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Abstract: Soil organic carbon (SOC) is vital to soil ecosystem function and it plays a key role in carbon
cycling in the terrestrial ecosystem. The spatial pattern of SOC stock (SOCs) is affected by specific
geomorphic settings and land-use types at the scale of watershed. Nevertheless, the distribution
of SOCs with fluvial landform regimes and land use types was not sufficiently elucidated in the
semi-humid riparian ecosystem in north China. In this study, 103 soil plots were sampled and spatial
auto-correlation method was adopted to detect the spatial pattern of SOCs in the Changhe watershed
that was located at the boundary of the Loess Plateau and the Taihang Mountains. The results showed
that SOCs in the Changhe watershed varied from 18.03 Mg ha−1 to 21.51 Mg ha−1 and it was in the
order: grassland > forestland > cropland > construction land. SOCs varied with geomorphic settings,
among which, the altitude exerted more influence on the distribution of SOCs than the aspect and
the slope. In terms of the spatial pattern of SOCs, 17 plots with higher SOCs collectively distributed
in the west of the watershed and that with lower SOCs (19 plots) concentrated in the midlands. This
indicated that the upland had higher SOCs while the lowland had lower values. Overall, land use
type and geomorphic settings (especially the altitude) should be considered when estimating the
SOC sequestration in warmer and wetter watershed in north China. With regard to the implications
for land use management, reforestation could elevate the SOCs. Moreover, no-tillage and returning
crop straw to cultivated soils could be efficient approaches to elevate soil carbon sequestration and
soil productivity.
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1. Introduction

The dividing crest separates most of biotic and abiotic ecosystem elements from both sides of the
watershed. Thus, watershed is characterized as an independent ecological system [1]. From this point
of view, watershed is regarded as an optimal geographic unit to observe ecological processes [2,3].
Generally, watershed landscape consists largely of the riparian scenery which exerts substantial
influence on geomorphic, hydrologic and ecological processes of the watershed [4,5]. Moreover, the
hydro-geomorphic regime of the riparian ecosystem underpin the spatial distribution of the material
and energy throughout the watershed [6]. For example, the morphology and runoff characteristics
of the watershed not only dictate alluvial aquifer recharge and subsurface hydrology regime [7,8],
but determine the allocation of aboveground soil properties [9,10]. It is more challenging to simulate the
distribution of soil properties in the watershed than in flat areas because water and heat condition vary
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dramatically over a short distance within the watershed due to the complex geomorphic regime [5].
Quesada et al. found that the ranges in available P, Ca, Mg and K content were 5%, 2%, 8% and 24%,
respectively across hillslopes [11]. Actually, existing knowledge of riparian ecosystems had focused on
the effect of runoff on soil erosion [12], the evaluation of soil quality [13], the spatial patterns of soil
properties (e.g., soil water, salinity) and plant community with hydro-geomorphic gradients [5,14–19].

Soil organic carbon (SOC), one of the most important materials in nature, supports the service of
culture, provisioning, regulating and supporting in the terrestrial ecosystem [20,21]. Decline in SOC
storage gives rise to the accelerated erosion and reduced porosity, water retention, microbial biomass
and N, P, S stocks [22]. Moreover, SOC plays a key role in global carbon cycling [23]. It was estimated
that SOC accounts for approximately two-thirds of the terrestrial carbon pool [24]. Consequently, even
small change in SOC pool can significantly affect the concentration of CO2 in the atmosphere, which
results in global climate change [16].

SOC is mainly from litter, plant roots, microbial residues, soil animals and their excreta, as
well as the application of organic fertilizers [25–27]. Thus, SOC is sensitive to the environmental
regimes [24,28]. Authors found that grassland had higher SOC stock (SOCs) than cropland in the
Loess Plateau, because more organic matter was input into grass soil and the organic carbon was
well-protected by soil aggregate in grassland [29]. Furthermore, geographic factors such as altitude,
slope and aspect affect the distribution of SOCs due to the re-distribution of water and heat along
the terrain settings [30]. At the scale of watershed, researches on SOCs in semi-arid areas, China
have yielded plentiful findings. Zhao et al. found that the grassland had the highest SOCs followed
by forestland, terrace, sloped cropland, and the dammed field in Wangmaogou Watershed, Shaanxi
Province [31]. Xin et al., however, suggested that the SOCs in 10-year-old forests is 17.91% higher than
that in terraced cropland, but 32.25% lower than that in 30-year-old forests in Luoyugou watershed,
Gansu Province [32]. Moreover, authors also paid attention to the effect of land use type changing
on SOCs in the semi-arid area, for example, Wang et al., proposed that cropland transforming to
grassland or shrubland significantly increased SOCs in Yangjuangou watershed, Shaanxi Province [33].
Similarly, Zhang suggested that the conversion of sloped croplands into forestlands and grasslands
improves the SOCs in Zhifanggou watershed, Shaanxi Province [34]. Considering SOCs differed with
climate conditions, it is suggested that SOCs had distinguished spatial patterns in wetter and warmer
watershed the riparian ecosystem compared to the semi-arid areas. Unfortunately, such documents
are lacking.

The Loess Plateau and Taihang Mountains are famous geographic areas in China. The transition
zone between them is a typical area with rugged terrain and semi-humid climate. Compared to the
Loess Plateau that is dominant in semi-arid climate, the transition zone has better water and heat
conditions. However, just as the Loess Plateau, the transition area has a long history of cultivation
and ecology restoration engineering (such as reforestation) was implemented for decades to protect
the environment. In terms of SOC, the spatial distribution of SOC storage remained unclear in the
transition area watershed. In this study, we hypothesized that the distribution of SOCs was determined
by land use types and geomorphic settings in such an area. Thus, Changhe watershed, located at the
boundary of the Loess Plateau and Taihang Mountains, was selected and soil sampling was carried
out to (1) detect the effect of geomorphic factors (elevation, slope and aspect) on SOCs; (2) reveal the
spatial pattern of SOCs at the watershed scale; and (3) find implications for the improvement of land
use management in such area.

2. Materials and Methods

2.1. Study Area

Geographically, Changhe watershed is located in the Jincheng City, Shanxi Province and it is
located at the southeast edge of the Loess Plateau (the boundary of the Loess Plateau and Taihang
Mountains, 112◦37′40”–112◦46′04” E, 35◦30′10”–35◦38′06” N) (Figure 1a). Changhe River is a perennial
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river and the channel length is 14.5 km. Changhe watershed has an area of 113.19 ha. The dominant
topography is mountain and hill with an average elevation of 880 m. It has a temperate, continental
monsoon climate with an average annual precipitation of 628 mm and an annual evaporation of
1700 mm. The temperature averages 11 ◦C. The soil type is characterized by cinnamon soil. Moreover,
the land use types are dominated by cropland (6863.99 ha; 60.62% of the total area), grassland
(2133.7 ha; 18.84%), construction land (1320.89 ha; 11.67%) and forest land (893.25 ha; 7.89%) (Figure 1c).
In addition, the construction land was used for rural building.

Changhe watershed has a higher cultivated rate due to the excellent water and heat regimes.
To date, more than 60 percent of the land is cultivated for agricultural purposes. The cropland is
predominantly terrace, which protects the soil from water erosion. Nevertheless, areas with rugged
terrain were implemented with the reforestation engineering for decades. The cropping system is “three
crops, 2 years” with the rotation of Zea mays and Triticum aestivum. The tree species are Populus Linnaeus,
Robinia pseudoacacia Linnaeus and Pinus tabulaeformis Carrière. and herbaceous community mainly
consists of Setaria viridis Beauv, Artemisia annua Linnaeus and Artemisia gmelinii.
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Figure 1. Location and landscape of the Changhe Watershed. (a) Geographic location of Changhe
watershed; (b) elevation of the study area; (c) land-use types and soil sampling sites in Changhe
Watershed; (d,e) Landscape of the study area.

2.2. Soil Sampling

The soil samples were collected in July 2016. One-hundred-and-three soil sampling sites were
distributed as a grid with a distance of 1 km between the two adjacent sites (Figure 1c). The coordinate,
altitude, slope, and aspect of each soil sampling sites were recorded when sampling. Five random
sampling locations were identified within each sample site and soil samples were collected at 0–20 cm
depths of each location after litter and fermentation being removed. All of the soil from each plot
was mixed to make the composite sample. After removing all visible roots and fresh litter material,
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soil samples were air-dried and sieved through a 100-mesh for the analysis of SOC, nitrogen (N),
phosphorus (P), potassium (K) and pH. In addition, soil samples for bulk density (BD) were obtained
using stainless steel cylinders (5.0 cm diameter and 5.0 cm high).

2.3. Analyses of Soil Properties

The method of dry combustion was applied to determine the SOC [35]. pH was determined in H2O
suspension (soil: water ratio of 1:2.5) with a pH Meter (FE20K, Mettler Toledo, Zurich, Switzerland).
BD and field water capacity were calculated by the oven-dried method [36]. Available nitrogen (AN)
was determined using the zinc-cadmium reduction method [37] and available phosphorus (AP) was
determined using the Olsen method [38]. Moreover, available potassium (AK) was measured using
a flame photometric method [37]. Finally, soil coarse fragments were analyzed using Longbench
Mastersizer 2000 laser particle-size analyzer (Malvern Instruments, Malvern, England).

2.4. Calculation of SOCs

SOCs was calculated using Equation (1)

Sd = Cc · BD · D · (1− a) · 10−1 (1)

where Sd was the SOCs (Mg ha−1); Cc was the content of SOC (g kg−1); BD represented the soil bulk
density (g cm−3); D was the soil layer thickness (cm); and α was the proportion of coarse fragments >
2 mm in soils.

2.5. Spatial Auto-Correlation Method

Spatial auto-correlation method was utilized to detect whether the distribution of SOCs was
clustered or random via ArcGis (Ver9.3, ESRI, Redlands, CA, USA). The global spatial auto-correlation
reflected the spatial correlation among soil carbon stocks at the scale of the watershed, while local
spatial auto-correlation further revealed the relationship of SOCs among geographic units. Global
spatial auto-correlation was expressed by the global Moran′s I index and local spatial auto-correlation
by local Moran′s I index. Moran′s I index ranged from −1 to 1. If Moran′s I = 0, it indicates a
randomness spatial pattern. If Moran′s I > 0, it denotes a positive spatial correlation, while Moran′s
I < 0 means a negative correlation. In addition, the significance of spatial relationship was detected by
Z(I). Z(I) > 1.96, indicating a significant auto-correlation among SOCs [39].

The local spatial auto-correlation could be represented by the local indicators of spatial association
(LISA) map. In the map, sites marked with High-High (HH) and Low-Low (LL) indicated it was
where the higher or lower SOCs values were clustered, respectively. Whereas the High-Low (HL) and
Low-High (LH) types indicated negative spatial auto-correlations.

The calculation of global Moran′s I index was:

I =
N

N
∑

i=1

N
∑

j=1
W(i, j)

N
∑

i=1

N
∑

j=1
W(i, j)

(
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)(
Xj − X

)
N
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2
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The local Moran′s I index was:
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/(n− 1)

N

∑
j=1

W(i, j)
(
Xj − X

)
(3)



Sustainability 2018, 10, 3490 5 of 12

where N was the amount of the objects, Xi denotes the observed value, X indicates the mean value of
Xi and W(i,j) was the spatial connection matrix between i and j.

2.6. Data Analysis

To reveal the relationship between SOCs and the geomorphic settings, the elevation of Changhe
watershed was classified into four groups: 740–800 m, 800–860 m, 860–920 m, >920 m and the slope
was classified into 0–5◦, 5–10◦,10–15◦, >15◦. The aspect was divided into eight gradients as well:
N (337.5–22.5◦), NE (22.5–67.5◦), E (67.5–112.5◦), SE (112.5–157.5◦), S (157.5–202.5◦), SW (202.5–247.5◦),
W (247.5–292.5◦), NW (292.5–337.5◦).

One-way ANOVA was adopted to compare the mean values of soil physicochemical properties
among land-use types in SPSS 16.0 (SPSS Inc., Chicago, IL, USA). The relationship between SOC
stock and terrain factors (elevation, aspect and slope) were detected by boosted regression trees (BRT)
analysis using modified “GBM” packages [40] in R 3.3.2. All statistical significance was determined at
p < 0.05.

3. Results

3.1. Physicochemical Properties of Changhe Soils

Generally, the cropland had highers amount of AK, AP and AN than other land use types
(Table 1), among which AK varied from 37.84 to 44.99 mg kg−1, AP from 27.12 to 35.91 mg kg−1 and
AN from 0.72 to 0.78 g kg−1. Changhe soils were characterized as alkaline with pH fluctuating around
8. No significant differences were observed in BD and field water capacity among land use types
(p > 0.05): BD had a range of 1.27 to 1.35 Mg m−3 and field water capacity ranged from 16.02 to 16.59%.
Nevertheless, significant difference (p < 0.05) was obtained in clay content among soils: Construction
land had the highest fraction (31.45%), whilst forestland had the lowest (23.15%).

Table 1. Summary statistics for soil physicochemical in the Changhe Watershed.

Land Use Type AK
(mg kg−1)

AP
(mg kg−1)

AN
(g kg−1) PH BD

(Mg m−3)
Field Water

Capacity (%) Clay (%)

Cropland 44.99 ± 1.15a 35.91 ± 2.23a 0.78 ± 0.04a 8.00 ± 0.03a 1.30 ± 0.01a 16.15 ± 0.00a 28.75 ± 0.01a
Forest land 40.92 ± 5.05a 33.71 ± 4.66a 0.72 ± 0.11a 8.00 ± 0.19a 1.27 ± 0.04a 16.02 ± 0.02a 23.15 ± 0.05b
Grassland 37.84 ± 2.04b 29.01 ± 4.11a 0.78 ± 0.06a 8.02 ± 0.08a 1.35 ± 0.03a 16.59 ± 0.01a 27.46 ± 0.02a

Construction land 44.23 ± 2.31a 27.12 ± 2.22a 0.72 ± 0.04a 8.06 ± 0.04a 1.31 ± 0.02a 16.15 ± 0.00a 31.45 ± 0.03a

Values are in the form of: Means ± Standard Errors (SE). Values with significant differences (ANOVA, LSD post-hoc
test, p < 0.05) are distinguished by the different letters.

4. The Distribution of SOCs with Land Use Types and Geomorphic Settings

SOCs varied with land-use types and geomorphic settings. Grassland (21.51 Mg ha−1) had the
highest SOCs, followed by forest land (20.88 Mg ha−1) and cropland (19.27 Mg ha−1). Construction
land (18.03 Mg ha−1), however, had the least amount of SOCs (p < 0.05) (Table 2). In terms of the
relationship between SOCs and geomorphic settings, an increasing trend of SOCs with altitude was
observed: Areas with elevation >920 m stored more SOCs than that with 740–800 m and 800–860 m.
Moreover, higher SOCs sequestrated where the slope was 11–15◦ and >15◦ whereas the lower fractions
stored where the slope was 0–5◦ and 5–10◦. In addition, the north and southwest aspect of the
watershed had higher fraction of SOCs than other aspects (Figure 2). In terms of the influence exerted
by geomorphic factors to SOCs, the elevation explained 43.1% of the SOCs variance, followed by the
slope (42.9%) and the aspect (14.1%) according to BRT (Figure 3).
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Table 2. Summary statistics of SOCs in the Changhe riparian ecosystem. Values with significant
differences (ANOVA, LSD post-hoc test, p < 0.05) are distinguished by different letters.

Land Use Type Mean (Mg ha−1)
Standard

Error
Min

(Mg ha−1)
Max

(Mg ha−1) Skewness Kurtosis k—s
(p)

CV
(%)

Cropland 19.27b 0.49 8.67 29.83 −0.20 0.59 0.847 21.43
Grassland 21.51a 0.97 15.13 28.36 0.23 −0.56 0.956 17.48
Forestland 20.88ab 1.86 17.07 25.58 0.54 −1.12 0.937 17.86

Construction land 18.03b 1.15 13.35 27.02 0.76 −0.40 0.996 24.84
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4.1. The Distribution of SOCs in the Changhe Riparian Ecosystem

The global Moran′s I indexes of SOCs was 0.26 and Z(I) was 3.55, indicating that the SOCs
had significant auto-correlation in spatial and the SOCs had a clustered distribution in the Changhe
watershed (Table 3).

Generally, spatial patterns of SOCs were associated with geomorphic settings (Figure 4). There
were 17 High-High (HH) plots that collectively distributed on the west of the watershed, while 19
Low-Low (LL) plots were on the midland (along the Changhe channel). These indicated that plots
with higher SOCs intensively distributed in the west of the watershed while that with lower values
concentrated in the midland. From the point of altitude-related gradients, the upland had a higher
stock of soil carbon while the lowland had lower values.

Table 3. Moran′s I Index of soil carbon in the Changhe watershed.

Count Moran’s I Z (I) p Spatial Pattern

103 0.26 3.55 <0.01 clustered

Sustainability 2018, 10, x FOR PEER REVIEW  7 of 12 

 

Figure 3. Influence of the elevation, slope and aspect to SOCs via BRT in the Changhe riparian 

ecosystem. 

3.3. The Distribution of SOCs in the Changhe Riparian Ecosystem 

The global Moran′s I indexes of SOCs was 0.26 and Z(I) was 3.55, indicating that the SOCs had 

significant auto-correlation in spatial and the SOCs had a clustered distribution in the Changhe 

watershed (Table 3). 

Generally, spatial patterns of SOCs were associated with geomorphic settings (Figure 4). There 

were 17 High-High (HH) plots that collectively distributed on the west of the watershed, while 19 

Low-Low (LL) plots were on the midland (along the Changhe channel). These indicated that plots 

with higher SOCs intensively distributed in the west of the watershed while that with lower values 

concentrated in the midland. From the point of altitude-related gradients, the upland had a higher 

stock of soil carbon while the lowland had lower values. 

Table 3. Moran′s I Index of soil carbon in the Changhe watershed. 

Count Moran′s I Z (I) p Spatial Pattern 

103 0.26 3.55 <0.01 clustered 

 
Figure 4. The distribution of SOCs in the Changhe watershed. In the map, plots marked with
High-High (HH) and Low-Low (LL) indicates the plots were where higher or lower SOCs was clustered.
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5. Discussion

The SOC is not only vital to the carbon cycling in the terrestrial ecosystem [23,41] but is a key
element for improving the process of soil formation (supporting service) [42] and for the rejuvenation
of chemical and physical soil properties at watershed [20]. Nevertheless, SOC is sensitive to the
environment because it is mainly from litter, plant roots, microbial residues, soil animals and their
excreta [24,43,44]. Authors paid attention to detecting the mechanism of SOC accumulation [45]. Some
documented that nitrogen enrichment resulted in SOC sequestration [46]. Others argued that SOC
rejuvenation could be due to soil acidification [47].

Despite the mechanism of SOC sequestration remaining to be explored, the authors agreed that
land-use types dictated the sequestration of SOC [48]. This was confirmed by our findings: Grassland
(21.51 Mg ha−1) and forestland (20.88 Mg ha−1) had a higher amount of soil carbon than construction
(18.03 Mg ha−1) and cropland (19.27 Mg ha−1) in the Changhe Watershed. This indicated that grassland
and forestland had a stronger carbon sequestration ability than other land-use types. The discrepancy
of SOCs among land-use types was coupled with previous results [31] and it could be associated with
several factors. Generally, much of the SOC was derived from plants and particularly their roots [49].
Grass and forest ecosystems had more net primary production (NPP) and more organic material input
into soils and less human-derived disturbance, which resulted in the enrichment of SOCs [41,50].
According to Bojko and Kabala [51], the mountain pine soils had 7% of total organic carbon and grass
soils had 3%. Both of them were higher than the 1.6% of SOC in arable soils. Just in contrast, active
human-induced disturbance to soil layer gave rise to the mineralization of organic carbon in cropland
and construction land [52,53]. It had a long history of cultivation and high cultivation rate in Changhe
watershed and the “three crops, 2 years” land management also exerted high stress to soils, which
resulted in the loss of SOCs. To rejuvenate soil carbon in cropland, conservation cropping management,
such as no-tillage could be expected. In addition, straw was used to be burnt in the farmland after
crops were harvested in the Changhe region. Thus, returning crop straw to cultivated soils could be an
effective approach to elevate soil carbon sequestration and soil productivity.

Geomorphic settings directly affect biogeochemical cycles and other biological processes in the
riparian ecosystem [5,51]. Authors found that soil salinity migrated from upstream to downstream
within the period of 1982–2015 in Sangong River watershed [18]. Others found that greater abundance
of obligate riparian taxa and increasing structural importance of shrub and tree species appeared in the
downstream direction where increased moisture availability was observed [5]. In terms of the SOCs,
spatial heterogeneity with the higher altitude (>920 m a.s.l.) had higher values while the areas with
altitude of 740–800 m had lower values in the Changhe watershed riparian ecosystem. It was confirmed
by the result of the BRT: The upland had higher stock of soil carbon while the lowland had lower
values. These observations could be coupled with the previous conclusion as well: The SOCs increased
with altitude gradients. Zhao et al. found that SOCs was significantly correlated with altitude at the
level of p < 0.05 [31]. Similarly, Leifeld et al. suggested that SOC increased from 0.75 to 2.10 mg/g as
altitude increased by 100 m [54]. Some suggested that higher elevation gave rise to lower temperature,
which restrained the deformation of SOC [51,55,56]. For example, in Karkonosze Mountains, Czech
Republic, the mean temperature was 7.0–8.0 ◦C at 400–500 m a.s.l., while it decreased to 1.3–2.0 ◦C
at 1250–1450 m a.s.l., and the precipitation increased from 650–700 to 1400–1500 mm, accordingly.
Consequently, the total organic carbon increased from 1.8% (<500 m a.s.l.) to 5.4% (>1250 m a.s.l.) [51].
Generally, geographic settings affected the distribution of SOCs in two ways: (1) Through the effect
of temperature and (2) through the land-use types. Actually, land-use types were determined by
geomorphic setting to some extent. As mentioned above, the forestland and grassland were the
dominant land-use types at rugged terrains with higher elevation, while the cropland and construction
land distributed in lowland with flat terrain.

The geomorphic characteristic in Changhe watershed resulted in another intriguing observation:
SOCs increased with slope gradients [51,57]. Actually, areas with higher slope were covered with
wood and grass due to the reforestation engineering that was implemented several years ago, which
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resulted in the observation mentioned above. In terms of the relationship between SOC and aspect, no
significant difference was observed. Comparably, authors found that the aspect had different effects
on the distribution of SOCs, for example, Zhao et al. found that sunny aspect stored more SOC in
sloped cropland while the shady aspect had more SOCs in grassland [31]. Compared to watershed
in semi-arid Loess Plateau areas that had sparse vegetation and fragmented geomorphic settings,
Changhe riparian ecosystem had higher vegetation canopy (it had ~30% forest and grass land) and less
soil erosion. Consequently, SOC sequestration and spatial distribution were different. For example, the
SOCs of 18.03 Mg ha−1 to 21.51 Mg ha−1 in Changhe watershed was higher than that in the semi-arid
Loess Plateau [58]. Specifically, just as mentioned above, watershed was an independent ecological
system and it was an optimal geographic unit to observe ecological processes such as carbon cycling.
To date, the spatial pattern of soil carbon in watershed was accessible. However, the detection of the
transported carbon in the process of carbon cycling genuinely frustrated the authors. E et al. suggested
that rainfall events played an important role in carbon cycling and 2.7 kg ha−1 year−1 carbon was
observed lost from soils in Yangjuangou watershed [59]. Nevertheless, advance experiments were
expected to develop to detect the process of carbon cycling in detail in watershed. Overall, altitude
had a bigger influence on the distribution of SOCs than slope and aspect, which was confirmed by
other studies [31]. This indicated that altitude could be a fundamental factor to estimation the spatial
pattern of SOCs in the present study area.

6. Conclusions

Soil organic carbon was important to soil ecosystem function and it was affected by land use types
and geographic settings in Changhe watershed riparian ecosystem. SOCs varied from 18.03 Mg ha−1

to 21.51 Mg ha−1 in Changhe watershed, among which, the grassland and forestland had higher SOCs
than cropland and construction land. Spatially, SOCs differed with slope, aspect and especially the
altitude. From the point of altitude-related gradients, the upland had higher values of SOC than
the lowland. Overall, land-use type and terrain factors should be considered when estimating the
storage of soil carbon in warm and wetter watershed. With regards to the implications for land use
management, reforestation could elevate the SOC storage. No-tillage and returning crop straw to
cultivated soils could be effective approaches to elevate soil carbon sequestration and soil productivity.
More specifically, more advanced experiments were expected to make the carbon cycling understood
at the scale of the watershed.
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