition total uncertainty originating from model parameterization and replicates of
multiple land management scenarios to quantify the relative contribution of each source to the overall
uncertainty [33].

3. Results

3.1. Parameterization

The average of performance metrics for 233 selected sets of parameters for selected SWAT chosen
outputs for calibration and validation are summarized in Table 6.

Table 6. Results of parameterization for all selected objectives for two independent data sets, calibration
and validation and results of manual adjustment for predicting crop production (see Appendix A
Table A4 for each crop separately).

Method SWAT Output Criteria Calibration Validation

Parameterization with SWAT CUP
Daily river discharge [m3/s] NSE [-] 0.6 ± 0.044 0.66 ± 0.045
Monthly nitrate load [kg N] PBIAS [%] 17.5 ± 31.76 18.41 ± 30.56

Selection of parameterized sets of
parameters with R Low flow [m3/s] PBIAS [%] −6.52 ± 13.22 −7.62 ± 12.32

Manual adjustments Yearly crop yield [t/ha] PBIAS [%] 0.37 ± 2.6 -
Willmott index [-] 0.6 ± 0.1 -

River discharge and in-stream nitrate load were simulated quite well in the SWAT model
(Figures 4 and 5). For the 233 selected sets of calibrated parameters the P-factor and R-factor for
daily discharge were 0.60 and 0.63, respectively, indicating acceptable values. These values for
the validation period were 0.58 and 0.56. The calibrated model brackets about 60% of observed
discharges with a relatively small uncertainty. See Appendix A Table A1 for calibrated uncertainty
bounds for selected parameters. Calibrated parameters are related to catchment characteristics and
are assumed to be valid for evaluating land management changes. Nash Sutcliff efficiency (NSE) is
higher than 0.50 and bias error for low flow is lower than ±25% for all selected sets of parameters.
As the focus of this study is on low flow, rather than average discharge, selected sets of parameters
were constrained to reproduce observed low flow realistically. For this reason, the peak flows are
systematically underestimated.

In water quality parameterization, selected criteria were less restrictive. Uncertainty bounds are
therefore much wider and P-factor is higher in comparison with water quantity, as 86% of measured
points are bracketed in the uncertainty bounds for calibration period and 82% for the validation period.
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Figure 4. Model simulation for daily river discharge in the calibration period (up) and validation
period (down).

Figure 5. Model simulation for monthly nitrate load in the calibration period (up) and validation
period (down).
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3.2. Land Management Scenarios Analysis

As Figure 6 and Table 7 illustrate, the area of arable land use decreases in the land sparing scenario
and instead areas of permanent grasslands and forest land uses increase. Arable area decreases in land
sparing but arable management is intensified by increasing irrigation and potato shares in rotations.
There is no land use change in the land sharing scenario but less intensive arable management was
applied by rising shares of temporary ley and field pea in rotations and stopping irrigation.

Results of the baseline scenario representing the current status of ES in the Broye catchment are
presented in Table 8. In the land sparing scenario, agricultural benefit increases and at the same time
nitrate concentration and GHG emissions increase. In the land sharing scenario, nitrate concentration
and GHG emissions decrease along with a decrease in agricultural benefit.

Figure 6. Land use maps of the three scenarios: baseline (a), land sharing (b) and land sparing (c) as
derived from GIS-based transformation of stakeholder suggestions into SWAT model inputs.

Table 7. Summary of the results of suggested transformations in land uses and land management
areas [ha].

Land Use Land Management Baseline Land Sharing Land Sparing

Permanent grasslands (meadows and pastures) Intensive 9184 0 20,007
Extensive 3678 12,862 0

Arable

Total arable 29,576 2,9576 20,178
Potato 1506 1252 2281
Field pea 1791 3190 1143
Temporary ley 8254 10,219 5257
Irrigated arable area 1130 0 6096

Forest - 14,635 14,635 16,889

Changes indicated in Table 8 are illustrated by a radar plot for average values (scaled to
maximum value) in Figure 7 (average of 2330 values to have a unique value representative of all
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assumptions for comparison between scenarios). The radar plot in Figure 7 visualizes average values
scaled to a maximum value for each service indicating trade-offs between ES indicators (agricultural
benefit versus water quality and climate regulation).

Figure 8 shows uncertainty distributions of percentage change of the two extreme scenarios in
comparison to the baseline scenario. Values were averaged over the replicates to represent only SWAT
parameterization uncertainty. Change in low flow is very small, as only a small increase in low flow
is observed in the land sharing scenario and changes estimate is distributed around zero in land
sparing (no significant change). There is a significant decrease in nitrate concentration for the land
sharing scenario for all SWAT parameter sets. On the contrary, nitrate concentrations tend to increase
significantly in the land sparing scenario. There is no significant change in transported sediment
for the land sparing scenario but a small significant decrease is seen for the land sharing scenario.
Agricultural benefits show a clear reduction in land sharing and an increase in land sparing for all
optimized sets of parameters. GHG emissions decreased considerably in the land sharing scenario
and increased in the land sparing scenario with a very low variation due to SWAT parameterization.
The main driver of GHG emissions is the intensity of pasture management and the other components
play a minor role. As the total number of livestock units held in the catchment is assumed to be
constant for all simulation runs within one scenario, overall GHG emissions show only little variation
(due to variation in nitrate leaching and applied fertilizer) within each scenario.

Table 8. Average values of 2330 simulated values (233 optimized sets of parameters with 10 replicates)
for assumed indicators for the three land management scenarios (average ± standard deviation).

Scenarios Low Flow
[m3/s]

NO3 Concentration
[mg/L]

Sediment
[t/ha]

Agricultural Benefit
[Mio CHF/Year]

GHG Emissions
[CO2 eq. kt/year]

Baseline 1.29 ± 0.2 1.72 ± 0.47 10.05 ± 2.11 143.48 ± 3.29 152.35 ± 1.15
Land sharing 1.31 ± 0.21 1.36 ± 0.38 9.98 ± 2.07 77.12 ± 2.74 82.54 ± 1.04
Land sparing 1.28 ± 0.2 1.90 ± 0.52 9.92 ± 1.96 163.75 ± 2.88 186.53 ± 1.22

Figure 7. Visualization of average values scaled to maximum value for each ecosystem service for the
three scenarios.
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Figure 8. Changes [%] in ES indicators in comparison to the baseline scenario for (a) the land sharing
scenario and (b) the land sparing scenario (uncertainty distribution of the changes estimated by the
SWAT according to the 233 sets of parameters).

Table 9 describes three components of agricultural benefits (arable and livestock benefits and
fertilizer cost). Assumed number of livestock units (dairy cow) for baseline, land sharing and
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land sparing scenarios are 19,734, 6647 and 26,587, respectively. These numbers were the basis
for deriving estimates of livestock productivity (see Table 9) and GHG emissions from pastures
(Table 10). Agricultural subsidies (i.e., direct payments to farmers) were not included here, because
they are considered to be an external policy driver for the implementation of a particular land
management strategy. Fodder requirements of livestock for the three scenarios were estimated
based on [16] to validate that enough fodder can be produced in the region and no additional
cost for fodder imports arises. As Table 9 indicates, livestock benefit, directly related to pasture
management and stocking density, has the highest influence on total agricultural benefits. Low prices
for temporary ley reduced benefits from crop production in the land sharing scenario, which has
the same arable area as the baseline scenario. Crop rotations used in the baseline scenario provide
higher net benefits than those practiced in the land sharing scenario. Furthermore, when we compare
benefits from arable production between baseline and land sparing scenarios, we see that the more
intensive arable management (increased fertilization levels and irrigation) and higher shares of potato
(producing greater net benefits) in the land sparing scenario could not compensate for the decrease in
arable area.

Table 9. Estimated benefits and cost for agricultural productions [Mio CHF/year] for the three scenarios
(the whole region).

Scenarios Crop Production Benefit Applied Fertilizer Cost Livestock Benefit Total Benefit

Baseline 62.14 5.49 86.83 143.48
Land sharing 52.59 4.71 29.24 77.12
Land sparing 52.74 5.97 116.98 163.75

Most GHG emissions are due to intensive pasture in baseline and land sparing scenarios (Table 10).
Arable land is the second source of GHG emissions and produces even higher emissions than extensive
pasture in the land sharing scenario. GHG emissions from leaching have the lowest share (below 10%)
in all three scenarios.

Table 10. Estimated greenhouse gas (GHG) emissions from different land uses for the three scenarios.

Source

Baseline Land Sharing Land Sparing

GHG Emissions
[kt CO2 eq./year]

Percentage of Total
Emissions [%]

GHG Emissions
[kt CO2 eq./year]

Percentage of Total
Emissions [%]

GHG Emissions
[kt CO2 eq./year]

Percentage of Total
Emissions [%]

livestock (enteric
fermentation and
manure management)

89.55 59% 30.16 37% 120.65 65%

fertilizer
(production
and application)

53.03 35% 44.28 54% 54.88 29%

Nitrogen leaching 9.73 6% 8.07 10% 10.97 6%

3.3. Uncertainty Analysis

ANOVA results (Table 11) show that among all assessed SWAT outputs just for applied fertilizer
and crop production outputs, uncertainties originating from land management setup (replicates) play
a role (85–100% and 20–22%, respectively). All other outputs in all scenarios are mainly affected by
SWAT model parameterization (>99%).
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Table 11. Proportions of uncertainties originating from either SWAT model parameterization
(parameters) or management setup (replicates) for each ES indicator and each land use scenario.

Ecosystem
Services Indicators

Representative SWAT
Simulated Objectives

Baseline Land Sharing Land Sparing

Parameters Replicates Parameters Replicates Parameters Replicates

Water quantity Low flow 0.9984 0.0005 0.9985 0.0006 0.9983 0.0005

Water quality Nitrate concentration 0.9994 0.0002 0.99 0.0001 0.9993 0.0001

Erosion Sediment 1 0 1 0 1 0

Agricultural production Crop production 0.7755 0.2227 0.7844 0.2136 0.7971 0.2008

GHG emissions
Applied fertilizer 0 1 0.0159 0.9185 0.0147 0.8531
Nitrate leaching 0.9934 0.0032 0.9883 0.0013 0.9975 0.0004

4. Discussion

4.1. Scenario Analysis

The land sparing scenario has the highest agricultural benefit, while also the highest nitrate
concentration and GHG emissions. Increasing food provision degrades water quality and climate
regulations services but water quantity and erosion regulation remain unaffected by assumed land
use and land management changes in this scenario. In line with field observations by [34], a more
detailed analysis of our model results shows that water infiltration rate for permanent grasslands
was higher than for temporary ley and both were higher than other field crops, which had an
impact on low flow results in this scenario. In the land sparing scenario, decreasing the area
of arable land, while increasing the area of intensive meadows has been compensated by more
intensive arable management, a lower share of temporary ley, a higher share of potato and more
irrigation of spring crops. Different compensating factors are the reason that there is no significant
change in transported sediment in the land sparing scenario: more intensive arable management
in a smaller area increases sediment loss, while at the same time the area of intensive meadow,
with reduced soil loss, increases. Increasing forest area in the land sparing scenario might have
additional benefits regarding biodiversity conservation but this was not specifically quantified in
this study. Further possibilities for reducing conflicts between ES in the land sparing scenario could be
investigated in future studies (e.g., implementing buffer strips along the river to minimize nutrient
wash off into the river channel, changing the arable land to extensive pasture). In agreement with [10],
agricultural benefits can be increased with land sparing but at the expense of other ES. This study also
shows that food provision, water quality (nitrate leaching) and GHG emissions are strongly affected by
pasture management (Tables 8 and 9). The land sparing scenario causes the highest nitrate pollution
and GHG emissions. This can be explained by the higher nutrient inputs on intensively managed
arable and grassland areas as well as by the high livestock density.

The land sharing scenario improves water quality and climate regulation services and reduces food
provision while water quantity and erosion regulations remain mostly unaffected. In the land sharing
scenario, the small increase in low flow (Figure 8) is related to applied land management changes that
can be explained by higher infiltration in temporary ley [34], more temporary ley in rotations and
stopping irrigation. These changes have positive impacts on water quantity and may be investigated
further in climate change adaptation studies. As [35] also found in their research, in comparison with
spring crops, winter crops reduce total sediment loss due to better soil coverage [36]. This is the reason
for the observed small decrease in transported sediment in the land sharing scenario. The land sharing
scenario has the lowest agricultural benefits but also the lowest nutrient leaching and GHG emissions,
as all permanent grasslands are managed extensively, decreasing overall diffuse nutrient pollution
and GHG emitted in the catchment. A general extensification of land management in the land sharing
scenario will have positive implications for the biodiversity of grassland species in particular [37].
Simulated results of the baseline scenario (Table 8) quantify ES provision of the current situation in the
Broye catchment. Average yearly nitrate concentration is estimated at 1.72 [mg/L], indicating a good
water quality on average concerning nitrate concentration according to [38]. The baseline scenario



Sustainability 2018, 10, 3844 16 of 21

performed between the two extreme scenarios; showing higher agricultural benefit in comparison to the
land sharing scenario and lower pollution in comparison to the land sparing scenario. However, higher
arable benefit in the baseline scenario (Table 9) suggests that more economically productive field crops
are used in the baseline scenario compared to the land sharing scenario. Intensifying crop rotations
by increasing nutrient and irrigation inputs as well as increasing the share of potato which provides
higher benefit in the land sparing scenario could not compensate for the reduction in arable land area.

As Figure 7 shows, agricultural benefits, nitrate concentration and GHG emissions are the
indicators most affected by land management scenarios; low flow and transported sediment indicators
are mostly unaffected by changes in land management. This shows that the central conflict lies
between food provision on the one hand and water quality and climate regulation on the other hand.
These results agree with previous findings of [11], who also found that nutrient leaching is a primary
concern in the Broye catchment. While they assessed ES trade-offs based on the field scale model,
our study also considered linkages between agricultural land management and the hydrological cycle
(i.e., water quantity and quality) as well as GHG emissions. Results of our extended study show that
land management impacts on water quality are substantial but water availability is hardly affected by
implemented management changes.

Neither of the two extreme scenarios outperforms the current land management strategy regarding
reducing the dominant ES conflict. This may suggest that the current land use and management
situation is close to a Pareto-optimal land use solution in the region (i.e., cannot be improved about
one objective without reducing the performance of another objective). This would confirm that land
management policies have been successful in implementing multifunctional agriculture in the region.

4.2. Uncertainty Analysis

Results of the uncertainty analysis show that the uncertainty bounds for river discharge are
narrower than for nitrate, indicating that uncertainty in water quality prediction is higher in
comparison with water quantity. This is related to a less restricted criterion selected for nitrate
loads (PBIAS < ±70%).

By quantifying model uncertainty originating from two possible sources, findings derived from
the scenario analysis can be considered more robust, increasing decision-makers’ confidence in
simulation results. While effects of SWAT parameterization uncertainty have been studied extensively
(e.g., [25,39–41]), only a few studies have been conducted to investigate the relevance of other
uncertainty sources on SWAT model outputs. For example, van Griensven et al. [42] found that
the influence of input uncertainty (i.e., climate and pollution data) is minor in comparison to SWAT
parameterization uncertainty. Similarly, Ma et al. [43] found that parameters uncertainty is the
most significant factor in uncertainty analysis in comparison with precipitation input uncertainty.
Our results indicate that the uncertainty in management setup a minor role in the overall uncertainty.
ANOVA results (Table 11) suggest that uncertainty of SWAT model parameterization represents the
most substantial fraction of the total uncertainty. Land management setup uncertainty has a minor
impact on the total uncertainty. The maximum impact of replicates was found in crop production
estimates (20–22% of total variance) and applied fertilizer (80–100% of total variance). For the other of
variables it is less than 1%.

The stepwise approach of uncertainty analysis considering SWAT parameterization and land
management setup uncertainty can be applied to any other catchment. However, calibrated boundaries
for SWAT parameters would be different for catchments with different characteristics and climate.
Land management setup can be adjusted for a different catchment based on regional data such as
crop rotations and irrigation. Uncertainty contributions may differ in various case studies with
different characteristics, climate, land use and management practices. For future modelling studies,
various improvements are possible to reduce uncertainties in model parameterization (e.g., variance in
sediment modelling was high in this study and can be reduced by adding to multi-objective calibration
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if data becomes available); also more restricted criteria could be assumed for model calibration
and validation.

5. Conclusions

The SWAT-based analysis of stakeholder-defined scenarios could provide insights into the
practical benefits and drawbacks of shifts in management strategies towards either land sharing
or land sparing. Model results revealed the most critical land use conflict/trade-off in the case study:
benefits from agricultural production conflict with diffuse pollution and GHG emissions. Low flows
and sediment loads were on average hardly affected by the land use and management changes.

As two potentially significant sources of uncertainty were considered and quantified in this study,
a robust evidence base is provided. Quantitative estimates of changes in ES indicators can be useful
for planners and policy makers thinking about prioritizing land management strategies to control
water quality and climate regulation services with also considering food provision services. From the
model-based evaluation of stakeholder-defined scenarios of land sharing and land sparing, a definite
recommendation for a shift in management strategy cannot be derived. None of the investigated
scenarios could reduce the dominant land use conflict in general but only induce a shift in trade-offs.
If an increase in agricultural productivity (i.e., net benefits) was desirable, this could best be achieved
by increasing grassland management intensities and related livestock (milk) production. The potential
to improve production gains in arable areas is limited as yield potentials are largely exploited under
current conditions (i.e., nutrient and water limitations in arable production are small). However,
if grassland and livestock production are increased, this may induce new conflicts not considered in
this study so far (e.g., increased biological pollution). Water quality and climate regulation problems
can best be controlled by a reduction in management intensity as shown for the land sharing scenario.
However, this may only be achievable if direct payments are increased to compensate for farmers’ loss
in income.

By studying the uncertainty from management setup and parameterization in SWAT, this work
adds to the understanding of relevant uncertainty sources in agro-hydrological modelling in general
and in SWAT modelling in particular. The uncertainty related to the management setup was negligible
for most outputs, except for crop yield and applied fertilizer.
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Appendix A

Table A1. Calibrated uncertainty bounds for selected SWAT parameters.

Process Category Change Type 1 Parameter Name Extension Lower Boundary Upper Boundary

Climate Snow processes

V SFTMP basin.bsn 1.100000 1.100000
V SMTMP basin.bsn 6.300001 6.300001
V SMFMX basin.bsn 6.300000 6.300000
V SMFMN basin.bsn 3.700000 3.700000
V TIMP basin.bsn 0.335000 0.335000

Channel processes Channel water routing

V IRTE basin.bsn 1 1
V MSK_CO1 basin.bsn 0.750 0.750
V MSK_CO2 basin.bsn 0.250 0.250
V MSK_X basin.bsn 0.200 0.200
V CH_N2 *.rte 2 0.069258 0.223092

Hydrologic cycle

Potential and
actual evapotranspiration

V IPET basin.bsn 2 2
R ESCO basin.bsn −0.683887 0.105387
R EPCO basin.bsn −0.047387 0.857887

Surface runoff R CN2 *.mgt −0.19139 0.425889

Soil water
R SOL_AWC() *.sol −0.092887 0.721387
R SOL_K() *.sol −0.713887 0.095387
R SOL_BD() *.sol −0.114387 0.656887

Groundwater

V ALPHA_BF *.gw 0.071113 0.690387
R GW_DELAY *.gw −0.442387 0.185887
R GWQMN *.gw −0.878137 0.040637
R GW_REVAP *.gw −0.166637 0.500137
R REVAPMN *.gw −0.866887 0.044387
R RCHRG_DP *.gw −0.141637 0.575137

Nutrients Nitrogen cycle/runoff

V NPERCO basin.bsn 0 0.609888
V RCN basin.bsn 1.201688 10.400812
V N_UPDIS basin.bsn 12.286263 70.763741
V CMN basin.bsn 0.000045 0.002015
V ERORGN *.hru 2.074313 6.223186
V SOL_NO3() *.chm 46.536274 139.613724
V SHALLST_N *.gw 337.862549 1013.637451
V HLIFE_NGW *.gw 0 118.778091

1 Change types include: (i) R: relative change; (ii) V: replace absolute value; 2 The sign “*” indicates that parameter
is changed in all HRUs.

Table A2. Average crop shares in rotation in different land management scenarios.

Crop Baseline Land Sharing Land Sparing

Potato 5% 4% 11%
Field peas 6% 11% 6%
Temporary

ley 28% 35% 26%

Sugar beet 6% 5% 5%
Silage maize 12% 10% 11%
Grain maize 5% 4% 5%

Winter
rapeseed 9% 7% 8%

Winter wheat 21% 17% 19%
Winter barely 8% 7% 7%

Table A3. Crop prices CHF/ton for dry yield [30].

Crop Price Dry Yield CHF/Ton

Potato 2159
Field peas 428

Temporary ley 307
Sugar beet 417

Silage maize 460
Grain maize 545

Winter rapeseed 808
Winter wheat 608
Winter barely 404
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Table A4. Manual calibration for crop yield based on estimated crop yield.

Crop PBIAS [%] Wilmott Index [-]

Potato 3.2 0.68
Sugar beet 0.5 0.67

Grain maize 3.8 0.49
Winter rapeseed −1.8 0.48

Winter wheat −1.9 0.7
Winter barely −1.6 0.6
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