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Abstract: Renewable energy generators (REGs) usually employ power electronic devices for
connecting with the grid, which makes their fault characteristics completely different from those of
conventional synchronous generators. In the existing studies, the simulation methods are mainly
adopted to analyze fault current contribution from REG. As a result, the explanations on the fault
current show diversity and cannot reach a recognized standard. The REGs’ mathematical model
in relay-setting calculations is unknown. Thus, this paper theoretically analyses the fault current
characteristics of inverter-interfaced REGs (IIREGs) with fault-ride-through (FRT) ability. In order
to understand the fault current characteristics, the FRT control strategy for IIREGs is firstly studied.
Then the characteristics of high-frequency and fundamental-frequency fault currents from IIREGs
are theoretically analyzed after and during the faults. The affecting factors and duration time of
different frequency fault currents are, respectively, revealed. Further, the mathematical expression
of fundamental fault currents from IIREGs are derived and verified based on the experimental test
bench. The results can be used in estimating the IIREGs’ fault contributions and developing the fault
calculation model.

Keywords: inverter-interfaced renewable energy generators; fault current; fault-ride-through control;
wind power; solar power

1. Introduction

With the worldwide concern on environment pollution and the crisis on traditional fossil
energy, renewable-energy penetration in power grids is expected to grow spectacularly [1]. In China,
the government has launched eight 10-GW-level wind-power bases with an accumulated installed
capacity of over 150 million kW and several large-scale solar energy power stations with a total installed
capacity of 5 million kW during 2011–2015 [2]. These wind-power bases and solar power stations are
located in the Chinese northern regions and coastal areas. They are connected to the transmission grid
in a concentrated mode. As a result, the share of the renewable-energy generators (REGs) is increasing
in the connected regional grids [3]. The REGs become indispensable in maintaining the stable and
reliable operation of the grid.

In many countries, the newly devised grid code demands that the REGs must have the
fault-ride-through (FRT) ability. As a result, the fault current contribution from REGs cannot be
neglected. However, the fault characteristics of REGs are different from those of conventional
synchronous generators (CSGs). Due to the REGs’ special electricity-generating principles and the
integration of power electronic converters, the analysis on the fault characteristics of REGs becomes
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difficult. The existing study adopts the simulation methods [4,5]. The results depend on the simulation
tests, so it is diversified. Thus, the universal equivalent model of REGs is unknown for fault analysis
and relay setting calculations of power grids with high REG penetration.

As a result, Chinese regional power utilities generally adopt two protection solutions. One method
considers the REGs as loads; thus, protection relay is not installed (or enabled). The other method
considers the REGs as the CSGs; thus, the protection relays configured for both the REGs and grid
sides at the outgoing lines are the same. This configuration may lead to protection malfunction at
the wind-farm side of the outgoing lines [6]. To solve the problems, the fault contribution of different
REGs must be theoretically analyzed.

REGs are classified into two types in terms of the integration mode of power electronic converters:
partial- and fully-rated converter-interfaced REGs [7,8]. The former generally refers to wind turbines
with doubly-fed induction generators, whereas the latter is referred to as inverter-interfaced REGs
(IIREGs), including wind turbines with permanent magnet synchronous generators and photovoltaic
panels and so on. This paper mainly concerns with the IIREGs’ fault characteristics.

The IIREGs are connected to the grids only through a full-scale inverter, so their generating units
are completely decoupled from the grid. The IIREGs’ fault characteristics are affected mainly by the
inverters’ control mode, the inverters’ integration circuits, and so on. With the FRT requirements [9,10],
the IIREG fault characteristics are closely associated with the grid-tie inverters’ FRT strategy. However,
the FRT strategies are diverse from manufacturer to manufacturer and unknown to the public.

To clearly reveal the fault characteristics of IIREGs, the basic action is to study on the FRT control
strategy. Many advanced control techniques have been developed for grid-tie inverters, including
deadbeat controllers [11], predictive techniques [12,13], controllers based on artificial intelligence
tools [14], and multi-loop feedback controllers [15–19], and so on. Due to its good performance
and simplicity, multi-loop feedback control appears as an attractive way for the inverter control.
In achieving FRT ability, the widely used control strategies are the vector-oriented current feedback
control [15]. They are suitable only for symmetrical faults and cannot improve the FRT ability under
the asymmetrical faults.

In order to enhance the asymmetrical FRT ability, some control strategies have also been proposed,
such as the single vector current controller with feed forward negative-sequence grid-side voltage [16],
dual vector current controller (DVCC) in a positive and negative synchronously rotating frame [17],
and proportional-resonant controllers in a two-phase stationary frame [18,19]. However, their main
concerns are how to eliminate the DC-link fluctuation or to decrease the negative fault current.
The inverters’ maximum current limit, which inevitably exists under severe faults [20], is not still
considered in these strategies.

In revealing the IIREG fault characteristic, most studies adopt the simulation methods. Ref. [21,22]
analyzes the fault current contribution based on the IIREG’ simulation models. In the simulation test,
the IIREG adopts the normal grid-connected control strategies. The research result cannot accord
with the FRT requirement. Further, Ref. [23–25] studies the fault current characteristics of IIREGs by
considering the FRT control strategy. However, this FRT control strategy is not available under the
asymmetrical grid faults. The mentioned above research results depend on the designated control
strategy and show diversity due to different control strategies.

At the same time, in some references the IIREGs’ fault current is also derived based on the
designated control strategies. Consequently, the fault current expressions are not universal and cannot
been applied for relay setting calculation. Ref. [26,27] proposes a controlled current source model
for the IIREG system. In the model, its current magnitude depends on the terminal voltage and the
DC-side active power. It is assumed that the reactive power supply is equal to zero after a grid-side
fault [28,29]. The assumption does not accord with the reactive power requirement of FRT codes.
Ref. [30,31] deduce the fault current expression with the effect of the FRT control strategy. However,
the inverters’ current limit is not considered in the FRT control strategy and the fault current expression
is suitable only for the assigned FRT control.
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In this paper, in order to derive a consolidated expression of the fault current, the fault
characteristics of IIREGs are theoretically analyzed. Since the fault characteristics are related to
the FRT control strategy, the improved FRT strategy is developed to solve the problems in the existing
literature. The remaining paper is organized as follows: Section 2 discusses the improved FRT control
strategy under a severe fault. In Section 3, the characteristics of different frequency fault current
from IIREGs are theoretically analyzed. In Section 4 the mathematical expression of the fundamental
fault current is derived and verified based on the experimental test bench. Conclusions are drawn in
Section 5.

2. Main Circuit Model and the FRT Control Strategy of Inverter-Interfaced Generators

2.1. Main Circuit Model

This section presents the main circuit model of IIREGs, which serve as the basis for both the
design of the FRT strategy and the analysis on the fault current contribution. The integration topology
of an IIREG is shown in Figure 1. Under the faults, the mathematical model on the AC-side of the
grid-connected inverter can be expressed as Equation (1).{

Ep
dq = LdIp

dq/dt + (R + jωL)Ip
dq + Vp

dq
En

dq = LdIn
dq/dt + (R− jωL)In

dq + Vn
dq

(1)

where the subscripts p and n indicate the positive- and negative-sequence components, respectively.
Ek

dq, Ik
dq and Vk

dq(k = p, n) denote the space vectors of the grid-side voltage, output current, and AC-side
voltage of the inverter, respectively. Here, R = R1 + R2, and L = L1 + L2. R1 and L1 are the inverter-side
resistance and inductance of the inductor-capacitor-inductor (LCL) filter, respectively, and R2 and L2

denote the grid-side ones of the LCL filter. ω is the grid frequency.
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Figure 1. Main circuit of an IIREG. 
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The instantaneous active and reactive output power of the IIREGs during severe faults can be
described as Equation (2). Here, we note that reactive power Qout is different from that defined in
classical steady-state circuit theory [32], i.e.,{

Pout = real(1.5(ejωtEp
dq + e−jωtEn

dq)conj(ejωtIp
dq + e−jωtIn

dq)) = 1.5(Po
out + Pc

out cos 2ωt + Ps
out sin 2ωt)

Qout = real(1.5(−jejωtEp
dq + je−jωtEn

dq)conj(ejωtIp
dq + e−jωtn

dq)) = 1.5(Qo
out + Qc

out cos 2ωt + Qs
out sin 2ωt)

(2)

where the superscript c, s and o denote the cosine, sine and average components. Pc
out, Ps

out, Qc
out, and

Qs
out are not equal to zero after asymmetrical faults. They can be represented in terms of the grid-side

voltage and output current as:
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(3)

Equation (3) shows that Pc
out has the same absolute value as Qs

out, as well as Ps
out and Qc

out.
Therefore, by nullifying the oscillating components of the instantaneous active power, the instantaneous
reactive power is also flattened.

Similarly, the instantaneous active power P1
out and reactive power Q1

out at the inverter pole can be
represented by Vk

dq and Ik
dq. By neglecting the unbalanced voltage drop in the LCL filter, P1

out and Q1
out

are almost equal to Pout and Qout, respectively. Moreover, P1
out is closely linked to the DC-link input

power Pin as:
Pin = 2CUdcdUdc/dt + P1

out (4)

where C and Udc stand for the DC-link capacitance and voltage, respectively. During asymmetrical
faults, the two-times frequency component of active power P1

out yields a 100-Hz DC-link voltage ripple.
Such a pulsating voltage causes detrimental effects on the control system of the grid-tied inverter and
even leads to tripping off of the IIREG from the grid.

2.2. Improved FRT Control Strategy

To ensure that the IIREGs ride through the asymmetrical faults, the control strategy based on
DVCC for the grid-tie inverter has been widely used. The strategy uses two control loops: four faster
inner parallel current loops and a slower outer DC-link voltage control loop. The inner loops regulate
the positive and negative output currents of the IIREG injected to the grid, whereas the outer loop
acts as a supervisory controller and determines the average active power reference Po in the inner
controller. The control structure enables flexible control of the output current of the IIREGs. Generally,
any of the two control targets expressed in Equation (5) can be achieved:{

[Po
out
∗, Qo

out
∗, Ps

out
∗, Pc

out
∗] = [Po, Qo, 0, 0]

[Po
out
∗, Qo

out
∗, in

d
∗, in

q
∗] = [Po, Qo, 0, 0]

(5)

where the superscript * denotes the reference value. In Equation (5), the average reactive power Q0

can be set to meet the FRT requirement. According to Equations (5) and (3), current references ip
d
∗
, ip

q
∗
,

in
d
∗, and in

q
∗ can be calculated. In Equation (5), the first sub-expression is to suppress the oscillation

of the DC-link voltage by setting Ps
out
∗ = 0 and Qs

out
∗ = 0 (Control Goal 1), whereas the second one

is to eliminate the negative-sequence current through the inverter (in
d
∗ = in

q
∗ = 0) (Control Goal 2).

Control Goal 1 easily leads to dangerous high current through grid-tie inverter under the severe faults.
Control Goal 2 may cause the oscillations in the DC-link voltage. Control Goal 1 and Control Goal 2
are suitable only for distant asymmetrical faults.

To enhance the FRT ability of IIREGs, an improved control strategy is studied in this section,
as shown in Figure 2. Compared with the conventional control strategy based on DVCC, the developed
FRT strategy can take care of both the inverters’ allowable current limit and DC-link voltage
fluctuation. A novel current limiter is designed to deal with the inverter over-current problem,
and a controller for the DC chopper is improved to insure the DC-link voltage within its acceptable
value. The corresponding details are explained next.

The key idea of the novel current limiter is to fully utilize the control ability of the grid-tie inverter
within its allowable current limit. The current limiter is activated in the event that the instantaneous
maximum current Imax through inverter is greater than the inverter’s current constraint Ilim. With the
limiter activation the positive- and negative-sequence current references are reset as:

ik∗
j
′
= ik∗

j Ilim/Imax = αik∗
j (6)
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where subscript j denotes the d- or q-axis component. α is a scalar coefficient of the current limiter, and
it is less than 1 if Imax > Ilim. Imax can be expressed as Imax = max(Iam, Ibm, Icm). Iam, Ibm, and Icm are
the magnitudes of instantaneous currents ia, ib, and ic through the inverter. The instantaneous currents
are obtained as follows:

ia = |Ip
dq| sin(ωt + θp) + |In

dq| sin(ωt + θn)

ib = |Ip
dq| sin(ωt− 2π/3 + θp) + |In

dq| sin(ωt + 2π/3 + θn)

ic = |Ip
dq| sin(ωt + 2π/3 + θp) + |In

dq| sin(ωt− 2π/3 + θn)

(7)

where |Ik
dq| (k = p, n) represent the amplitudes of the positive- and negative-sequence current vector

references, respectively. θp = arctan(ip
q /ip

d), and θn = 2π-arctan(in
q /in

d ) are the phase angles of the
positive- and negative-sequence current vectors.
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By substituting Equation (6) into Equation (5), we find that the oscillating DC-link voltage with
Control Goal 1 or negative-sequence current through the inverter with Control Goal 2 can still be
eliminated even though the current limiter is activated. In this paper, Control Goal 1 is chosen in order
to keep the DC-link voltage within an acceptable range.

Due to the activation of the current limiter, the active power through the inverter is limited.
However, the DC-link input power from the wind turbine or solar cell remains unchanged.
Consequently, the imbalance between the DC-link input power and output power may cause a
dangerous rise in the DC-link voltage. To prevent a DC-link overvoltage, the DC-link chopper is
engaged. Although the chopper circuit is widely used in practical wind and solar power systems, its
control strategy has not yet been significantly explored in the existing literatures. The control is crucial
to solve the DC-link overvoltage problem. The design of such a control system is also one of the novel
results of this paper.

Figure 2 shows that the controller for the DC-link chopper is automatically enabled once the
positive-sequence component of the grid-side voltage drops below a critical threshold (0.9 per unit
(p.u.)). The proportional-integral (PI) controller is employed to timely regulate the surplus power
in the DC link and to prevent the DC-link overvoltage risks. To shorten the chopper response time,
the integral part of PI controller is activated and reset to the most recent measurement of the DC-link
voltage at the time when the DC-link voltage is greater than 1.05 p.u. Moreover, the reference of the
PI controller is equal to that of the outer PI controller in the DVCC control loop, which enables the
IIREGs to immediately return to the pre-fault state after fault clearance.
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With the designed controller for the DC-link chopper, the DC-link voltage can be regulated within
its acceptable value. As mentioned above, the current limiter can restrict the current through inverters
within the maximum allowable currents. Hence, the improved FRT control strategy can solve both the
inverter over-current problem and DC-link over-voltage problem. To test the improved FRT control
strategy, the hardware-in-the-loop experiments have been conducted based on the test rig shown in
Figure 3.
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As shown in Figure 7, the test rig consists of main controller, pulse-width-modulated (PWM)
generator, real-time digital simulator (RTDS), and monitor. These hardware performance indicators
are devised according to the corresponding international standards or the marketable product’s design
criteria. In the test rig, the main controller is basically composed of the digital signal processor
(DSP)/field programmable gate array (FPGA) combined control boards. It can implement the
control and protection algorithms of the IIREG system based on the modular programming method.
The algorithm codes can be flexibly modified. The PWM generator is used for generating the electrical
firing signals for the inverters. RTDS simulator is employed to simulate the main circuit of power grid
with the tested IIREG. Monitor can be utilized for starting and stopping the IIREG system, so as to
reset the control and protection parameters, and so on.

Based on the experimental test rig, the two cases are as follows.
The first case is to verify the asymmetrical FRT ability of the IIREGs. The IIREG’s parameters

are shown in the Appendix A. It is assumed that a two-line-to-ground fault (TLGF) occurs between
phase-a and b in the collector line at t = 0.6 s and lasts for 0.65 s. The fault causes a 96% imbalance in
the grid-side voltage (Ep

dq = 0.57 p.u.; En
dq = 0.55 p.u.). Figure 4 shows the actual test results with the

conventional DVCC strategy and improved control strategy. From Figure 4, when the conventional
DVCC strategy is applied, during the fault the DC-link voltage and the current through inverter exceed
their allowable scopes. The IIREG becomes unstable after the fault. However, the proposed FRT
strategy assures the stable operation of IIREG. Both the current through inverter and the voltage in the
DC link are kept within their acceptable limits. The result indicates that the proposed control strategy
can effectively enlarge the feasible region of riding through the asymmetrical faults.
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The second case is to test the symmetrical FRT ability of the IIREGs. It is assumed that a fault 
occurs in the collector line at t = 0.6 s and lasts for 0.65 s. After the fault, grid-side voltage falls from 
1.02 p.u. to 0.2 p.u. Figure 5 shows the test results with the improved control strategy and 
conventional FRT strategy.  

In Figure 5, the difference between the improved control strategy and conventional strategy is 
the designed controller for DC-link chopper. Moreover, the conventional strategy can only limit the 
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The second case is to test the symmetrical FRT ability of the IIREGs. It is assumed that a fault
occurs in the collector line at t = 0.6 s and lasts for 0.65 s. After the fault, grid-side voltage falls from
1.02 p.u. to 0.2 p.u. Figure 5 shows the test results with the improved control strategy and conventional
FRT strategy.Sustainability 2018, 10, 44  8 of 16 
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In Figure 5, the difference between the improved control strategy and conventional strategy is
the designed controller for DC-link chopper. Moreover, the conventional strategy can only limit the
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balanced current through inverter. From Figure 5, with the effect of two control strategies both DC-link
voltage and the current through inverter are within their allowable values after and during the fault.
However, once the fault is cleared, the DC-link voltage is changed greatly (from 1.24 kV to 0.71 kV)
with the conventional FRT strategy in Figure 5b. As a result, at t = 1.32 s the current through inverter is
regulated into a steady-state value in Figure 5c. By comparison, with the effect of improved control
strategy, after the fault clearance DC-link voltage and the current through inverter can be quickly
restored into their corresponding pre-fault values.

In the test cases, it was established that the proposed FRT strategy can help the IIREGs to ride
through the asymmetrical faults that causes a 96% imbalanced grid-side voltage (|En

dq|/|E
p
dq|). At the

same time, the proposed strategy can also help the IIREGs to ride through the severe symmetrical faults.

3. Theoretical Analysis for IIREGs’ Fault Current Characteristics

Due to the instantaneousness of the fault initiation, a transient condition in IIREGs inevitably
exists. Different from the CSGs, the transient characteristics of IIREGs are more complicated with
multi-factor coupled effects. These factors include not only the integration circuit of IIREGs, but also
the FRT control strategy, its controller parameters, and its control goals. As a result, the theoretical
study on fault current characteristics of the IIREGs becomes difficult.

In this section, the characteristics of different frequency current from IIREGs are theoretically
discussed under the faults. It is commonly known that grid-side voltage of IIREGs is suddenly changed
after a fault. The voltage variation can be viewed as the summation of a set of different frequency
trigonometric functions. With the impact of different frequency voltages, the output currents of IIREGs
include high-frequency and low-frequency components (near the fundamental frequency).

Figure 6a shows the connection circuit of a grid-tied IIREG. The topology is typical, and it has
been widely used for the Chinese power grid with the REGs. It is assumed that a fault occurs at
the point of common coupling (PCC). Figure 6b shows the flowing path of high frequency fault
currents. The currents flow from the fault location into the filter of IIREGs. They are independent of
the IIREGs’ control. They are related with the passive circuits, i.e., local transformer(s), overhead lines,
and underground cables of the collector system, filter, and so on.Sustainability 2018, 10, 44  9 of 16 
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Figure 6. The path of high- and low-frequency fault currents from IIREG; (a) Integration topology
of an IIRGR; (b) The path of the high-frequency fault current; and (c) The path of the low-frequency
fault current.

As shown in Figure 6c, low frequency components flow from the IIREG into the fault location.
They are mainly determined by the IIREGs’ control, i.e., the FRT control schemes, its controller
parameters, and its control goals. However, they are irrelevant to the aforementioned passive circuits.
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Moreover, although the IIREGs’ control loops may also generate high-frequency currents due to the
fault initiation, the currents flow into the ground through the capacitor of the LCL filter from the IIREG
generation units. Thus, the high-frequency currents are non-existent, viewed from the PCC.

Next, the characteristics of different frequency fault currents are analyzed theoretically. To describe
the high-frequency currents, the equivalent model of IIREG’s passive network is built. Development
of the model includes the following steps [33].

Step (1): At PCC, disconnect the IIREG generation units at the AC-side terminals of the
corresponding converters.

Step (2): Inject a current signal into the IIREG system. The current signal is the summation of a
set of sinusoidal current components at unity amplitudes, zero phase angles, and discrete frequencies
that cover a specified frequency bandwidth and specified frequency steps. The frequencies of these
currents cover the desired frequency bandwidth. The frequency bandwidth is specified based on the
type of EMT studies, e.g., 0 to 50 kHz.

Step (3): Deduce the IIREG terminal voltage. This voltage represents the IIREG equivalent
impedances at the frequencies of the injected currents.

Step (4): Decompose the voltage, based on the Fourier analysis, into its components at the
frequencies of the injected current components.

Step (5): Fit a rational function of the form:

Y(s) = f (s) =
N

∑
n=1

cn

s− an
+ sh + d (8)

to the deduced results of Step (4). In Equation (8), residues cn and poles an can be either real or
complex numbers, while d and h are real and can be obtained based on several methods, e.g., the
vector fitting method.

According to the aforementioned steps, the equivalent model shown in Equation (8) can be built
for the system shown in Figure 6b. Their related parameters are listed in the Appendix A, which are
mostly based on the information from industries and the literature. Table 1 shows the residues and
poles of the obtained rational function and its time-domain performance indicators.

Table 1. Parameters of the rational function for the IIREG’s passive network.

Residues Poles Time-Domain Performance Indicators

Real Part Imaginary Part Real Part Imaginary Part Decay Time/ms Oscillating Frequency/Hz

53.7 2.66 −157.58 ±31,628.98 19.04 5033.91
1.68 0.074 −108.59 ±2054.53 27.63 326.99
240 143 −18,968.83 ±120,144.69 0.16 19,121.62
184 0 −1,931,778.48 0.00 0.00 0.00
−450 0 −5,804,483.19 0.00 0.00 0.00

Based on the conjugate poles in Table 1, the decay time and oscillating frequency of the
high-frequency fault current can be calculated. From Table 1, the decay time of 327 Hz current
component is about 19.04 ms. And the attenuation time of 5034 Hz current component is approximately
27.63 ms. Other frequency current components are reduced at a very fast rate, so their reduction time
can be ignored.

After the high-frequency current decays to zero, the remaining component is the fundamental
frequency current. This can be calculated based on the fundamental admittance. According to the
equivalent model of IIREG’s passive network, the fundamental positive and negative admittance
Y1 = Y2 = 4.0 × 10−5 + j8.9 × 10−4 Si are very small. Thus, the fundamental current is small through
the IIREG’s passive circuits during the fault.

Figure 7 shows the instantaneous phase-a current from the practical IIREG and its passive circuit
when the fault occurs at t = 0.113 s. From Figure 7a, the high-frequency currents from the passive circuit
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decay last for only 18.8 ms during the fault. By comparing Figure 7a with Figure 7b, the fundamental
current amplitudes through the passive circuit and from the overall IIREG are respectively equal to
0.00062 kA and 0.04613 kA during the steady-state fault periods. The former current is 1.34% that of
the latter.
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Figure 7. Instantaneous phase-a current when the fault occurs at t = 0.113 s; (a) Current through the
passive circuit; and (b) Current from the practical IIREG.

Therefore, high-frequency fault currents provided by IIREGs last only for 1–2 cycles. The currents
are decided by the passive circuits of IIREGs’ integration topology. The fundamental fault currents
always exist, and they are affected mainly by the IIREGs’ control system. In the following sections,
the characteristics of fundamental fault currents are discussed.

4. Mathematical Expression of Fundamental Fault Current

In the section, the fundamental fault current expression of IIREGs is derived on the basis of the
proposed asymmetrical FRT strategy. It can provide a basis for relay setting calculations of the power
grid connected with a large number IIREGs.

4.1. Derivationfor Fundamental Fault Current

Due to the fast response of the gird-connected inverter controller, the IIREGs can quickly reach the
steady state under fault conditions. During faults, the steady-state behavior of the IIREGs is strongly
dependent on the FRT control. Combining Equations (3) with (5), the positive- and negative-sequence
components of the fundamental fault current from the IIREGs with Control Goal 1 are expressed as
follows (in a p.u. system): Ip

m = |Ip
dq| = Ep

mSo/(Ep
m

2 − En
m

2) = So/(γEm(1− β2))

In
m = |In

dq| = En
mSo/(Ep

m
2 − En

m
2) = βSo/(γEm(1− β2))

(9)
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where Ep
m and En

m are the positive- and negative-sequence amplitudes of grid-side voltage. γ reflects
the drop coefficient of the positive-sequence grid-side voltage. β = En

m/Ep
m denotes the imbalance

degree of grid-side voltage. Em is the rated voltage magnitude. So represents the apparent power
injected into the grid. From Equation (9), the IIREGs can generate the negative-sequence currents.
The current characteristic is different from that of the CSGs.

By taking into account the deliverable power limit through the inverter, the apparent power So

derived using the proposed control strategy is expressed as:

So =


√

Po
2 + Q2

o α ≥ 1

α
√

Po
2 + Q2

o α < 1
(10)

In addition, the three phase current amplitudes Iam, Ibm, and Icm through the inverter can be
calculated as: 

Iam =

√
Ip
m

2
+ In

m
2 + 2Ip

m In
m cos(θp − θn)

Ibm =

√
Ip
m

2
+ In

m
2 + 2Ip

m In
m cos(θp − θn − 4π/3)

Icm =

√
Ip
m

2
+ In

m
2 + 2Ip

m In
m cos(θp − θn + 4π/3)

(11)

where phase angles θp and θn are, respectively, derived as:{
θp = tan−1 ks

θn = 2π − tan−1((−ks + ku)/(1 + ksku))
(12)

where ks = Qo/Po and ku = en
q /en

d . The phase-angle difference θi is expressed as:

θi = θp − θn = tan−1 ku − 2π (13)

The angle θi is closely related with negative-sequence grid-side voltage. Given the positive and
negative current amplitude Ik

m(k = p, n), the three phase current peaks vary periodically with θi. If θi
is equal to 0, 3π/4, or 5π/4, the current magnitude in phases a, b, or c is, respectively, the largest.
The peak is equal to the magnitude sum of the positive- and negative-sequence current vectors.

By substituting Equations (10) and (13) into Equation (11), the three phase current amplitudes is
also expressed as: 

Iam = So
√

1 + β2 + 2β cos θi
/
(γEm(1− β2))

Ibm = So
√

1 + β2 + 2β cos(θi − 4π/3)
/
(γEm(1− β2))

Icm = So
√

1 + β2 + 2β cos(θi + 4π/3)
/
(γEm(1− β2))

(14)

From Equation (14), it is found that the short-circuit current provided by IIREGs is determined by
two factors. The one is closely related with the apparent power delivered to grid and the inverter’s
ampere constraint. The power is determined by FRT control goal that is a fixed value for the specified
grid code. The other is the amplitudes and angles of positive and negative sequence grid-side
voltage vectors. These voltage vectors depend on both the equivalent short-circuit parameters of a
connected grid and the grid fault conditions. In fact, the equivalent parameters and the fault conditions
should be given from the perspective of the study on the relay protection. Thus, the steady-state
short-circuit current expression of IIREGs as shown in Equation (14) is independent of the inverter’s
controllers and its parameters. The fault current values can be obtained without knowing the inverter’s
control strategies.
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4.2. Verification

To verify the fault current expression, the detailed test model is built as shown in Figure 8.
The topology is typical, and it has been widely used for the transmission grid with the large-scale
IIREGs. The related parameters are listed in the Appendix A, which are mostly based on the
information from industries and the literature.
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Based on the experimental model in Figure 8, the tests was done using the hardware-in-the-loop
as shown in Figure 3. At the same time, according to Equation (14) the fault currents from the IIREG
were calculated using the MATLAB software. Table 2 shows the comparison results with different
active and reactive power commands. Here, it is assumed that a two-line-to-ground fault (TLGF)
occurs between phases-a and -b in bus C at t = 0.6 s and lasts for 0.65 s. Before the fault the IIREG
operates at its rated state, and its output current is approximately 1.245 kA.

Table 2. Fault currents of IIREGs with different active and reactive power commands.

Po = 1 p.u. Qo = 1 p.u. Po = 1 p.u. Qo = 0.1 p.u. Po = 0 p.u. Qo = 1 p.u.

Current Amplitude Iam Ibm Icm Iam Ibm Icm Iam Ibm Icm

Test Results 1.81 kA 2.49 kA 1.25 kA 2.43 kA 2.49 kA 0.31 kA 1.50 kA 2.49 kA 1.55 kA
Calculation Results 1.76 kA 2.45 kA 1.19 kA 2.46 kA 2.46 kA 0.33 kA 1.48 kA 2.44 kA 1.60 kA

Relative Error −2.76% −1.60% −4.80% 1.23% −1.22% 6.45% −1.33% −2.05% 3.22%

From Table 2, it is found that the difference between the calculation results and test results is very
small. The maximal error value reaches 6.45%, only when the desired powers of grid-tie inverter are
Po = 1 p.u., Qo = 0.1 p.u. Under the other power commands, the errors are less than 5%. It is indicated
that the proposed IIREG’s fault current expression as shown in Equation (14) has high accuracy.

Moreover, compared with the calculated or tested fault currents results, it is found that the
relationship among the three-phase current amplitudes is different withvarious active and reactive
power commands. With different cases the faulty phase-b current magnitude reaches the inverter’s
ampere constraint (2 p.u., 2.49 kA) due to the current limiter activation, but the relationship between
the phase-a and -c current amplitudes is affected by the actual real and reactive power commands.
Therefore, the active and reactive power commands for grid-tie inverter affect not only the amplitude
values of IIREG’s fault currents but also the relationship of the three-phase current amplitudes.
The fault current characteristic of IIREG is different from that of synchronous generators. The fault
current of synchronous generators is mainly influenced by the machine equivalent impedance.
The impedance is not associated with the generators’ active and reactive injections.

5. Conclusions

In order to reveal the IIREGs’ fault current characteristics and further deduce the universal fault
current calculation model, it is important to study on the FRT control strategy for the IIREGs. Hence,
in this paper an advanced FRT control strategy is firstly proposed. In the control strategy, a novel
current limiter is designed for restricting the current through inverter. Meanwhile, a controller
for the DC-link chopper is improved to keep the DC-link voltage within its allowable value.
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The hardware-in-the-loop test results indicate that the proposed strategy can effectively enlarge
the feasible region of riding through the faults, including the severe asymmetrical faults (the imbalance
of grid-side voltage is about 100%) and serious symmetrical faults (the drop coefficient of the grid-side
voltage is approximately 20%).

Based on this, the characteristics of different frequency fault currents from IIREGs are theoretically
analyzed after and during the faults. It is revealed that the respective affecting factors of high frequency
and fundamental frequency fault current are independent. The high currents are determined mainly
by the IIREGs’ passive circuits, i.e., local transformer(s), overhead lines, and underground cables of the
collector system, filter, and so on. The fundamental fault currents are closely related with FRT goals
and the inverter’ ampere constraint. The high currents last only for 1~2 cycles after the faults, whereas
the fundamental fault currents always exist.

Further, the fundamental fault current calculation model of IIREGs is derived. The deduced
short-circuit current expression is determined by two factors. The one is closely related with the
apparent power delivered to grid and the inverter’s ampere constraint. The apparent power is related
only with the FRT control goal, independent of the FRT controller parameters. The FRT control goal is a
known value for the specified grid code. The other factor is the grid-side voltage vectors. The voltages
vectors can be obtained if the short-circuit equivalent parameters of a connected grid and the grid fault
conditions are given. For the fault analyzing or relay setting calculating, the short-circuit parameters
and the fault conditions should be treated as the known values. Thus, the fault current contributions
from the IIREGs can be calculated without knowing their control strategies. The proposed fault current
calculation model is useful for relay-setting calculations of the grid with a large number of IIREGs.
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Nomenclature

Subscript d d-axis component
Subscript q q-axis component
Superscript p Positive sequence component
Superscript n Negative sequence component
Superscript * Reference value
Superscript o Average component
Superscript c Second harmonic cosine component
Superscript s Second harmonic sine component
E Grid-side voltage Vector
I Output current Vector
e Instantaneous grid-side voltage
i Instantaneous output current
Em Grid-side voltage amplitude
γ Voltage drop coefficient
β Voltage imbalance degree
Im Output current amplitude
U AC-side voltage Vector
Udc DC-link voltage
Pout Active output power of the IIREG
Qout Reactive output power of the IIREG
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P1
out Active power at the inverter pole

Q1
out Reactive power at the inverter pole

Pin DC-link input power
P0 Average reactive power Reference
Q0 Average reactive power Reference
S0 Apparent output power
Imax Instantaneous maximum current through inverter
Ilim Inverter’s current constraint
α Scalar coefficient of the current limiter
θp Positive-sequence current angle
θn Negative-sequence current angle
θi Angle difference between θp and θn

R1 Inverter-side resistance of the LCL filter
R2 Grid-side resistance of the LCL filter
ω Grid frequency
C DC-link capacitance

Appendix A

Transformer T1 ratio n = 10.5/2.2 kV; transformer T2 ratio n = 121/10.5 kV; the line length AB, BC is 5.5 km,
1.6 km; grid frequency ω = 50 Hz; grid-tie inverter: rated capacity S = 1.5 MW, rated current 1.245 kA, ampere
constraint 2.49 kA; DC-link capacitor C = 4500 µF, DC-link voltage Udc = 1.2 kV; LCL filter: L1 = 1100 µH,
L2 = 123.55 µH, Cf = 200 µF, Rf = 0.2484 Ω; inner positive or negative current controller: proportional gain
KiP = 0.3285 p.u., integral time constant TiI = 0.0175 p.u.; outer voltage controller: KvP = 0.75 p.u., TvI = 0.875 p.u.
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