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Abstract 
Under hilly road conditions, it is difficult to achieve near-optimal performance of energy management 

strategy (EMS) of fuel cell hybrid electric vehicle (FCHEV). In order to achieve near-optimality, optimal 

state reference trajectory is predicted based on future information, and thus reference tracking controller is 

often considered as real-time predictive EMS. There are two approaches depending on in what way the 

predicted reference will be used as follows: 1) position-based predictive EMS for tracking position-

dependent reference, 2) time-based predictive EMS for tracking time-dependent reference. In this paper, 

analytical sensitivity analysis based on Pontryagin’s minimum principle (PMP) is performed to prove 

robustness of position-based predictive EMS with respect to velocity uncertainty. First, optimal control 

problem is formulated in time and position domain, and PMP approach is used to derive boundary value 

problem (BVP) that achieves global optimality. Then, sensitivity differential equations are developed 

which describe sensitivity of original BVP with respect to velocity uncertainty. Finally, these equations will 

be solved simultaneously with the original BVP to compute first-order sensitivity of time- and position-

dependent optimal state. Results show that sensitivity of time-dependent optimal state is much bigger than 

that of position-dependent optimal state because velocity uncertainty can change predicted travel time, and 

this effect on sensitivity is significant. Therefore, predictive EMS should use current position to track 

position-dependent optimal state reference in terms of the robustness with respect to velocity uncertainty. 

Keywords: FCHEV (fuel cell hybrid electric vehicle), PMP (Pontryagin’s minimum principle), Position-based 
predictive energy management strategy, Sensitivity Analysis  

1 Introduction 
Generally, fuel cell-powered vehicles are 
equipped with additional energy storage system, 
which are often called as fuel cell hybrid electric 

vehicle (FCHEV). Energy management strategy 
(EMS) of FCHEVs determines power split ratio 
between the two energy sources for improving 
FCHEV system efficiency. A number of EMSs has 
been widely studied for a decade [1], as follows: 
rule-based approach [2-4], horizon-optimization 
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approach such as dynamic programming (DP) [5-
7] and Pontryagin’s minimum principle (PMP) 
[8,9], and instantaneous (real-time) optimization 
approach such as equivalent consumption 
minimization strategy (ECMS) [10-12].  
Under hilly road conditions, it is difficult to 
achieve near-optimal performance of real-time 
EMS using current driving information because 
upcoming potential energy cannot be predicted 
[13,14]. As an alternative to achieve near-
optimality, globally optimal state reference 
trajectory is predicted by using future 
information, and EMS will track this reference. 
Note that future information is considered as 
altitude profile and the predicted velocity profile 
[15,16] using global positioning system (GPS), 
geographic information systems (GIS), and 
transportation systems (ITS). For example, in 
ECMS framework, adaptation law of equivalent 
factor is designed as state feedback controller for 
tracking the predicted state reference trajectory 
[17-19]. 
If planned route is fixed during driving, altitude 
profile cannot be changed, but there must be 
velocity uncertainty between real and the 
predicted velocity profile under real-world 
driving conditions. Therefore, robustness toward 
velocity uncertainty becomes important issue for 
real-time predictive EMS. There are two 
approaches depending on in what way the 
predicted reference will be used as follows: the 
first one is position-based predictive EMS for 
tracking position-dependent reference, second 
one is time-based predictive EMS for tracking 
time-dependent reference. Figure 1 schematically 
illustrates the predictive EMS as reference 
tracking controller.  
 

FCHEV

GPS, GIS, and ITS

Reference generator

ṽ(d), θ(d) or ṽ(t), θ(t) 

Real-time
suboptimal 
controller

xref(d)
or

 xref(t) u

x

Current position

+

-

   Predictive EMS                               

 
Figure 1: Overview of predictive EMS 

There is the belief that robustness of position-
based predictive EMS outperforms that of time-
based predictive EMS because velocity 
uncertainty can change travel time, but cannot do 
travel position. However, analytical approach has 
not been reported to prove the robustness of 
position-based predictive EMS in comparison 

with time-based predictive EMS. Because 
predictive EMSs must correct state from reference, 
it will experience large loss of optimality when 
velocity uncertainty presents. For this reason, 
optimal state sensitivity with respect to velocity 
uncertainty is directly linked to the robust 
performance of predictive EMS. Therefore, in this 
paper, comparative analysis for sensitivity of time- 
and position-dependent optimal state is performed 
to confirm and prove the robustness of position-
based predictive EMS.  
The main contributions of this paper are as 
follows: 1) Optimal control problem is 
reformulated in position domain, and then PMP 
approach is used to derive position-dependent 
boundary value problem (BVP), 2) Sensitivity 
differential equations are developed and solved 
which describe sensitivity of original BVP with 
respect to velocity uncertainty. Results show that 
sensitivity of position-dependent optimal state is 
negligible small compared to that of time-
dependent optimal state. 
The remainder of this paper is organized as 
follows: Section 2 includes an introduction to the 
FCHEV system configuration and system 
modelling for analytical approach. Section 3 
briefly explains PMP theory, and then analytical 
optimal solution is derived in both time and 
position domain. In Section 4, first-order 
sensitivity analysis is introduced, and robustness of 
position-based predictive EMS is discussed. 
Finally, in Section 5, the summary and conclusions 
of this study are presented. 

2 System-level FCHEV Model 
This section deals with a system-level FCHEV 
model for optimal energy management strategy 
(EMS) [20]. FCHEV model consists of a fuel cell, 
battery, and vehicle. Fuel cell system acts as the 
main electrical energy source for system bus, and 
battery system must provide the electrical power 
for satisfying power required from driving cycle. 
This power bus relationship is expressed as 
follows:  
 

( ) ( ) ( )EM FC BTP t P t P t= +  (1) 
where PEM denotes electrical power required from 
electric motor, PFC denotes required fuel cell 
power, and PBT denotes required battery power. 
In this study, system-level EMS is chosen, and 
simplified FCHEV model is used.  
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2.1 Fuel cell model 
Hydrogen mass flow rate can be computed by 
using fuel cell current as shown below: 
 

2

2

FC H
H FC

e

N M
m I

n F
= ⋅

 (2) 

where NFC denotes the number of cells in the fuel 
cell stack, MH2 denotes the molar mass of 
hydrogen, ne denotes the number of electrons, 
and F denotes Faraday’s constant. 
With assumption of linear polarization curve and 
no auxiliary power, hydrogen mass flow rate can 
be described as function of required fuel cell 
power, and then it can be finally expressed as 
quadratic function of required fuel cell power by 
using Taylor’s series approximation as shown 
below. (Appendix 1) 
 

2

2
1 2H FC FCm P Pm m= ⋅ + ⋅  (3) 

2 2
1 2 3

. .

where ,FC H FC H FC

e FC OC e FC OC

N M N M R
n F V n F V

µµ = =
⋅ ⋅

  

2.2 Battery model 
The battery model was developed based on the 
internal resistive equivalent circuit model, where 
a voltage source, resistor, and the load are 
connected in series. The battery current can be 
described as a function of required power, and 
then, approximated in the same way in the 
previous section. Finally, system dynamics of 
battery state of charge (SoC) as state variable is 
expressed by using the Coulomb counting 
method (Appendix 1), as follows:  
 

2
3 4( ) BT BTx t f P Pµµ = = ⋅ + ⋅  (4)  

3 4 3
max . max .

1where , BT

BT OC BT OC

R
Q V Q V

m m= − = −   

where VBT.OC denotes open circuit voltage, RBT 
denotes internal resistance, and Qmax denotes the 
maximum battery capacity. 

2.3 Vehicle model 
The force demand profile of driving scenario can 
be determined using the longitudinal vehicle 
dynamic model, which is mainly dependent on 
the three force terms: rolling resistance, air drag 
resistance, and hill climbing resistance.  
 

2
1 2 3demandF m v c v c c a= ⋅ + ⋅ + + ⋅  (5) 

1 2 3
1where , ,
2 air f d rc A c c c m g c m gr= ⋅ ⋅ = ⋅ ⋅ = ⋅  

where v denotes vehicle velocity, ρair denotes 
ambient air density, Af denotes front area, Cd 
denotes air drag coefficient, Cr denotes rolling 
resistance coefficient, m denotes vehicle mass, g 
denotes acceleration due to gravity, and angle α 
denotes road slope angle. 

3 Optimal Control for FCHEVs 
Optimal control of an FCHEV determines the 
optimal power split ratio between fuel cell system 
and battery system in order to minimize hydrogen 
consumption while guaranteeing the battery charge 
sustenance, wherein charge sustenance implies that 
the battery system must be maintain current SoC 
within admissible SoC range, and final SoC should 
be matched to initial SoC. In this section, PMP as 
horizon-optimization approach is introduced to 
derive analytical optimal solution in both time and 
position domain.  

3.1 Optimal control problem 
Optimal control uses dynamic models to minimize 
the cost function while satisfying constraint 
conditions. The optimal control problem is 
generally formulated in time domain, as follows: 
 

( ) ( )( )
0

min ( ), ( ), ( ), ( ),ft

f f t
J h t t g t t t t dt= + ∫x x u ω

 (6) 
( )s.t. ( ) ( ), ( ), ( ),t t t t t=x f x u ω

( )f ft =x x
( ) ( ), ( ) ( ), ( ) ( )t t t t t t∈ ∈ ∈x X u U ω W   

where g denotes cost function, h denotes the 
terminal state cost that enforces final state to match 
the desired value. x, u, and ω represent the state 
variable, the control input, and disturbance, 
respectively. 

3.2 PMP background 
PMP is horizon optimization method that was 
developed based on the calculus of variations. 
PMP uses necessary conditions to derive boundary 
value problem (BVP), thus, it solves the optimal 
control problem analytically with lower 
computation burden and is often considered as a 
DP alternative.  

3.2.1 State inequality constraints 
The handling of state inequality constraints within 
PMP is in general nontrivial [21]. In this paper, a 
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simple method is deployed to handle state 
inequality constraints within PMP. Concept of 
this method is that all state inequality constraints 
are converted into a single equality constraint by 
definition of a new state variable [22].  
 

( ) ( )2

1
( ),

l

n n i i
i

x f h h t tθ
=

 = = − ⋅ ∑ x

( )
0, if 0

where
1, else

i
i

h
hθ

≥
− = 


 (7) 

where hi denotes ith state inequality constraints 
and l denotes the number of them. θ denotes the 
Heaviside step function. The fact that a new 
single equality constraint fn is non-negative at all 
times implies state inequality constraints are all 
inactive.  

3.2.2 Boundary value problem based on 
necessary conditions for optimality 

Main idea of PMP is to minimize Hamiltonian 
function, thus, necessary conditions for 
optimality are used to derive boundary value 
problem [22]. In order to consider state 
inequality constraints, Hamiltonian function is 
newly augmented by a single equality constraint 
defined in previous section with using a new co-
state pn, as following equation.  
 

( ) ( ) ( )T
n n n n nH H p t f g t p t f= + ⋅ = + ⋅ + ⋅p f (8) 

where H denotes Hamiltonian function without 
consideration of state inequality constraints. 
With using newly defined Hamiltonian function, 
the necessary conditions considering state 
constraints can now be derived for the case of 
fixed end time and state, as follows: 
 

( ) , ( )
T

n n
n n

n

H Ht x t f
p

 ∂ ∂
= = = = ∂ ∂ 

x f
p

 

 (9) 

( ) ( ) ( )
T TT T

n n
n

H fgt t p t∂ ∂∂ ∂      = − = − − −      ∂ ∂ ∂ ∂      

fp p
x x x x



 (10) 

( ) 0n
n

n

Hp t
x

∂
= − =

∂


 (11) 

( ){ }*

( ) ( )
( ) arg min , , , , ,n n nt t
t H x p t

∈
=

u U
u x u p  (12) 

If control input inequality constraints do not 
explicitly depend on state variables, constrained 
optimal input can be easily derived as analytical 
solution. First, Hamiltonian function is 
augmented with using new Lagrange multiplier, 
as follows: 
 

( )

( ) ( ) ( )

T
nn n

T T
n n

H H t
g t p t f t

= + ⋅

= + ⋅ + ⋅ + ⋅

λ C
p f λ C

 (13) 

( )
0, if 0 (active)

where
0, if 0 (inactive)

i
i

i

C
t

C
λ

≥ =
= = <

  

where λi denotes Lagrange multipliers for 
constrained control input, and C1 and C2 imply ((–
u) ≤ 0) and ((u-umax) ≤ 0), respectively.  
Then, necessary condition can be derived for 
computing constrained optimal input that generates 
minimum Hamiltonian function in the same way of 
unconstrained optimal control problem. 
 

0nnH
u

∂
=

∂
 (14) 

Furthermore, boundary conditions are expressed as 
follows: 
 

lost if is fixed
( ) 0 if is free

f

f

t nn f f

t
h H t t

 + =

 (15) 

.( ) if ( ) is fixed

( ) ( ) if ( ) is free

i f i f i f

i f f i f
i

x t x x t
hp t t x t
x

=


∂ = ∂

 (16) 

3.3 PMP realization of FCHEV 
For PMP realization of FCHEV in time and 
position domain, all variables are first defined as 
follows: Cost (J) and state variable (x) is defined 
as hydrogen mass consumption and the battery 
SoC in both time and position domain, respectively. 
However, control input (u) are defined differently 
corresponding to domain type. In other words, in 
time domain, control input is defined as required 
fuel cell power, on the other hand, in position 
domain, it is defined as required fuel cell energy 
per distance.  

3.3.1 In time domain 
With given Eqs. ((3-4), (7)), equation (13) is used 
to express augmented Hamiltonian function of 
FCHEV problem in order to derive analytically 
constrained optimal control input as follows: 
 

( )
( )
( ) ( )

2
1 2

2
3 4

2 2
1 1 2 2

1 1 max

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

nn

n

H t u u

p t u u

p t h h h h

t u t u u

m m

m ω m ω

θ θ

λ λ

= +

+ ⋅ − + −

+ ⋅ − + −

+ ⋅ − + ⋅ −

 (17) 
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if 0
where

else

demand
demand

demand

F v F

F v
hw

h

⋅ ≥ =  
 ⋅ ⋅ 

  

where ω denotes power demand, η denotes 
system efficiency including electric motor, 
inverter, transmission, and umax denotes 
maximum required fuel cell power. hl and h2 
imply (xmax-x) and (x-xmin), respectively. 
Boundary value problem is derived by using 
PMP necessary conditions for optimality as 
follows: 
 

( ) ( )2
3 4( )x t u uµ ω µ ω= − + −  (18) 

2 2
1 1 2 2( ) ( ) ( )nx t h h h hθ θ= − + −  (19) 

{ }1 1 2 2( ) 2 ( ) ( )np t p h h h hθ θ= − − − ⋅ + − ⋅ (20) 

( ) 0np t =  (21) 
The constrained optimal control input can be 
expressed as below. (Appendix 2) 
 

( )
( )

lim.1

1 4 3*
lim.1 lim.2

2 4

max lim.2

0 if
2

( ) if
2

if

p p
u t

p
u

ω ω
m m ω m

ω ω ω
m m

ω ω

 ≤
 
− + ⋅ + = < < + 

 ≥ 
 (22) 
In FCHEV problem, both final time and final 
state are fixed, thus, boundary conditions can be 
simplified as follows: 
 

0 0 0( ) ( ) , ( ) ( ) 0f n n fx t x t x x t x t= = = =  (23) 

3.3.2 In position domain 
First, system models are transformed to be 
dependent on position, not time. Then, with 
position-dependent system models (Appendix 3), 
Hamiltonian function is expressed as function of 
position. 
  

( )
( ) ( )

2
. 1 2

2
3 4

.1 .2 .max

( )

( ) ( ) ( )

( ) ( )

d nn d d

d d d d d

d d d d d

H s u u v

p s u u v

s u s u u

m m

m ω m ω

λ λ

= +

+ ⋅ − + −

+ ⋅ − + ⋅ −
 (24) 

if 0
where

else

demand
demand

d

demand

F F

F
hw

h

 ≥ =  
 ⋅ 

  

where ωd denotes required energy per distance, 
and ud.max denotes maximum required fuel cell 
energy per distance. 

Position-dependent boundary value problem with 
constrained optimal control input is also derived in 
same way in previous section as follows: 
 

( ) ( )2
3 4

( )d
d d d d

dx s u u v
ds

µ ω µ ω= − + −  (25) 

2 2.
1 1 2 2

( ) 1 ( ) ( )d ndx s h h h h
ds v

θ θ = − + −   (26) 

[ ].
1 1 2 2

(s) 2 ( ) ( )d d ndp p h h h h
ds v

θ θ= − − − ⋅ + − ⋅  (27) 

. (s) 0d ndp
ds

=  (28) 

( )
( )

*

lim.1

1 4 3 lim.1 lim.2

2 4

lim.2
.max

( )

0 if

2
if

2

if

d

d

d d d
d

d

d d

u s

v
p v p

p v v v

u
v

ωω

m m ω m ω ωω
m m

ωω

=

 
≤ 

 
− + ⋅ ⋅ + < < + ⋅ 

 
≥ 

 
 (29) 
Both final position and final state are fixed, thus, 
boundary conditions can be simplified as follows: 
 

0 0 . 0 .( ) ( ) , ( ) ( ) 0d d f d n d n fx s x s x x s x s= = = =
 (30) 

4 Sensitivity Analysis  
This velocity uncertainty may significantly or 
hardly affect control performance corresponding to 
control schemes such as time-based or position-
based predictive EMS. In this section, sensitivity 
analysis is performed through computation of 
sensitivity differentials of optimal solutions with 
respect to velocity uncertainty. First-order 
sensitivity coefficient provides direct information 
on the effect of a small variation in nominal 
velocity on time- and position-dependent optimal 
state. 

4.1 Time-dependent sensitivity 
differential equations 

If boundary value problem from PMP in time 
domain is solved by searching for initial co-states 
that satisfy all boundary conditions, its solution 
becomes optimal solution, which is considered as 
the nominal (unperturbed) optimal solution. This 
nominal optimal solution can be used to compute 
sensitivities of optimal states and co-states. First, 
sensitivities of optimal state and co-states with 
respect to velocity uncertainty are defined to 
formulate sensitivity dynamics as follows. Note 
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that first-order sensitivity coefficient is applied to 
defined sensitivity variables.  
  

* ** *

, , ,n n
n n

x px pz z
v v v v

γ γ∂ ∂∂ ∂
= = = =

∂ ∂ ∂ ∂
 (31) 

Furthermore, because velocity uncertainty results 
in the increase/decrease in travel time, travel time 
sensitivity with respect to velocity uncertainty 
must be considered, and it is expressed as 
follows: 
 

0 0
2

1 1s s

s s

tt ds ds
v v v

∂  = ⇒ = − ∂  ∫ ∫  (32) 

Then, when all nonlinear equations ((18)-(21)) 
for boundary value problem are differentiated 
with respect to velocity uncertainty, following 
ordinary differential equation of sensitivity 
variables can be obtained as follows: 
 

*

*

dz f f t f u
dt v t v u v

ω ω
ω ω
∂ ∂ ∂ ∂ ∂ ∂ ∂

= ⋅ + ⋅ ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂ ∂

 (33) 

*
n ndz f z

dt x
∂

= ⋅
∂

 (34) 

* *n
n

d z
dt p x
γ ψ ψγ∂ ∂
= ⋅ + ⋅
∂ ∂

 (35) 

0nd
dt
γ

=  (36) 

*

*

u t
v p v t v

ϕ ϕ ω ϕ ωγ
ω ω

∂ ∂ ∂ ∂ ∂ ∂ ∂
= ⋅ + ⋅ + ⋅ ⋅

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (37) 

where derivation procedure of time-dependent 
sensitivity differential equation is addressed in 
Appendix 4. 
Boundary conditions of time-dependent 
sensitivity variables can be expressed as follows. 
 

0 0( ) ( ) ( ) ( ) 0f n n fz t z t z t z t= = = =  (38) 

4.2 Position-dependent sensitivity 
differential equations 

In the same way in previous section, position-
dependent sensitivities of optimal state and co-
states with respect to velocity uncertainty are 
defined as follows.  
  

* * * *
. .

. .
( ) ( ), , ,d d n d d n

d d n d d n
x s x s p pz z

v v v v
γ γ∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

 (39) 
Compared to travel time, travel position cannot 
be affected by velocity uncertainty, thus, 
consideration of travel position sensitivity is not 
needed.  

Position-dependent sensitivity differential 
equations can be obtained in same way in previous 
section, it is expressed as below. 
 

*

*
d d d d d d

d d

dz f f f u
ds v v u v

ω
ω

∂ ∂ ∂ ∂ ∂
= + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

 (40) 

. . .
*

d n d n d n
d

d

dz f f z
ds v x

∂ ∂
= + ⋅

∂ ∂
 (41) 

.* *
.

d d d d
d n d

d n d

d z
ds v p x
γ ψ ψ ψγ∂ ∂ ∂

= + ⋅ + ⋅
∂ ∂ ∂

 (42) 

. 0d nd
ds
γ

=  (43) 

*

*
d d d d d

d
d d

u
v v p v

ϕ ϕ ϕ ωγ
ω

∂ ∂ ∂ ∂ ∂
= + ⋅ + ⋅

∂ ∂ ∂ ∂ ∂
 (44) 

where derivation procedure of position-dependent 
sensitivity differential equation is addressed in 
Appendix 4. 
Boundary conditions of position-dependent 
sensitivity variables can be expressed as follows. 
 

0 . 0 .( ) ( ) ( ) ( ) 0d d f d n d n fz s z s z s z s= = = =  (45) 

4.3 Results 
This section considers case study for comparative 
analysis on sensitivity of time- and position-
dependent optimal state. Case study is performed 
to illustrate an important trend on state sensitivity 
and prove robustness of position-based predictive 
EMS for hilly road driving conditions. For 
simplicity, the predicted velocity profile is 
constant, and altitude profile is generated by using 
statistical hilly road generation method [14]. Thus, 
we can modify the simulation test cycle with the 
addition of the road grade profile to a velocity 
profile. 
The maximum SoC bound is set to 80%, minimum 
SoC bound is set to 20%, and initial battery SoC is 
set to 50%. When SoC reaches the maximum SoC 
bound during braking, the supervisory controller 
switches from regenerative braking into 
conventional mechanical braking to prevent 
overcharging.  
For comparative analysis, offline iterative search 
determines the initial values of co-states and that 
of co-state sensitivities for satisfying boundary 
conditions as well as necessary conditions.  

4.3.1 Case study  
Two goal of this subsections as follows: first one is 
to analyze the trend on magnitude of optimal state 
sensitivity with four different nominal value of 
constant velocity (70km/h, 90km/h, 110km/h, and 
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130km/h), and second one is to compare 
sensitivity of time- and position-dependent 
optimal state.  
 

 
Figure 2: Co-states of PMP in time domain 

The case of 70km/h represents the extreme 
driving condition that can activate state 
inequality constraints during driving. On the 
other hand, other cases represent normal driving 
conditions that cannot activate state inequality 
constraints. Co-state, p*, of normal driving 
conditions have constant values and its value is 
changed with nominal value of velocity. Note 
that new co-costate, pn

*, has same value for all 
normal driving conditions because it does not 
have effect on co-state dynamics, thus, it has 
meaningless value when state inequality 
constraints are inactive. In contrast, co-state of 
extreme driving condition has jump conditions 
that prevent violation of state inequality 
constraints in Figure 2. Furthermore, initial value 
of new co-state becomes important variable to 
determine the level of co-state jump under 
extreme driving condition such as 70km/h case. 
  

 
Figure 3: Sensitivity of time- and position-dependent 

optimal state for four driving conditions (70km/h, 
90km/h, 110km/h, and 130km/h) 

An important trend was observed from sensitivity 
trajectory of optimal state. Figure 3 shows how 
state sensitivity trajectories of different driving 
conditions are generated, and they change with 
the velocity nominal value. With increasing the 

velocity nominal value, state sensitivity trajectory 
is shifted to left due to the decrease in travel time 
at every position, moreover, RMS value and 
maximum absolute peak value of state sensitivity 
decrease as shown in Table 1.  
Table 1: Quantitative comparison of sensitivity of time- 

and position-dependent optimal state for four driving 
conditions 

 70 
km/h 

90 
km/h 

110 
km/h 

130 
km/h 

RMS value 0.062 0.063 0.034 0.029 
Maximum 
peak value 0.162 0.140 0.089 0.068 

 

 
Figure 4: Analysis on state sensitivity dynamics in case 

of 110km/h as normal driving condition 

 
Figure 5: Analysis on state sensitivity dynamics in 
case of 70km/h as extreme driving condition 
There are three terms which can have effect on 
state sensitivity dynamics as follows: first, second, 
and third term indicate variation resulting from the 
variation in power demand (ω), time (t), and 
optimal control input (u*) by velocity uncertainty, 
respectively. For example, in case of 110km/h as 
normal driving condition, Figure 4 shows the 
general trend on the effect of each term on state 
sensitivity dynamics. It can be seen that first term 
is negligibly small, and second term is significant 
factor to affect state sensitivity dynamics, and third 
term that is generated when fuel cell system is 
operated tends to diminish the effect of second 
term.  
As already mentioned before, both second and 
third term result in important trend on state 
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sensitivity with different nominal velocity. 
Especially, magnitude of second term strongly 
depends on nominal velocity, thus, state 
sensitivity also becomes large with low nominal 
velocity despite of same position. Furthermore, 
as travel time approaches the final time, time 
sensitivity gradually increases (Equation (38)) 
and thus state sensitivity of each of all cases also 
increases (Figure 3). 
In addition with the reason of the increased time 
sensitivity, another reason for the largest state 
sensitivity of extreme driving condition among 
all driving conditions is that third term that 
diminishes second term effect is rarely generated 
due to frequent operation of battery system, as 
shown in Figure 5. In case of extreme driving 
condition, jump conditions must be generated for 
achieving charge sustenance, thus, they result in 
frequent battery operation for using the stored 
braking energy. 
However, sensitivity of position-dependent 
optimal state is significantly small for all driving 
conditions compared to that of time-dependent 
optimal state in Figure 6. Main reason of this is 
the robust property of position-dependent state 
trajectory; travel position cannot be affected by 
velocity uncertainty.  
 

 
Figure 6: Sensitivity of position-dependent optimal 
state trajectory for four driving conditions (70km/h, 

90km/h, 110km/h, and 130km/h) 

4.3.2 Discussion 
In terms of predictive EMS, one of the methods 
to use future information is use optimal SoC 
trajectory as a reference, explained in previous 
section. When velocity uncertainty exists, 
tracking nominal reference may result in large 
loss of optimality because it may lead to 
inefficient operation of fuel cell system by 
unnecessary battery charging/discharging. Figure 
7 shows how much perturbed optimal SoC 
reference is deviated from nominal optimal SoC 
reference. It can be seen that time-dependent 
reference is easily distorted compared to 

position-dependent reference when plotted on a 
position vs. SoC plane. For this reason, position-
dependent reference should be used for robustness 
of predictive EMS. 
 

 
Figure 7: In case of 110km/h, optimal SoC trajectory 
computed from time-based and position-based PMP, 
and perturbed optimal SoC trajectory with velocity 

uncertainty (5km/h) 

5 Conclusions 
This paper studies robustness of position-based 
predictive EMS via sensitivity analysis with 
respect to velocity uncertainty. When velocity 
uncertainty presents, position-based predictive 
EMS as reference tracking controller has an 
advantage over time-based predictive EMS 
because position-dependent SoC reference is 
significantly less sensitive to velocity uncertainty 
compared to time-dependent SoC reference. PMP 
approach was selected to solve optimal control 
problem, and to calculate analytical sensitivity 
differentials for comparison analysis. Results 
showed that sensitivity of time-dependent optimal 
state decreases with the increase in nominal 
velocity, moreover, it increases as travel time 
approaches the final time. Therefore, in order to 
ensure robust and optimal performance with 
velocity uncertainty, position-based predictive 
EMS framework is recommended. 

Appendix 1. 
Polarization curve is assumed to be linear function 
as follows: 
 

.FC FC OC FC FCV V R I= −   
With using linear polarization curve, total 
derivation of hydrogen mass flow rate as quadratic 
function of required fuel cell power is as follows: 
 

2

2

FC H
H FC

e

N M
m I

n F
= ⋅
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2

2
. . 4

2
FC H FC OC FC OC FC FC

e FC

N M V V R P
n F R

− − ⋅
≈ ⋅  

2 2
3

. .

1FC H FC
FC FC

e FC OC FC OC

N M RP P
n F V V

 
≈ ⋅ ⋅ + ⋅ 

 
  

2
1 2FC FCP Pµµ = ⋅ + ⋅  

Based on internal resistive equivalent circuit 
model, total derivation of battery SoC dynamics 
as quadratic function of required battery power is 
as follows: 
 

max

1( ) ( )BTx t I t
Q

= −

  

2
. .

max

41
2

BT OC BT OC BT BT

BT

V V R P
Q R

− − ⋅
= − ⋅

⋅
 

2
3

max . max .

1 BT
BT BT

BT OC BT OC

RP P
Q V Q V

≈ − ⋅ − ⋅   

2
3 4BT BTP Pµµ = ⋅ + ⋅  

Appendix 2.  
Constrained optimal control input can be 
analytically derived by using Eqs. ((14), (17)) in 
Section 3.2 and Section 3.3, as below.  
If both input constraints are inactive,  
 

1 2( ) 0, ( ) 0, 0nnHt t
u

λ λ ∂
= = =

∂
  

( )
( )

1 4 3*

2 4

2
( )

2
p p

u t
p

µµ  ω µ
µµ

− + ⋅ +
∴ =

+
  

If one of input constraints is active, 
 

1 21) ( ) 0, ( ) 0, 0nnHt t
u

λ λ ∂
≥ = =

∂
  

*
lim.1

1 3
lim.1

4

( ) 0 if

where
2

u t
p

p

ww
m mw

m

∴ = ≤
−

=
  

2 12) ( ) 0, ( ) 0, 0nnHt t
u

λ λ ∂
≥ = =

∂
  

( )

*
max lim.2

1 3 2 4 max
lim.2

4

( ) if
2

where
2

u t u
p p u

p

ww
m m m m

w
m

∴ = ≥

− + +
=

  

Appendix 3.  
The chain rule is used to transform system 
models to be dependent on position.  
 

2 2( ) H H
d

dm dm dtg s
ds dt ds

= =   

2

1 2
FC FCdE dEdt dt ds

dt ds dt ds dt
µµ   ≈ +  

 
  

2

1 2 ( )FC FCdE dE v s
ds ds

µµ   = +  
 

  

.1( ) d d
d

dx dxdtf s
ds ds dt

= =   

2

3 4 ( )BT BTdE dE v s
ds ds

µµ   ≈ +  
 

  

where s denotes travel position, t denotes travel 
time.  

Appendix 4.  
Time-dependent sensitivity differential equations 
are derived as follows: 
 

( )*( , ),dz f v t u
dt v

ω∂
=
∂

  

*

*

f t f u
v t v u v
ω ω

ω
∂ ∂ ∂ ∂ ∂ ∂ = ⋅ + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ 

  

*
*

* *( )n n n
n

dz f fxf x z
dt v x v x

∂ ∂∂ ∂
= = ⋅ = ⋅
∂ ∂ ∂ ∂

  

*
* *( , )n

d dp p x
dt v dt v
γ ψ

 ∂ ∂
= = ∂ ∂ 

  

* *

* * * *
n

n
n n

p x z
p v x v p x
ψ ψ ψ ψγ∂∂ ∂ ∂ ∂ ∂

= ⋅ + ⋅ = ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

  

0nd
dt
γ

=   

( )
*

*, ( , )u p v t
v v

ϕ ω∂ ∂
=

∂ ∂
  

*

*

p t
p v v t v
ϕ ϕ ω ω

ω
∂ ∂ ∂ ∂ ∂ ∂ = ⋅ + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ ∂ 

  

*

t
p v t v
ϕ ϕ ω ωγ

ω
∂ ∂ ∂ ∂ ∂ = ⋅ + ⋅ + ⋅ ∂ ∂ ∂ ∂ ∂ 

  

( )*
3 4where 2f uµµw 

w
∂

= + −
∂

  

( )*
3 4* 2f u

u
µµ  ω∂  = − + − ∂

  

[ ]1 1 2 2* 2 ( ) ( )nf h h h h
x

θ θ∂
= − − ⋅ + − ⋅

∂
  

[ ]1 1 2 2* 2 ( ) ( )
n

h h h h
p
ψ θ θ∂

= − − − ⋅ + − ⋅
∂

  

[ ]*
1 2* 2 ( ) ( )np h h

x
ψ θ θ∂

= − − + −
∂

  

( )
1 4 2 3 2 4

2* *
2 4

2

2p p

µµµµµµ      ωϕ

µµ

+ +∂
=

∂ +
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*
4

*
2 4

p
p

µϕ
ω µµ
∂

=
∂ +

  

( )

2
1 2 3

2
1 2 3

3 if 0

3 else

c v c c

v
c v c c

α ωω η

ηα

 ⋅ + + ⋅
≥ ∂

=  ∂  ⋅ + + ⋅ 

  

Position-dependent sensitivity differential 
equations are derived as follows: 

( )*, ( ),d
d d d

dz f v v u
ds v

ω∂
=
∂

  

*

*
d d d d d

d d

f f f u
v v u v

ω
ω

∂ ∂ ∂ ∂ ∂
= + ⋅ + ⋅
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*
*. . .

. *( , )d n d n d n d
d n d

d
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ds v v x v

∂ ∂ ∂∂
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∂ ∂ ∂ ∂

  

. .
*

d n d n
d

d
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v x
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∂ ∂
  

*
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d d n d
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γ ψ
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.

* *
.

d d d n d d
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.* *
.

d d d
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ds
γ
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( )
*
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d d d
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=
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*
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