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Supplementary Materials: Quantification of Ecosystem Services 

1. Grass Production 

Grass production is the most important provisioning service in the study area’s grassland 
ecosystem because it provides the material basis for grassland-based animal husbandry [1]. Grass 
yield is a basic index for assessing grassland productivity. Here, we used a remote sensing model of 
typical grasslands based on Modis NDVI data to estimate dry weight grass yields in the study area 
[2]. 𝐺𝑃 = 1/3 × 𝐴𝐺𝐵 = 1/3 × 3.546 × 𝑁𝐷𝑉𝐼 .  (1) 

where, GP is grass production (kg·ha−1); AGB is above ground biomass-fresh grass production 
(kg·ha−1); NDVI is the normalized vegetation index (dimensionless); and 1/3 is the hay to fresh grass 
conversion factor typical of temperate grasslands. 

2. Livestock Density 

Livestock density was used to characterize the provisioning capacity of major livestock products 
in the study area. Since livestock density is traditionally expressed as the average number of livestock 
per unit area within a region, the data provided by administrative governments did not reflect the 
spatial heterogeneity of livestock within the study area [3]. Therefore, in this paper, the density data 
for sheep and cattle (the main livestock and meat sources in Xilinhot) was superimposed onto data 
obtained from the 2010 Gridded Livestock of the World database to determine livestock densities 
across the study area. Calculations of livestock density were performed using the following formula: 𝐿 = 𝐿 + 𝐿  (2) 

where, Lt is total livestock density (Tlu·km-2); Ls is sheep density (Tlu·km-2); and Lc is cattle density 
(Tlu·km−2). 

3. Water Yield 

Water yield is an important ES in arid and semi-arid regions. Changes in land use and vegetation 
cover can impact the hydrological cycle by altering patterns of evaporation and water infiltration into 
the soil [4]. In this study, Water yield was assessed using the annual water yield module in the InVEST 
model. This module calculated regional water yield as the difference between actual precipitation 
and actual evaporation [5]. Water yield was calculated using the following formula: 𝑊𝑌 = 1 − 𝐴𝐸𝑇𝑃 × 𝑃  (3) 

where, WYx is the total annual water yield (mm) of grid x; AETx is the average annual actual 
evapotranspiration (mm) of grid x, which is calculated using the monthly data for rainfall and 
temperature [6]; Px refers to the average annual precipitation (mm) of grid x; AETx/Px is based on an 
expression of the Budyko curve [7,8]; 𝐴𝐸𝑇𝑃 = 1 + 𝑃𝐸𝑇𝑃 − 1 + 𝑃𝐸𝑇𝑃  (4) 

where, PETx is the potential evapotranspiration and w is a non-physical parameter that characterizes 
natural, climatic soil properties, both detailed below. 𝑃𝐸𝑇 = 𝐾 × 𝐸𝑇  (5) 

where, ET0 is the reference evapotranspiration at pixel x, which is based on the evapotranspiration of 
reference vegetation; Kc is the plant evapotranspiration coefficient associated with the Land Use and 
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Land Cover (LULC) data for pixel x and is largely determined by the vegetative characteristics of the 
land cover found at that pixel [9]. 𝑤 = 𝑍𝐴𝑊𝐶𝑃 + 1.25 (6) 

where, AWCx is the volumetric (mm) plant available water content at pixel x, which is estimated using 
soil texture, soil depth, and root depth of vegetation; Z is an empirical constant, sometimes referred 
to as the “seasonality factor” [1], which captures the local precipitation pattern and additional 
hydrogeological characteristics [8]. 

4. Soil Conservation 

Lack of vegetation coverage can lead to surface erosion, especially on sloped soils, thus 
increasing sediment discharge into rivers and reservoirs [10]. In this study, the soil conservation ES 
was quantitatively assessed using a Revised Universal Soil Loss Equation (RUSLE). The soil 
conservation services of the ecosystems in the study area were based on potential soil conservation 
[11]. The formula is as follows: 𝑆𝐶 = 𝐴 − 𝐴  (7) 

where, SC is the annual potential soil conservation (t·ha-1); Ap is the amount of potential soil erosion 
(t·ha-1); Ar is the amount of actual soil erosion (t·ha-1). 𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 (8) 

where, R is rainfall-runoff erosivity (MJ·mm·ha−2·h−1), which is calculated using the empirical 
equations for arid and semiarid lands proposed by Wischmeier and Smith [12]; K is the soil erodibility 
factor (t·h·MJ−1·mm−1), which is determined using the erosion-productivity impact calculator (EPIC) 
model [13,14]; LS is the slope length and steepness factor calculated using the Digital Elevation Model 
(DEM) in ArcGIS [15,16]. 𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × C × P (9) 

where, C is a dimensionless factor for vegetation cover calculated by vegetation coverage fraction [17]; 
and P is also a dimensionless factor referring to the support practice of soil conservation using 
Wener’s slope-based method [18]. The ranges of the above two factors are both between 0 and 1. 

5. Sand Fixation 

Wind erosion is a main contributor to deteriorating farmland soil quality and grassland 
desertification in arid and semi-arid regions of northern China [19]. When wind speeds are extremely 
high, dust storms can develop, causing atmospheric pollution and threatening human lives and 
property [20]. In this study, the ES of sand fixation was assessed quantitatively using a Revised Wind 
Erosion Equation (RWEQ) [21]. The formula is as follows: ∆𝑄 = 𝑄 − 𝑄  (9) 

where, ∆Q is the amount of sand fixation (t·km-2); Q0 is the amount of potential sand erosion without 
vegetation cover (t·km−2); Qv is the amount of actual sand erosion with vegetation cover and 
management (t·km−2). 𝑄 = 2 × Z𝑆 × 𝑄 × 𝑒 /  (10) 

where, Qx is the amount of sand transported by the wind at a point x downwind; Qmax is the maximum 
amount of sand that can be transported downwind; and S is the critical field length. 𝑄 = 109.8 × 𝑊𝐹 × 𝐸𝐹 × 𝑆𝐶𝐹 × 𝐾 × 𝐶  (11) 

Where, WF is the weather factor; EF is the soil erodibility factor; SCF is the soil crust factor; K′ is 
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the soil roughness factor; and C is the vegetation cover factor [22]. 𝑆 = 105.71 × 𝑊𝐹 × 𝐸𝐹 × 𝑆𝐶𝐹 × 𝐾 × 𝐶 .  (12) 

In particular, the instruction manual for the RWEQ model specifies that the wind speed input 
parameter should be an average of wind speed data collected every 1 to 2 min [23], which is difficult 
to achieve. In this study, we converted daily mean wind speed data into minute wind speed data 
using a formula based on the study by Guo [24]. 

6. Carbon Storage 

Grasslands act as carbon sinks and therefore play an important role in the carbon cycle of 
terrestrial ecosystems. About 80% of the organic carbon contained in grassland ecosystems is stored 
underground [25]. Previous studies have used Net Primary Productivity (NPP) to indicate the ability 
of ecosystems to fix carbon and release oxygen [22,24,26,27]. This method is inadequate because NPP 
only represents the above-ground portion of stored carbon, but ignores carbon stored in plant litter, 
roots and soil. Thus, NPP does not reflect the carbon storage capacity of the entire ecosystem. In this 
study, carbon storage was quantitatively assessed using the carbon storage module of the InVEST 
model, which simplifies ecosystem carbon cycles and considers carbon storage in four major pools 
(above-ground biomass, underground biomass, soil, and dead organic matter) to estimate the total 
carbon storage of the landscape [5]. The formula is as follows: 

𝐶 = 𝐴 𝐶 + 𝐶 + 𝐶 + 𝐶  (13) 

Where, Ct denotes total carbon storage (MgC); j denotes a specific type of land use; n denotes the 
number of land use types; Aj denotes the area of land use type j (ha); Caj denotes the above-ground 
carbon density of land use type j (MgC·ha-1); Cbj is the underground carbon density of land use type 
j (MgC·ha−1); Csj is the soil carbon density of land use type j (MgC·ha-1); and Cdj is the organic carbon 
density of dead organic matter for land use type j (MgC·ha-1). To calculate the carbon density of 
grasslands, we calculated the biomass of grasslands with high, medium, and low vegetation coverage 
directly from field sampling measurements, and converted these measurements to carbon content 
using the common conversion rate of 0.45. In addition, underground carbon pools were converted to 
above-ground carbon pools using the root-crown conversion ratio coefficient of 5.3 for typical 
grasslands [28]. Soil carbon density was derived from direct measurements of the organic carbon 
content of soils. Since forest coverage in the study area was extremely low, we used a table for forest 
carbon density included in a relevant study [29]. Because carbon storage in crops is relatively low 
and highly variable, we ignored the above-ground carbon content of annual crops and only 
calculated stored carbon in farmland soils. Although carbon storage by open water, developed land, 
and unused land is not zero, it is difficult to measure. Therefore, following previous studies [29,30], 
we assumed that carbon storage by these three land types is negligible and set the carbon density as 
zero. 

7. Habitat Quality 

Habitat quality can serve as a proxy for biodiversity because it reflects the capacity of the 
ecosystem to provide suitable living conditions for individual animal, plant and human as well as 
their populations [31]. Here, habitat quality was quantitatively assessed using the habitat quality 
module of the InVEST model. The formulas for these calculations are as follows: 𝑄 = 𝐻 1 − 𝐷𝐷 + 𝑘  (14) 

where, Qxj is the habitat quality (dimensionless) of grid x in land use type j; Hj is the habitat suitability 
(dimensionless) of land use type j; Dxj is the level of stress by all threats (dimensionless) in grid x of 
land use type j; k is the half-saturation constant, which usually equals half the maximum value of Dxj; 
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and z is a normalized constant (dimensionless) and is usually 2.5. 
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where, R is the the number of threat; Yr is the number of grids occupied by the threat r; Wr is the 
weight of the threat and its value is 0-1; ry is the value of the threat in grid y (with a value of 0 or 1); 
iry is the stress level of the habitat induced by the value ry of the threat in grid y; β is the level of 
accessibility and its value is 0–1, with 1 indicating extremely accessible; Sjr is the sensitivity of habitat 
type j to the threat r and its value is 0–1, with a value closer to 1 indicating higher sensitivity. 

In general, natural environments are most sensitive to external threat, followed by semi-artificial 
environments, whereas artificial environments are largely unaffected by external threat. Therefore, 
this study regarded construction land as a source of habitat threat [5,32]. 

8. Landscape Aesthetics 

The aesthetic appeal of scenic areas in natural grasslands directly affects tourism development. 
We adapted a visual quality index (VQI) to include five parameters: terrain, water source, green 
space, human influence, and accessibility [33]. The original VQI included a historical parameter 
instead of accessibility. Here, we used accessibility due to data availability and to the fact that 
landscape aesthetics have a largely touristic appeal. We also simplified the method used to quantify 
the five parameters in the VQI. We used a terrain roughness index, distance to a water source, 
vegetation coverage, percentage of developed land, and distance from the main road, respectively, 
to quantify the five parameters. Specifically, we quantified distances to a water source and to a main 
road using the multi-ring buffer zone function in ArcGIS. The scores for the five parameters were 
added to obtain a total VQI score, which represented the relative aesthetic value of a grid unit. The 
formula is as follows: 𝑉𝑄𝐼 = 𝑉𝑄𝐼 + 𝑉𝑄𝐼 + 𝑉𝑄𝐼 + 𝑉𝑄𝐼 + 𝑉𝑄𝐼  (16) 

where, VQIxt is the total VQI score (dimensionless) of grid x and its range is [0,1]; VQIp is the terrain 
parameter score for grid x; VQIb is the water source parameter score for grid x; VQIg is the green space 
parameter score for grid x; VQIh is the human influence parameter score for grid x; and VQIa is the 
landscape accessibility parameter score for grid x. 
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