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Abstract: Cultivated land is an important carrier of grain production, and scientific assessing of
cultivated land productivity is of great significance to ensure food security. This paper assessed the
overall productivity of cultivated land in Yuanjiang city from the perspectives of quantitative structure,
spatial distribution and correlation with national land use. We applied statistical and GIS (geographic
information system) spatial analysis methods to 16 secondary indicators of productivity. The results
showed that the productivity index of cultivated land ranged from 1642.79 to 4140.09, concentrated
in classes 2–6, among the most productive of 15 classes in total. The cultivated productivity indexes
of most towns showed quantitative structural patterns of “inverted pyramid” and “dumbbell” types.
Cultivated lands with high productivity showed a spatial distribution that decreased from the north
to the south and increased from the center to the periphery. The spatial distribution of the higher-level
classes in the cultivated land productivity index and the national cultivated land use index was
similar. The correlation coefficient between the indexes for cultivated land productivity and the annual
standard crop yield was 0.8817, implying that the index reflected local grain production capacity
very well. In general, the research offered a reference and technical support for the sustainable use of
cultivated land resources and enhanced regional cultivated land production capacity.

Keywords: cultivated land productivity; comprehensive assessment; spatial differentiation;
regression analysis; Yuanjiang city

1. Introduction

Cultivated land is one of the fundamental elements that governs the production capacity of food
and is an essential and important resource and material base for humans [1–3]. Recently, with the rapid
development of urbanization and the continuous growth of the population in China, the quantity and
quality of cultivated land has decreased, which has threatened food security and has put pressure
on the protection of cultivated land [3,4]. Ensuring food production and security is the primary task
for state administrators and is a major strategic issue for national economic development, social
stability and national self-reliance [5,6]. Studying regional grain production capacity and spatial
change is of great practical significance for the implementation of the policy to protect farmland and
for guaranteeing food security [7–9].

Research into the productive capacity of cultivated land in countries outside China has mainly
focused on the potential of land production and the influence of factors such as light, temperature,
soi conditions and water conditions on crop yield [10,11]. In particular, the application of crop growth
models [12], remote sensing production estimation models [13], multivariate statistical models [14]
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and other methods for crop growth monitoring and yield estimation have been emphasized. In China,
since the 1970s when Huang first proposed the concept and methods for measuring potential crop
photosynthesis [15], many studies have been undertaken from different perspectives, including on land
productivity, crop climate productivity, crop, light and temperature productivity and cultivated land
productivity [16–18]. Since Lester R. Brown asked, “who will feed China?”, problems with food security
have become the focus of political and research attention around the world. Most research in China has
looked at the conceptual models and theoretical systems in cultivated land productivity [19–21], mainly
at the macro or meso spatial scales [22–25]. Researchers have calculated cultivated land productivity
and have analyzed the differences in time and space and the influencing factors [25] based on the results
of grading agricultural land [26], evaluating cultivated land quality [27] and testing regional yields [28]
through the potential decay method, improved agricultural ecological zoning and the agro-ecological
zone model [24,29,30], or building a new cultivated land productivity evaluation system [31]. However,
most of these calculations of cultivated land productivity that are based on grading agricultural land
are deficient in their evaluation because of a lack of indexes reflecting the technical level of regional
agriculture. Hence, a further step should be taken in building a more integrated and comprehensive
evaluation system to measure cultivated land productivity.

In view of this, a comprehensive evaluation of the cultivated land production capacity was carried
out in this paper through the effective integration of natural environmental factors and socio-economic
and technological factors, taking Yuanjiang city, Hunan province as the study area. The spatial
distribution of cultivated land productivity was investigated. A comparative analysis was made
between the evaluation of cultivated land productivity, the actual standard food crop yield and the
national agricultural land use index to complement the regional cultivated land capacity calculation.
This will provide a reference and technical support for the sustainable use of cultivated land resources
and greater regional cultivated land production capacity.

2. Data Collection and Analysis

2.1. Survey of Research Area

Yuanjiang city is part of Yiyang city in Hunan province, China, located at 112◦14′37′′ to
112◦56′20′′ E, and 28◦42′26′′ to 29◦11′17′′ N. The city is in the hinterland of the Dongting Lake region,
with numerous rivers and lakes. Plains are the main landform. The climate is a subtropical humid
monsoon system with abundant sunshine and rainfall. The agricultural system is the standard farming
system that is found in the middle and lower reaches of the Yangtze river. At the end of 2015, the total
land area of the city was 212,943.82 ha, and the cultivated land was 63,819.03 ha, accounting for 29.97%
of the total land area. The cultivated land included 42,985.00 ha of paddy field, 20,779.53 ha of dry
land and 54.43 ha of irrigated land. The natural conditions for agricultural resources are favorable,
and the soil nutrients are suitable for plant growth (http://www.yuanjiang.gov.cn/c139/index.html).
Therefore, Yuanjiang is a nationally important grain and cotton commodity production base.

2.2. Data Collection and Preprocessing

The remote sensing data that were used in this paper to obtain the land use and elevation data
for Yuanjiang city mainly came from high-resolution remote sensing from Gaofen-1 and GDEMDEM
30 M resolution data in 2016 in the geospatial data cloud (http://www.gscloud.cn/). The slope and
topographic data for cultivated land were obtained using ArcGIS 10.1 (The software comes from
the American Environmental Systems Research Institute, based in Redlands, California.). Sampling
points in this paper were evenly distributed across the area according to fertilization sampling data of
Yuanjiang city, the distribution map of agricultural land grade and use, land type, soil type and land use
status. Different areas of attributes were classified, and the samples were located by GPS. Altogether,
50 sampling points were chosen (Figure 1). The actual latitude and longitude coordinates,
the topographic position, the texture of the tillage layer and the structure of the soil were investigated

http://www.yuanjiang.gov.cn/c139/index.html
http://www.gscloud.cn/
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in August 2017. Soil samples were analyzed for physical and chemical properties, including total
nitrogen, organic matter content, pH, available phosphorus, available potassium and soil bulk density.
Data, such as effective soil thickness, type of barrier layer and distance from the surface, irrigation
guarantee rate and drainage conditions were derived from the Yuanjiang agricultural land quality
classification data. The level of pest control, irrigation and flood control standard, agricultural
machinery and equipment, agricultural management and other data were obtained from Hunan province
rural statistical yearbook (2016), Yuanjiang city statistical yearbook (2016), Yuanjiang city comprehensive
agricultural mechanization level summary report (2016) and Report on the first national water resources survey
of Yuanjiang city. The light and temperature production potential index for different crops in the study
area was derived from The light and temperature (climate) crops in countries and cities in agricultural
land quality classification rules (GBT28407-2012). Based on the 2016 Yuanjiang agricultural land quality
score data, the index for national use of agricultural land, comprehensive land use index, number of
cultivated land points and other relevant data were obtained, and 18,330 cultivated land points were
extracted as the evaluation units for cultivated land productivity. All data were preprocessed in the
following ways. The reliability of the data was verified, and the unity and standardization of the data
were checked. The data were transformed to a single map projection and coordinate correction was
carried out for the map data. The 1980 Xi’an plane coordinate system was used for the coordinate
system. All data covered the study area. ArcGIS10.1 software was used to match the data for 16 index
attribute values to the cultivated land map spots, and a spatial database to evaluate cultivated land
productivity in Yuanjiang city was constructed.
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2.3. Analytical Methods

2.3.1. The Definition of Cultivated Land Productivity

The productivity of cultivated land is a complex system that is affected by the natural environment
and the social economy, which has both natural and socio-economic properties. The diversity of its
functions leads to the diversity of cultivated land use [32]. Cultivated land productivity is formed based
on the cultivated land use system and is determined by the quantity and quality of cultivated land.
The quality of cultivated land, which reflects the conditions of light, temperature, precipitation, soil and
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agricultural infrastructure, is the basis of cultivated land productivity [33]. Therefore, cultivated land
productivity can be defined as the productivity level that is formed by the interaction and systematic
coupling between the cultivated land base, climatic conditions, farming technology level and other
factors in a given region at a given stage (Figure 2). Based on the concept of cultivated land productivity
and factors of climate, cultivated land quality and farming technology that affect productivity,
an assessment index system was constructed, which included three primary indicators and 16
secondary indicators. The weight of each index was determined by an analytic hierarchy process (AHP,
Table 1). The coefficient of cultivated land quality was used as the agricultural quality score based on
the grade of the agricultural land. The yield ratio coefficient of the specified crop β and the technical
use level coefficient replaced the land use coefficient, which was the ratio between crop yield per unit
area and the maximum yield in the control area. The light and temperature production potential index
was revised accordingly. Finally, cultivated land productivity was calculated, and this formed the data
for the analysis of spatial differences in cultivated land productivity in Yuanjiang city (Figure 3).

Table 1. The evaluation index system for cultivated land productivity.

Primary Indicator Secondary Indicator Weight

Cultivated land
productivity

Climate condition Light and temperature productivity potential
Crop yield ratio

–
–

Cultivated
land quality

Geological
conditions

Terrain area 0.50
Field slope 0.50

Soil
properties

Effective soil thickness 0.12
Organic matter content 0.11
Farming layer texture 0.21
Obstacle course type and depth from the surface 0.04
Soil configuration 0.21
Soil bulk density 0.10
Soil nutrient element 0.21

Tillage technology

Irrigation guarantee rate 0.16
The drainage condition 0.30
Disease and insect pest control level 0.08
Field flood control standard 0.07
Agricultural machinery and equipment 0.26
Agronomic management 0.13
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2.3.2. Calculation of Cultivated Land Productivity

Coefficient of cultivated land quality
The coefficient of cultivated land quality was calculated based on indexes of geological condition

and soil properties in each evaluation unit using a weighted sum method. The formula was as follows:

Q =
n

∑
i=1

(Di ×W1 + Ti ×W2) /100 (1)

where Q indicates the coefficient of cultivated land quality of the i unit, Di and Ti indicate the values
of indexes of geological condition and soil properties for the i unit, respectively W1 and W2 indicate
the weights of indexes of geological condition and soil properties for the i unit, which were 0.2 and 0.8,
respectively n indicated the number of evaluation units.

Coefficient of tillage technology
The coefficient of tillage technology was calculated based on the attribute value of each unit by

the weighted sum method. The formula was as follows:

T =
n

∑
i=1

fiWi /100 (2)

where T indicates the coefficient of tillage technology of the i unit, fi indicates the standard value of the
secondary indicator of the i unit and Wi indicates the weights of the secondary indicator of the i unit.
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Cultivated land productivity index
Based on the cultivated land quality coefficient and tillage technology coefficient, the index of

light and temperature production potential reflecting climatic conditions was modified by gradation
correction to obtain the cultivated land productivity index. The formula was as follows:

p =
n

∑
i=1

(αi × βi)×Qi × Ti (3)

where p indicates the cultivated land productivity index of the i unit, αi, βi, Qi and Ti indicate the
index of light and temperature production potential, crop yield ratio, cultivated land quality coefficient
and tillage technology coefficient of the i unit, respectively. The cultivated land productivity index
was divided into 15 classes using 300 grade spacing. The classes were: [4200, 4500], [3900, 4200],
[3600, 3900], [3300, 3600], [3000, 3300], [2700, 3000], [2400, 2700], [2100, 2400], [1800, 2100], [1500, 1800],
[1200, 1500], [900, 1200], [600, 900], [300, 600] and [0, 300]. The cultivated land productivity index was
greatest at the class values of [4200, 4500], and decreased until it reached the lowest value at the grades
of [0, 300].

3. Results and Discussion

3.1. The Quantitative Structure of Cultivated Land Productivity

The cultivated land productivity index, which was calculated by gradation correction, varied from
1642.79 to 4140.09, with a range of 2499.3. The quantitative breakdown is shown in Figure 4. Most of
the land was located within seven index classes: [3900, 4200], [3600, 3900], [3300, 3600], [3000, 3300],
[2700, 3000], [2100, 2400] and [1800, 2100]. The area of cultivated land was the largest in the classes
of [3600, 3900], [3300, 3600] and [2100, 2400], which accounted for 49,085.03 ha (76.91%) of the total
cultivated land area in the city. This indicates that the cultivated land productivity index of Yuanjiang
city was relatively concentrated, and the cultivated land of this city was mainly located between
classes 2–6.
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The cultivated land area for the productivity index of paddy field, located at values of [3900, 4200]
(highest class) and [2700, 3000] (lowest class) were 4020.89 ha and 56.26 ha, accounting for 9.36% and
0.13% of the total paddy field area in Yuanjiang city, respectively (Table 2). The cultivated land area for
the paddy field productivity index located at [3600, 3900] was the largest, accounting for 22,228.28 ha
(51.71%) of the total paddy field area in Yuanjiang city. The cultivated land productivity for irrigated
land and dry land were both concentrated at values of [2100, 2400], and the areas were 48.89 ha and
16,050.93 ha, accounting for 89.11% and 77.24%, respectively.

The cultivated land productivity indexes for the towns in Yuanjiang city showed great variations
(Table 3, Figure 5). The quantity and structural distribution characteristics of the “inverted pyramid”
were present in cultivated land areas of towns at different productivity levels, such as Caowei town,
Nanwan Lake, Qianshanhong town, Sijihong town and Yangluozhou town. Their productivity grade
for cultivated land was mostly moderate to excellent and at a grade of 2–3. The areas accounted for
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41.63%, 53.76%, 58.83%, 37.53% and 47.66%, respectively of the total in these towns. The cultivated
land areas at different productivity levels of Chapanzhou town, Gonghua town, Huangmaozhou
town, Xinwan town, Luhu reed farm, Nandashan town, Nanzui town, Sihushan town and Wanzi
Lake Township showed characteristics of the “dumbbell” structure with two large end values and
small middle values. Their cultivated land areas at excellent and low levels accounted for 33.3%
and 32.12% of the total, respectively. The quantity and structural distribution characteristics of the
cultivated land areas in Qionghu Street, Nandongting Lake reed farm and Qingyunshan Street were
“pyramid-shaped” at different productivity levels. The areas at grades from 8 to 9 for cultivated land
productivity accounted for 37.89%, 82.32% and 88.87%, respectively. These towns had a greater area of
cultivated land at low levels of productivity. The distribution characteristics of the “spindle-type” of
quantity structure with two small ends and a large middle were present in the cultivated land area of
Sanyantang town at different productivity levels. The cultivated land area at grades of 4–6 accounted
for 38.99% of the total in this town.

Table 2. The area and productivity index for different types of cultivated land in Yuanjiang city.

Productivity Index

[3900, 4200] [3600, 3900] [3300, 3600] [3000, 3300] [2700, 3000] [2100, 2400] [1800, 2100]

Land
type

Paddy
field

Area (hectare) 4024.89 22,228.28 10,757.33 5918.24 56.26 —— ——
Ratio (%) 9.36 51.71 25.03 13.77 0.13 —— ——

Irrigated
land

Area (hectare) —— —— —— —— —— 48.49 5.92
Ratio (%) —— —— —— —— —— 89.11 10.89

Dry
land

Area (hectare) —— —— —— —— —— 16,050.93 4728.60
Ratio (%) —— —— —— —— —— 77.24 22.76

Total
Area (hectare) 4024.89 22,228.28 10,757.33 5918.24 56.26 16,099.43 4734.52
Ratio (%) 6.31 34.83 16.86 9.27 0.09 25.23 7.42Sustainability 2018, 10, x FOR PEER REVIEW  2 of 18 
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Figure 5. The comparison of cultivated land productivity in different towns.
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Table 3. The comparison of the technical level of land quality and of climatical condition in same land
productivity classes.

Grade Section of Cultivated
Land Productivity Index Technical Level Cultivated Land

Quality Climate Condition

[3900, 4200] 0.99 0.76 1
[3600, 3900] 0.75 0.64 1
[3300, 3600] 0.41 0.56 1
[3000, 3300] 0.02 0.51 1
[2700, 3000] 0 0.15 1
[2100, 2400] 0.54 0.70 0
[1800, 2100] 0.41 0.52 0

3.2. Spatial Distribution Characteristics of Cultivated Land Productivity

Based on the spatial distribution of cultivated land productivity, there was a relatively significant
difference in the regional distribution in Yuanjiang city, showing a general trend of decreasing
from the north to the south and increasing from the middle to the periphery (Figures 6 and 7).
High quality cultivated lands in the productivity index class of [3900, 4200] were mostly located in
the northwest, southwest, northeast and south-central towns in Yuanjiang city, including Caowei,
Gonghua, Sanyantang, Nandashan and Sihushan towns, with an area of 3018.3 ha which accounted
for 74.99% of the total regional cultivated land area in this index class. At the productivity index
grade [3000, 3300], most of the good cultivated lands were located in the northwest, northeast, north
and south-central towns, including Caowei, Nandashan, Sihushan and Yangluozhou towns, with an
area of 3821 ha, which accounted for 64.56% of the total regional cultivated land area in this index
class. At the productivity index grade of [1800, 2100], most of the cultivated lands were located in
the north-central, northwest and northeast towns along rivers, including Huangmaozhou, Gonghua,
Caowei and Nandashan towns, with an area of 2240.04 ha, which accounted for 47.32% of the total
regional cultivated land area in this index class. The cultivated land in these areas was mainly cultivated
rice soil, such as tidal mud. The land was distributed in the lower part of flat fields and alluvial fields,
suffering from frequent waterlogging and with poor drainage capacity. All of these conditions are not
favorable for improving cultivated land productivity.
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Three primary indicators, including climate condition, cultivated land quality and tillage
technology in seven classes of [3900, 4200], [3600, 3900], [3300, 3600], [3000, 3300], [2700, 3000],
[2100, 2400) and [1800, 2100] were standardized using a range of methods. Hence, the data were within
the range of [0, 1], and the average value of the first-level indicators in each section was calculated
using the arithmetic mean to further explore the interaction of various factors and the system coupling
effect on the cultivated land productivity in different classes. From Figure 8 and Table 3, it can be seen
that the dimensional area of cultivated land productivity decreased from the high class of [3900, 4200]
to the medium class of [2700, 3000]. The dimensional area of tillage technology decreased the most,
followed by that of cultivated land quality and climate condition. However, the dimensional area of
climate condition significantly decreased, while that of tillage technology and cultivated land quality
gradually increased when the cultivated land productivity index decreased from the medium class of
[2700, 3000] to the low class of [1800, 2100].
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In general, the dominant factors influencing the change of the cultivated land productivity index
in different classes varied. When the class changed from low to medium levels, climate condition
was the dominant factor. When the class changed from medium to high levels, tillage technology and
cultivated land quality were the main influencing factors.
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3.3. Comparative Analysis of Cultivated Land Productivity Index and National Use Index

The quantitative structure, spatial distribution and linear correlation between the cultivated
land productivity index and the national use index of agricultural land quality were compared and
analyzed (Figure 9). The cultivated land area in the productivity classes of [4200, 4500], [3900, 4200]
and [3600, 3900] was 26,253.17 ha, accounting for 41.14% of the total. Most of the agricultural cultivated
land was located in the national use index classes of [2800, 3000], [2600, 2800] and [2400, 2600],
which covered 60,227.02 ha (94.37%) of the total area. The cultivated land area in the productivity
classes of [2700, 3000], [2100, 2400] and [1800, 2100] was 20,890.21 ha, accounting for 32.74% of the total.
However, no agricultural cultivated land was located in other national use index classes. Compared
with the agricultural cultivated lands in different use index classes, cultivated lands in different
productivity classes showed a scattered distribution pattern, with the characteristics of a “dumbbell”
structure. However, the distribution of agricultural cultivated lands in different use index classes was
relatively concentrated, presenting the quantitative structure distribution of an “inverted pyramid”.
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Figure 9. The comparison of the cultivated land area in the productivity index and in the national land
use index.

According to the spatial distribution characteristics of cultivated land in different classes, lands
with productivity indexes in the high classes of [4200, 4500] and [3900, 4200] (grades 1 and 2)
were mostly distributed at the northwest, north-central, northeast, southwest and south-central
towns in Yuanjiang city, including Caowei, Gonghua, Huangmaozhou, Nandashan, Sanyantang
and Sihushan towns, with an area of 3018.3 ha, which accounted for 74.99% of the total (Figures 6
and 10). The agricultural cultivated lands in the national use index classes of [2800, 3000] and
[2600, 2800] (grades 1 and 2) were mostly located at the northwest, north and northeast towns,
including Caowei, Gonghua, Huangmaozhou, Nandashan and Luoyangzhou towns, with an area of
31,837.24 ha, which accounted for 67.77% of the total. In the low cultivated land productivity index
class of [1800, 2100], lands were mostly located at the northwest, central-west and northeast towns,
including Caowei, Gonghua and Nandashan towns, with an area of 2240.04 ha, which accounted
for 47.32% of the total. Similarly, in the lower classes of the agricultural cultivated land national use
index at [2000, 2200], most of the lands were located at the northwest, north and northeast towns,
including Caowei and Gonghua towns, with an area of 770.62 ha, which accounted for 86.83% of the
total. In general, the spatial distribution trend of cultivated land in the relatively high classes of the
productivity index and the national use index of agricultural land were relatively consistent, except
that the coverage was different.
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Figure 10. Spatial distribution of different levels of the national land use index in Yuanjiang City.

Correlations were analyzed between the annual standard crop yield, the cultivated land
productivity index and the national use index of agricultural cultivated land (Figures 11 and 12).
Annual standard crop yield was calculated based on the actual yields of different crop species.
A significant positive correlation was determined between annual standard crop yield and the
productivity index and national use index, with R2 values of 0.7775 and 0.5422 and correlation
coefficients of 0.8817 and 0.7363, respectively. The linear regression model performed better with the
annual standard crop yield and productivity index, implying that the results that were obtained from
the evaluation of cultivated land productivity better reflect the production capacity of local crops.
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Figure 11. The scatter plot of the cultivated land productivity index and the surrounding standard
grain output.
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4. Discussion and Conclusions

4.1. Discussion

The cultivated land use system is a complex system of human and natural processes that is
affected by natural environmental factors and socio-economic factors. The results of the cultivated
land productivity showed that it was both comprehensive and able to deal with complexity. In fact,
the cultivated land production capacity reflects the cultivated land productivity level and output
effect, which is greatly affected by land potential, climate condition and labor condition. On one
hand, the evaluation result of cultivated land productivity needs to reflect the productivity level of
cultivated land under the co-constraint conditions of natural and soil factors. On the other hand,
it needs to reflect the constraint of human management measures on the productivity level of cultivated
land. The difficulty of the evaluation of cultivated land productivity lies in the indexes selection and
quantitative measurement based on three core concepts of geological condition, soil character and
tillage technology. This paper focused on the evaluation and comparative analysis of cultivated land
productivity in a specific period and a specific region. However, the time scale variation of cultivated
land productivity and the sensitivity of index weight were involved. A further breakthrough needs to
be made in the subsequent research on the accumulation of multi-source data and methods.

Due to the mismatch of data sources and the inconsistency of weights and methods in most
evaluation research, it is often difficult to avoid the discrepancy between the descriptions of the real
situation of the region and the evaluation results. In this paper, we believe that subjective weighting
is better than objective weighting on the calculation of index weight. This is due to the results of
entropy value method, which is mainly affected by data with larger variation, based on the principle
in reflecting the difference between indicators. However, it can be found that not every index with
great variations is important for the evaluation of the cultivated land productivity which involves
multiple indexes. Therefore, it is necessary to make index weight control with subjective judging.

The level of demand for cultivated land productivity is changing with rapid socio-economic
development, from the initial pursuit of high yield, stable production to ecological, safe and sustainable
production. With the progress of science and technology, modern agricultural infrastructure has
been improved and advanced agricultural technology has been gradually popularized and applied.
In different development stages, the influence of single factor or multiple factor coupling on cultivated
land productivity is changing. Therefore, future research should focus on how to comprehensively
consider the impact of various factors on cultivated land productivity, and further optimizing the
evaluation index framework, classification method and valuation rules to build a practical evaluation
system for cultivated land productivity.
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4.2. Conclusions

This paper constructed a comprehensive evaluation index of cultivated land productivity and,
using a set of cultivated land points, carried out an empirical analysis of the production capacity of
cultivated land from the multidimensional perspectives of the quantitative structure of cultivated land
productivity, spatial differentiation and comparison with national use indexes. Yuanjiang city was
used as the research area. The conclusions were as follows.

First, Yuanjiang city had a productive natural environment and good farming conditions.
The cultivated land productivity index ranged from 1642.79 to 4140.09 and was concentrated in classes
from 2 to 6. Different land types varied in terms of cultivated land productivity index, and paddy
field was better than dry land and irrigated land. The cultivated land productivity index of different
towns presented four kinds of quantitative structure distributions, namely the “inverted pyramid”,
“dumbbell”, “pyramid-shaped” and “spindle-type”.

Second, the regional distribution of cultivated land productivity in Yuanjiang city showed
a pattern of variation, with a spatial distribution trend of decreasing from north to south and
increasing from the center to the periphery. The cultivated lands with relatively high productivity were
mainly distributed in the northwest, southwest, northeast and south-central areas of Yuanjiang city.
The dominant factors that were influencing the variation of the cultivated land productivity index
were different in different classes. When the class changed from low to medium, climate condition
factors were most important, while when the classes changed from medium to high, tillage technology
and cultivated land quality were dominant.

Finally, cultivated lands in different productivity classes were scattered, showing the distribution
characteristics of a “dumbbell” quantity structure. However, the distribution of agricultural cultivated
lands in different use index classes was relatively concentrated, showing the quantitative structure
distribution of an “inverted pyramid”. The spatial distribution trend of cultivated land in the higher
value classes of the productivity index and the national use index of agricultural land were relatively
consistent, except that the coverage was different. According to the correlation analysis, the results
that were obtained from the evaluation of cultivated land productivity reflect the production capacity
of local crops better than those from the evaluation of the national use of agricultural cultivated land.
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