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Abstract: Drastic urbanization has resulted in numerous problems worldwide, and many studies
were devoted to individual cities. There is an urgent need to quantify urbanization patterns and
illustrate their driving forces in the regional area on a large scale over a longer time period. This study
produced a land cover dataset to characterize sequential urban land expansion in Northeast China
from 1990 to 2015 using object-based backdating classification and calculating the expansion index.
The drivers were investigated using Pearson correlation analysis and the multiple linear stepwise
regression model. The results revealed that the total area of urban land increased by 43.15% from 1990
to 2015, mainly in the middle part of the study area, and especially in the coastal area of Liaoning.
Liaoning had the fastest growth rate, while Heilongjiang showed a decrease in growth rate rankings.
Urban land expanded northward and southward within Harbin City, towards the west and east
within Changchun City, and relatively equally in all directions within Shenyang City. Expansion
patterns changed from edge expansion (42%) to outlying expansion (47%). Urban land of Liaoning
and the Eastern Inner Mongolia Autonomous region expanded with similar patterns as the entire
area, but that of Heilongjiang grew in an opposite pattern, and Jilin maintained outlying major
expansion. The influence of factors on urban land sprawl varied temporally. Tertiary industry
product, gross domestic product, secondary industry product, total population and urban population
were driving factors of urban land sprawl in Northeast China from 1990 to 2015. This research
provides quantitative methods for better understanding urban land dynamics and devising feasible
strategies for sustainable urban development.

Keywords: urban land expansion; quantitative characteristics; driving forces; remote sensing; GIS;
object-based classification; Northeast China

1. Introduction

Humans have experienced dramatic urban sprawl [1]. Approximately 5% of global land has
been converted to urban land, more than half of the world’s population lives in urban areas, and this
number is expected to reach 66% by 2050 [2–4]. Notwithstanding the benefits of urbanization like
economic growth, drastic urbanization has caused numerous environmental consequences including
cropland occupation, urban heat island effects, and ecological degradation, and have jeopardized
ecological and socioeconomic systems [5,6]. In other words, urban land cover information has become
a useful indicator of the ecological environment and climatic effects over different spatiotemporal
scales [7,8]. Therefore, characterizing urban land expansion pattern is a prerequisite for integrative
urban planning and regional sustainability.

Remote sensing provides high-frequency earth observation data over spatiotemporal scales in a
spatially explicit manner [9]. Combined with Geographical Information Systems (GIS), remote sensing
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has been widely adopted in the study of urbanization focusing on extracting urban land cover and
quantifying their sprawl patterns [10]. Among the various remote sensing data, such as QuickBird [11],
Synthetic Aperture Radar (SAR) [12,13], Moderate-resolution Imaging Spectroradiometer (MODIS) [14]
and Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) nighttime
light imagery [15,16], images with medium spatial resolution from Landsat images, which are easily
accessed, have an appropriate spectral resolution and well-developed processing methods. These
images are an important source of data for urban land extraction and their sprawl pattern quantification
at relative large scales [17–19].

Over more than 30 years of reform and opening up, China has experienced unprecedented
urban expansion and attracted widespread concerns, whose urbanization level were 17.9% in 1978,
26.4% in 1990, 36.2% in 2000, 49.9% in 2010 and 56.1% in 2015, respectively [10,20,21]. Previous
studies illustrated the phenomenon of urbanization occurring all over China [8,22], the largest
urban agglomerations [23,24], and zones with a long human history and a relatively high level
of economic prosperity [25,26]. Conventionally, urban expansion patterns were revealed by analyzing
the driving forces. The driving forces of urban land sprawl were divided into direct and potential
factors. The direct factors included infrastructure construction, settlement expansion, and industry
development [27,28], whereas technology, economy, population, policies, and natural factors belonged
to potential factors [29–31]. Qualitative analysis of those driving forces was more frequently used
because of difficulties of sequential statistics data collection [23]. However, the quantitative analysis of
driving forces, which is more valid for scientific strategy proposals, has been insufficient.

Being the traditional industrial and grain base of the country, Northeast China was once the most
highly developed region. However, in the 1990s, the region went through a remarkable economic
recession after being confronted with tremendous challenges due to resource depletion, environmental
pollution, and business reconstruction [10,32], resulting in urbanization falling behind that of the
southern coastal cities. Then in 2003, the Revitalizing Old Industrial Base of Northeast China
strategy proposed promoting the economic recovery of the region and initiated a new era of urban
expansion in Northeast China [8,10]. By occupying quantities of farmland, the urban land in Northeast
China expanded 2.37 times, which was the smallest expansion rate, other than Hong Kong, Macao,
and Taiwan, based on Landsat images and data from the China-Brazil Earth Resources Satellite (CBERS)
CCD and HJ-1 CCD [23]. Landsat images and the SLEUTH urban growth and land cover change
model [33] indicated the highest level of landscape fragmentation and the largest loss of farmland
with rapid urban expansion was occurring across the Shenyang metropolitan area. However, none of
the previous studies explicitly separated urban land (direct land use information on urbanization [34])
from impervious surfaces for entire regions in Northeast China over a relatively long time period.

Therefore, based on Landsat images, this study addressed the need for urban land extraction
and driving forces analysis from 1990 to 2015 in Northeast China through modifying object-based
backdating classification, calculating the expansion index, and conducting statistical analyses.
The objectives of this study were to: (1) create a medium-resolution (30 m) urban land cover
dataset for Northeast China in four study periods: 1990, 2000, 2010, and 2015; (2) use the expansion
index to characterize the urban land expansion patterns from the first phase to the third phase,
1990–2000, 2000–2010, and 2010–2015; and (3) quantify the influence of socioeconomic factors on urban
land sprawl.

2. Materials and Methods

2.1. Study Area

Northeast China (Figure 1) is located between 38◦and 54◦N and 116◦ and 136◦E, covering an area
of 1.25 × 106 km2 [34]. It is located in the eastern Eurasia continent, whose southern part is next to the
Bohai Sea and the Yellow Sea of China. The area borders the Mongolian plateau in the west and the
Siberian Plateau in the north. Northeast China also adjoins Russia in the north and northeast with
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boundaries being the Ergun River, Amur River, and Wusuli River. Mongolia is adjacent to the central
west of the study area. Northeast China is separated from North Korea by the Tumen and Yalu Rivers.
Located in the continental monsoon climate area, the summers are mild and humid and the winters
are long and harsh. The mean annual temperature is 2.75–5.72 ◦C, with an average precipitation of
250–700 mm [35].
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The area has fertile land, being one of three world-famous black soil belts, and is the main
grain-producing area in China, so the area is vital for the country’s food security. However, many
studies have demonstrated that urban land has encroached considerably on farmland [23,32],
threatening agricultural productivity in China [36]. The 40 prefecture-level cities are governed within
the study area. These cities were the basic units for the following driving forces analysis and are
divided amongst the provinces as follows: 14 in Liaoning Provinces, nine in Jilin Provinces, 13 in
Heilongjiang Provinces, and four in the Eastern Inner Mongolia Autonomous region. In 2015, the total
population was 117.2 million people [37]. Since the initialization of the Northeast Old Industrial
Base Strategy in 2003, urbanization in Northeast China has developed rapidly, resulting in excessive
conversion of cultivated land for construction purposes, as well as other problems [38].

2.2. Data Sources and Preprocessing

The 422 cloud-free remote sensing images used in this study included Landsat Thematic Mapper
(TM) imagery from 1990, 2000 and 2010 as well as Landsat Operational Land Imager (OLI) imagery
from 2015. The images were acquired from the United States Geological Survey (USGS) Center
(http://glovis.usgs.gov/), and were nominally processed as Level 1 terrain corrected. Landsat
images have been widely used to investigate spatial changes in settlements [18–20,39]. To address
inconsistencies among image datasets, Landsat TM images were geo-rectified against the Landsat OLI
images, and then all images were projected onto the Albers equal-area conic coordinate system to
accurately extract land cover area. A module in ENVI software [40], i.e., the FLAASH module was used

http://glovis.usgs.gov/
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for atmospheric corrections of Landsat images [41]. The point layers, including the center positions
of cities, counties, towns and villages, and the polygon layers of different levels of administrative
boundaries from the Resource Environmental Science Data Center of Chinese Academy of Sciences
(http://www.resdc.cn) and National Earth System Science Data Sharing Infrastructure, National
Science and the Technology Infrastructure of China (http://www.geodata.cn) were also used in
this study.

In this study, ground surveys were conducted in Northeast China (Figure 1) from July to October
2015 using global positioning system (GPS) units, with location errors less than 10 m. These surveys
resulted in 6803 points, covering all land cover types within the study area. The overall accuracy of
the confusion matrix was used to assess the agreement between the results and the ground-truth [42].
The land resource maps, and river and road data from the National Earth System Science Data Sharing
Infrastructure, National Science and Technology Infrastructure of China (http://www.geodata.cn),
Advanced Spaceborne Theemal Emission and Reflection Radiometer Global Digital Elevation Model
(ASTER GDEM V1) with 30 m spatial resolution acquired from the United States Geological Survey
(USGS) Center (http://glovis.usgs.gov/), photos from Google Earth and the historic investigation
points from local experts were used as auxiliary data to achieve accurate land cover classification.

The statistical data used for the quantitative analysis of factors affecting urban land sprawl
was collected from statistical yearbooks of Heilongjiang, Jilin, Liaoning, and Eastern Inner Mongolia
Autonomous region for 1991, 2001, 2011 and 2016. According to the correlation and accessibility for a
long-term study, the nine selected statistical indicators for the 40 prefecture-level cities in the study area
were: total population, urban population, gross domestic product, secondary industry product, tertiary
industry product, per capita gross domestic product, floor space of buildings under construction in
commercial house, per capita disposable income of urban permanent residents, and gross output value
of construction industry.

2.3. Object-Based Backdating Classification and Urban Land Dynamics

2.3.1. Object-Based Backdating Classification

An backdating approach, as a synthesis of the post-classification comparison and pre-classification
change detection, typically started with the reference map, based on which the classification and
change analysis are conducted [43], which conducted classification only at locations with changes and
maintained the consistency of the features with on changes [44,45]. In order to reduce the ‘salt and
pepper’ effect [44], the backdating approach integrated with an object-based method was used for
Land Use/Land Cover (LULC) classifications. Five major land cover types and other land were found
within the study area: forest, grassland, wetlands, farmland, and settlements. With this modified
approach applied in this study, the LULC maps from 1990 to 2015 were generated through the following
two steps:

1. Reference map production: The 2015 LULC map was derived from 2015 Landsat OLI imagery
using an object-based classification approach by the eCognition Developer 8.64 software.
The work flow involved segmenting images, using a bottom-up region merging method [46],
rule-building, and exporting vectors. After a trial and error process for testing the segmentation
parameters, three levels of objects were created by setting parameters for different scales, the shape
factor, and compactness factor, as shown in Table 1. Then, a decision tree approach was used and
the rule sets were created based on the statistical analysis of the training areas resulting from
the field surveys and images, including spectral information, spatial relations, and geometric
characteristics (Figure 2). Visual interpretation and manual editing were conducted to further
confirm the classifications for a highly accurate reference LULC map. Accuracy assessment was
conducted with the 6803 points from the ground survey data, with at least 80 samples for each
category. The overall accuracy of the 2015 LULC map was 93%, and that for the settlements
was 95%.

http://www.resdc.cn
http://www.geodata.cn
http://www.geodata.cn
http://glovis.usgs.gov/
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2. LULC maps creation for other years: Using the 2015 LULC map as the reference map, the LULC
classification maps for 1990, 2000, and 2010 were derived separately using an object-based
backdating approach with change vector analysis [44,45]. More details about the classification
approach can be found in previous studies [44,45]. Accuracy assessment was also completed for
the LULC classification maps in 1990, 2000, and 2010 using historical field survey points and
Google Earth images, as well as visual interpretation of the Landsat TM data as reference data.
The overall accuracies of these three classification maps were 86% for 1990, 86% for 2000, and
88% for 2010, and that of settlements in the three years were 90%, 91% and 93%, respectively.

Table 1. Multi-scale segmentation parameters.

Parameter Level 1 Level 2 Level 3

Scale 50 30 10
Shape 0.3 0.2 0.1

Compactness 0.4 0.4 0.4
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Figure 2. The outline of the decision tree. The threshold of each rule set varied with images. NDVI is
the Normalized Difference Vegetation Index (NDVI), calculated from bands four and five of Landsat
OLI [47]; GLCM mean is the mean value of the gray level co-occurrence matrix and is widely used in
textural features extraction, calculated by the gray scale value of the images [48]. Elevation and slope
are calculated from ASTER GDEM V1 data; NDWI is the Normalized Difference Water Index, calculated
from bands three and five of Landsat OLI [49]; NDBI is the Normalized Difference Build-up Index,
calculated from bands five and six of Landsat OLI [50]; and EVI/Phenology is Enhanced Vegetation
Index varied in time, calculated from bands one, four, and five of Landsat OLI [51].

2.3.2. Selection of Urban Land Patches

As no international agreement exists on how to define urban land [52,53], urban land in this
research was defined as spatially continuous artificial areas in non-village areas, and where the local
government office was typically located in Northeast China. Specifically, urban land was extracted
in two steps [45]: (1) The class objects “settlements” were selected from the LULC maps as potential
urban land; (2) The urban land for 1990, 2000, 2010 and 2015 were separated from villages using the
vector layer of points of cities, counties, towns and villages.
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2.3.3. Calculation of Growth Rate

The area (km2/year) of the annual growth rate of urban land (AGR) and the proportion (%) of the
growth rate of urban land (GR) were used to quantify the expansion speed of urban land for over two
decades. Temporal patterns of urban land expansion for each province and for the whole study area
were reflected by AGR. To compare the provinces, GR was calculated. The two indexes are defined
as follows:

AGR = (Send − Sstart)/n (1)

GR = (Send − Sstart)/Sstart, (2)

where Send (km2) and Sstart (km2) are the area of urban land at the end and start of the period,
respectively, and n (years) is the duration between the start and end time.

2.3.4. The Expansion Index

The Expansion Index (E), according to previous studies [10,54], was chosen to quantitatively
identify the three main urban land expansion types: infilling, edge-expansion, and outlying. A newly
grown patch spreading as the gap or hole between old patches or within an old patch was defined as
a infilling one, while that growing unidirectionally in more or less parallel strips from an edge was
an edge-expansion patch, and it would be referred to an outlying type when the newly grown patch
was found isolated from the old [55]. The E was acquired using the Analysis Tools of ArcGIS software
as follows:

E = Lcom/Pnew, (3)

where Pnew (km) is the perimeter of a newly developed urban land patch, and Lcom (km) is the length
of common edge of this expansion patch and an existing urban land patch or patches. This patch
is identified as infilling expansion when E > 0.5, edge expansion when 0 < E ≤ 0.5, and outlying
expansion when E = 0.

2.4. Statistical Analysis

2.4.1. Pearson Correlation Coefficient

The Pearson correlation coefficient (rxy) for the nine factors and urban land of each prefecture-level
city in Northeast China was calculated to assess their relationship. The two variables are considered
positively correlated when rxy was larger than 0, and vice versa. rxy is widely used to the measure of
the linear correlation and the average response of a whole sample [53]. rxy was calculated using R 3.2.2
software with the p-value from the t-test as follows:

rxy =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
, (4)

where i ranges from 1 to 40 in the study area; n is the total number of cities (i.e., 40 in this study); xi is
the statistics factor of city i; yi is the built-up land area of the city i; and x and y are the mean statistical
factor and urban land area of the cities, respectively. rxy is regarded to be significantly different and
credible when the p-value is below 0.05.

2.4.2. Multiple Linear Stepwise Regression

Multiple linear stepwise regression is a method of fitting regression models in which the choice
of predictive variables is automatically performed, and each of the variable’s performance or its
contribution to the overall model can be easily determined [56]. In the R 3.2.2 software, a sequence of
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F-tests and t-tests are performed, with adjusted R2 (the increasing sample number increased the value
of R2) and backward elimination. Backward elimination involves starting with all candidate variables,
testing the deletion of each variable using the Akaike information criterion, deleting the variable
whose loss results in the most statistically insignificant deterioration of the model fit, and repeating
this process until no further variables can be deleted without a statistically significant loss of fit.
To eliminate the effect of factor dimension and magnitude, significantly related statistics factors and
the area of urban land in each year were normalized [52] as follows:

x∗ ik =
xik − min(xk)

max(xk)− min(xk)
, (5)

where x*ik is the normalized value of the related statistical factor k or the area of urban land in the city
i, between 0 to 1; xik is the original value of the related statistics factor k or the area of urban land in the
city i; min(xk) is the minimum value of factor k or the area of urban land of the 40 cities in each year;
and max(xk) is the maximum value of factor k or the area of urban land of the 40 cities in each year.

After the normalization, multiple linear stepwise regression was acquired using R 3.2.2 software
as follows:

Y∗ =
p

∑
k=0

αk × x∗k + β, (6)

where Y* is the normalized value of the area of urban land; x*k is the normalized value of
automatically-chosen factors k with minimum value of AIC; αk is the coefficient of factors k, theoretically
speaking, the larger absolute value of αk meaning the more contribution to the regression model,
and plus and minus value indicating positive and negative contribution, respectively; β is intercept;
αk and β are accepted to be significant and credible when the p-value of the t-test is below 0.05;
The regression model is accepted to be significant and credible when the p-value of the F-test is below
0.05, and larger value of adjusted R2 meaning a better model fit.

3. Results

3.1. Area Changes of Urban Land

In 2015, the urban land area was 1.14% of the total study area, and the percentages for Liaoning,
Jilin, Heilongjiang, and Eastern Inner Mongolia Autonomous region were 4.08%, 1.47%, 0.79% and
0.37%, respectively. Shenyang City, Dalian City, Changchun City, Harbin City, and Hulun Buir City
were the top five cities with the most urban land holdings. The urban land patches were mainly found
in the middle part of the study area and Liaoning, especially in coastal areas.

The annual growth rate of urban land increased from the first phase to the third phase (Figure 3).
Specifically, Liaoning always had the highest annual growth rate for each phase. The rank of
Heilongjiang in terms of annual growth rate among the four regions dropped from second to fourth
from the first phase to the third phase. However, Eastern Inner Mongolia Autonomous region showed
strong growth momentum in more recent years. For Jilin, the growth of urban land was maintained at
an average level. From 1990 to 2015, the urban land of Heilongjiang grew the slowest with a 23.78%
growth rate, which was the only region below the average level of 43.15%. The grown rate of Liaoning
increased fastest, with 56.41%, followed by Eastern Inner Mongolia Autonomous region and Jilin.
The urban land sprawl was obvious in the three capital cities: Harbin, Changchun, and Shenyang
(Figure 4). Urban land expanded northward and southward for Harbin City, whereas urban land within
Changchun City sprawled west and east. Meanwhile, urban land within Shenyang City developed
relatively equally in all directions.
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3.2. Urban Land Expansion Types

Urban land expansion patterns varied in time and space from the first phase to the third phase in
Northeast China (Figure 5). In general, although urban land patches with edge expansion decreased,
this was the main type of expansion following outlying expansion. After the first phase, 1990 to 2000,
outlying expansion replaced edge expansion and became the main urban expansion type in the study
area, though the percentage of outlying expansion slightly decreased due to little growth in infilling
patches. Expansion patterns of the four regions in the study area were quite different. In the first phase,
the main expansion type for urban land in Heilongjiang and Jilin was outlying expansion, while that
for Liaoning was edge expansion, and the three expansion types were relatively equal in Eastern Inner
Mongolia Autonomous region. In the second phase, the main type in all four regions was outlying
expansion followed by edge-expansion, and infilling. In the last phase, three regions were dominated
by outlying expansion, which was quite similar within the last decade, except for Heilongjiang, which
was dominated by edge expansion. Compared to other provinces, the urban expansion pattern in Jilin
was relatively stable, whereas that in Heilongjiang changed the most.
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Figure 5. The proportion of three expansion types in (a) Heilongjiang (HLJ); (b) Jilin (JL); (c) Liaoning
(LN); (d) Eastern Inner Mongolia Autonomous Region (EIMAR); and (e) the total study area over the
three decades.

To acquire more detailed dynamics information on the urban land expansion patterns in Northeast
China, typical urban land sprawl patterns within three capital cities were extracted (Figure 6).
The sprawl patterns of typical urban land within Harbin City were similar to the sprawl patterns of
urban land in the entire Heilongjiang during the study period, except for the third phase (Figure 6a–c).
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Typical urban land within Harbin City experienced major outlying expansion. From 1990 to 2000,
edge expansion and outlying were the major types of urban land expansion, mainly located in south
part of the typical urban land within Harbin City. In the following phase, typical urban land within
Harbin City experienced quick growth, and outlying expansion was the dominant type, concentrated
in the west. For 2010 to 2015, urban land expansion slowed, and outlying expansion was still dominant
type, distributed in the south. For Changchun City, the expansion pattern of the typical urban land
aligned with the overall expansion patterns of urban land observed in the entire Jilin during the study
period, except for the first phase (Figure 6d–f). In the first decade, edge expansion was dominant,
mainly located in the south part. For 2000–2010, typical urban land increased considerably through the
outlying major type, concentrated in the west and east. For 2010 to 2015, urban land expansion also
decreased and outlying was still the main expansion type distributed in the west and east. However,
the expansion patterns of the typical urban land within Shenyang City were different from those of
urban land in the entire Liaoning during the study period, except for the second phase (Figure 6g–i).
At first, edge-expansion and outlying were the main expansion types, mainly located in the northern
and southern urban areas within Shenyang City, respectively. Then, the typical urban land also quickly
increased, and outlying was the main expansion type, concentrated in the north. Finally, urban land
expanded with the edge-expansion-major type and was distributed in the middle to northern part of
the city. Overall, typical urban land sprawl within the three capital cities all clearly increased from
2000 to 2010 following the same major outlying expansion pattern.

3.3. Urban Land Expansion with Socioeconomic Development

Based on the correlation analysis of 160 samples of 40 cities for four periods, Table 2 shows the r
between the value of each statistic index and the area of urban land, as well as credibility of the r value.
All nine indexes had a strongly significant positive relationship with the area of urban land for all r
above 0 and their p-values were all above 0.01. Compared to the other indexes, per capita disposable
income of permanent urban residents and per capita gross domestic product lacked a close correlation
with the urban land area, as their r were both below 0.5. However, for r values below 0.75, tertiary
industry product, gross domestic product, secondary industry product, and total population were
strongly associated with the urban land area.

Table 2. The Pearson correlation coefficient (r) of the correlation analysis between the urban land area
and statistical data.

Statistical Data Related to Urban Land (km2) r

Total population (104 persons) 0.76 **
Urban population (104 persons) 0.64 **

Gross domestic product (100 million Yuan) 0.78 **
Secondary industry product (100 million Yuan) 0.77 **

Tertiary industry product (100 million Yuan) 0.78 **
Per capita gross domestic product (Yuan) 0.48 **

Floor space of buildings under construction in commercial house (104 m2) 0.73 **
Per capita disposable income of urban permanent residents (Yuan) 0.33 **

Gross output value of construction industry (104 Yuan) 0.60 **

Note: ** denotes strongly significant with a p-value below 0.01.

According to the p-value of the formula and the adjusted R2 (Table 3), the five multiple
linear stepwise regression models were all strongly significant and credible. Generally speaking,
total population, urban population, gross domestic product, secondary industry product, and tertiary
industry product were the automatically chosen factors for urban land expansion in Northeast China
from 1990 to 2015, which was consistent with above correlation analysis. Based on the correlation
coefficients of the factors and their p-values, urban land sprawl was most positively influenced by
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secondary industry product, followed by tertiary industry product, total population, and urban
population. Although gross domestic product was one of the factors, its effect on urban land sprawl
was uncertain, as its p-value of the coefficients was below 0.05.Sustainability 2017, 9, 188 11 of 17 
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Table 3. Multiple linear stepwise regression models for each study period.

Year Formula Adjusted R2

1990
UL = −0.32 **UP + 49.31 **GDP − 12.48 **SIP − 1.92 **PCGDP −

2.20PCDIUPR + 13.63 *GOVCI + 0.10 ** 0.86 **

2000 UL = 0.14TP + 2.61 **FSBCCH + 8.17 *GOVCI + 0.05 * 0.81 **
2010 UL = 0.37 **TP − 0.45UP + 0.29 *SIP + 2.00 **TIP − 3.28 *GOVCI + 0.08 * 0.85 **
2015 UL = 3.39 *GDP − 0.95SIP − 2.04 *TIP + 0.30FSBCCH + 0.25GOVCI + 0.04 0.86 **

General UL = 0.33 **TP + 0.13 *UP − 1.22GDP + 0.98 **SIP + 0.86 *TIP + 0.04 ** 0.79 **

Note: UL, TP, UP, GDP, SIP, TIP, PCGDP, FSBCCH, PCDIUPR, and GOVCI are the abbreviations for area of
urban land, total population, urban population, gross domestic product, secondary industry product, tertiary
industry product, per capita gross domestic product, floor space of buildings under construction in commercial
house, per capita disposable income of urban permanent residents, and gross output value of construction industry,
respectively. * denotes significant with a p-value below 0.05; ** denotes strongly significant with a p-value below 0.01.

The factors influencing urban land sprawl in Northeast China varied over time. In 1990, urban
population, gross domestic product, secondary industry product, per capita gross domestic product,
per capita disposable income of permanent urban residents, and gross output value of construction
industry were the automatically chosen factors. Urban land sprawl was most positively influenced
by gross domestic product, followed by gross output value of construction industry, and three other
factors negatively influenced urban land sprawl: secondary industry product, per capita gross domestic
product, and urban population. Similarly, the effect of per capita disposable income of urban permanent
residents on urban land expansion was unknown. In 2000, the influence of total population was
uncertain, the floor space of buildings under construction in commercial houses had a positive impact,
and gross output value of construction industry had a positive influence. In 2010, gross output value
of construction industry had a mainly negative influence, followed by three factors, tertiary industry
product, total population, and secondary industry product that had a positive influence. Meanwhile,
although urban population was one of the factors, its effect on urban land expansion, either positive or
negative, was unclear. For 2015, gross domestic product, secondary industry product, tertiary industry
product, floor space of buildings under construction in commercial house, and gross output value of
construction industry were driving forces. Urban land expansion was most positively influenced by
gross domestic product, followed by being negatively influenced by secondary industry product. The
effect of the other three factors on urban land expansion remained unclear.

All nine indexes were involved in at least one model, which was consistent with the significant
correlation analysis results, and the effect of per capita disposable income of urban permanent residents
on urban land expansion remained unclear based on the p-value of its coefficient in the five models.
Secondary industry product and gross output value of construction industry were the most common
indexes chosen as driving forces in four models, whereas per capita gross domestic product and per
capita disposable income of urban permanent residents were used at least for one model. In addition,
the effects of gross domestic product and total population on urban land sprawl were all positive and
relatively stable compared to the other indexes.

4. Discussion

4.1. Spatiotemporal Characteristics of Urban Expansion

Northeast China experienced unique urban expansion from 1990 to 2015. In spite of the difficulties
and inconsistencies in the definition of urban for comparisons between studies, the change tendency of
urban land was similar. Urban land area increased faster in 2000–2010 than in 1990–2000, and the spatial
distribution of urban land expansion in Harbin, Changchun, and Shenyang cities was quite similar in
this study. However, the growth rate and urban land patches in a prior study were 38.87 km2/year
for 1990–2000 and 62.10 km2/year for 2000–2010, which were different from those in this study,
because they defined urban land as the land used for residential, commercial, industrial, recreational,
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and transportation in cities and towns. The type of urban land was less than this paper, and they
considered Northeast China as the zone covering Jilin, Heilongjiang, and Liaoning without Eastern
Inner Mongolia Autonomous region [8]. The built-up area was mainly located in the western parts
of Northeast China (not including Eastern Inner Mongolia Autonomous region), and especially in
Liaoning and western Jilin. Northeast China had the highest urban land sprawl increase in the previous
decade from 2010 to 2013, from 1.10%/year to 2.82%/year [38].

Furthermore, the characteristics of urban land sprawl varied in cities and regions across Northeast
China from 1990 to 2015, which was also recognized by prior studies despite some differences
in the details. In this study, the urban land of the three capital cities in Northeast China all
expanded faster in 2000–2010 than in 1990–2000. The fastest urban expansion occurred in Shenyang,
at 17.7 km2/year in 1990–2000 and 28.9 km2/year in 2000–2010, where the slowest expansion was
in Harbin, at 11.7 km2/year for 1990–2000 and 12.5 km2/year in 2000–2010 [10]. The types of urban
expansion in the prior study were different from this paper given the difference in the definition
of urban land and the unequal spatial boundaries of the three capital cities [10]. The prior study
discovered that the edge expansion was the dominant growth type for all cities, followed by the
outlying and infilling modes, from 1990 to 2015, which is not in line with the results in Section 3.2.
A different prior study determined that urbanization developed more southward than any other
direction between 1990 and 2005, since the Changchun government created several development zones
in the southern part of the city [57], which is consistent with findings in this research.

From the above comparison, the spatiotemporal characteristics of urban expansion found in this
paper appear to be credible. A number of studies focused on the detailed spatial dynamics of urban
land sprawl in typical cities in Northeast China or roughly analyzed all of China, obtaining various
results for different definitions and study periods. Therefore, we investigated both the entire region
as well as typical cities, including analyzing the driving forces based on 40 cities in Northeast China.
The results are meaningful for creating new understanding about the urbanization in Northeast China.

4.2. Driving Forces of Urban Expansion

Although all nine indexes had strongly significant positive relationships with urban land area,
some driving factors showed negative influences in the regression models. In 1990, GOVCI was
positively related with urban land expansion, whereas SIP, including GOVCI and gross output value
of industry, had a negative impact, indicating that the initial industrial development hindered urban
land construction. In addition, the agricultural population was the strongest inhibitor of urban land
sprawl for UP and GDP were positive factors whereas PCGDP was negative. In 2010, the construction
industry in the study area focused on non-urban land development according to the passive impact of
GOVCI. As for 2015, TIP was passively related, which implied that urban land expansion was subjected
to GDP growth, and tertiary industry development strategies for urbanization in the study area were
supposed to be adjusted.

Commonly, driving forces analysis is conducted using one of two main methods: qualitative or
quantitative, based on two types of factors: spatial data or social-economic statistical data. Population
and economic conditions reflected by social-economic statistical data may not directly influence urban
expansion; instead, other factors like policies, topography, hydrology, influence of neighboring cities,
especially satellite cities surrounding the metropolis, and land availability, are important factors but are
difficult to quantify [8,58]. Additionally, explicit spatial data are suitable for the local area at small scale
like individual cities, whereas social-economic statistical data like population, income, and investment,
are more applicable for regional and global studies [45].

In this research, the influence of socioeconomic factors were quantified, whereas the effects of the
factors on urban expansion patterns were briefly discussed in previous studies [10,58,59]. The results of
the impacts of non-agriculture population and GDP, determined by the Pearson correlation coefficients,
were similar with the results of a former study [8], whereas the influence and their dynamics were
outlined in further detailed in this study. A prior study demonstrated that urban expansion was closely
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associated with urban planning, economic development due to the Revitalizing Old Industrial Base
of the Northeast China policy, natural barriers, and limitations imposed by the Songhua River in the
three capital cities in Northeast China from 1980 to 2010 [10].

4.3. Limitations and Future Work

To avoid gaps in the information about the fine-scale changes in urban land, high spatial resolution
imagery, like IKONOS and QuickBird, with rich spatial information for identification of different
types of settlements, and hyperspectral data that has the potential to derive detailed information
about the nature and properties of different surface materials on the ground, could be used as
reference data for accuracy assessment in future work [13,60,61]. In this study, sequential medium
resolution (30 m) land cover maps of Northeast China were created, and a deeper analysis of the
relationship between urban expansion and farmland decrease or non-urban land dynamics would be
warranted to better understand the characteristics and effects of urban land sprawl. Moreover, direct
causes, policies, urban planning, and natural barriers of urbanization were supposed to be further
investigated [8]. Spatial factors, like distance to city center, rivers, farmland and roads, should be
chosen as factors in driving forces analysis. As they are more persuasive and explicit in space than
spatial statistics, Moran’s I, geographical weighted regression models, and Geodetector have been
used in the quantitative analysis of driving forces [62–64].

5. Conclusions

A medium-resolution land cover dataset was produced in this study to characterize sequential
urban development in Northeast China from 1990 to 2015. This dataset has proven to be valuable
for quantifying spatiotemporal urban land expansion patterns with the help of an expansion index.
Based on statistical analysis, additional details were revealed about the spatiotemporal influence of
socioeconomic factors on urban land sprawl. Based on this urban land cover dataset, the applications
of the spatial and driving forces analyses showed variation in urban development processes across the
three capital cities and four regions in Northeast China.

This study had several findings. Constant increases in urban land growth rate were observed
in Northeast China from 1990 to 2015, mainly concentrated in the middle part of the study area
as well as Liaoning, especially in its coastal areas. The expansion patterns transitioned from
edge-expansion-major to outlying-major. Specifically, Liaoning had the fastest growth rate with
expansion patterns similar to that of the entire study area, and Jilin maintained an average increase
with an outlying-major pattern, whereas the growth rank of Heilongjiang among four regions dropped
with expansion patterns opposite to that of the entire study area. Eastern Inner Mongolia Autonomous
region showed strong growth momentum in the later years, with expansion patterns similar to that
of the entire study area. Furthermore, urban land expanded northward and southward with an
outlying-major pattern within Harbin City, west and east with expansion patterns transitioning from
the edge-expansion-major to outlying-major within Changchun City, and relatively equally in all
directions with expansion patterns transitioning from the edge-expansion-major or outlying-major
within Shenyang City. Tertiary industry product, gross domestic product, secondary industry product,
and total population were strongly positively associated with urban land area. The above four indexes
together with urban population were the driving forces of urban land sprawl in Northeast China from
1990 to 2015.

With the acceleration of urban expansion in the 21st century, managing the trade-offs between
urban expansion and environmental protection will be a considerable challenge for local governments
in Northeast China. The results of this study will be valuable to local governments when planning
sustainable land use and urban development.
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