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Abstract 

Fuzzy control strategy is developed for the dual-clutch single-axis torque coupling parallel hybrid electric 

vehicle. In this paper the torque distribution fuzzy controller which has been designed for the hybrid 

vehicle which is optimized by genetic algorithms. The simulation model of the hybrid vehicle was built 

upon matlab / simulink and ADVISOR software. Then a fuzzy rules and correspondent membership 

functions had been established and the input language variable and output language variable use 

trapeziform and deltoid membership functions. After design of fuzzy logic torque controller, the genetic 

algorithm was introduced and used it to optimize the fuzzy logic torque controller. Under typical 

condition NEDC, the fuzzy control strategy is optimized both by genetic algorithms with the constraint 

condition of economy performance and by integrated constraint conditions of economy performance and 

emission performance. Optimization results show that when the controller is only optimize fuzzy control 

strategy for economy performance the fuel consumption decreased by 5.3% but the emission of CO and 

NOx both increased, but when the controller both optimize fuzzy control strategy for economy 

performance and emission performance the fuel consumption decreased by 4.3% with emission quality 

improved. So the fuzzy control strategy optimize by the genetic algorithm can improve the fuel 

consumption obvious. 
Keywords— Parallel hybrid electric vehicle, genetic algorithm (GA), fuzzy control, optimization 

1. Introduction 
In order to optimize performance of the engine 
and electric motor combination, the primary 

objectives of the HEV control strategy are the 
distribution of torque output from both of engine 
and electric motor and the control of the battery 
SOC. As a result, we can minimize energy 
consumption and ensure environmental 
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friendliness while not compromise on vehicle's 
performance figures. In recent years, Fuzzy 
control has been widely applied in HEV control 
strategies. Distribution of torque can be well 
managed by using the Fuzzy controller and good 
control results can be achieved. However, the lack 
of a well established, systematic model in 
selection of membership functions and the rules of 
the fuzzy controller results in the need of 
professionals and experienced operators in the 
stage of selecting certain control rules and 
membership functions.  
In this paper, we designed a fuzzy logical torque 
controller for a certain vehicle model, and then 
optimized the controller with genetic algorithm. 
The optimized results are tested and verified to be 
effectively functional by simulation. 
Fig 1 is the diagram for a single-axial, dual-clutch 
torque coupling parallel hybrid powertrain system. 
The major components and specifications are 
shown in table 1. The powertrain system consists: 
an engine, two clutches, an electric 
motor/generator, an automatic transmission and a 
battery.  

 
Figure 1: diagram of single-axis dual-clutch torque 

coupling parallel hybrid powertrain 

Table 1: main components and specifications 

Generator 1.0L EFI 
Gasoline Engine 50kw/6200rpm 

Electric 
Motor PMSM 20kw/8000rpm 

Storage 
Battery Ni-MH Batteries 6.5AH，144V 

1.1 Design of Fuzzy logic Torque              
Controller 
In table 1, it shows that the major power 
contributor of the parallel hybrid powertrain 
system is the engine; the power output from the 
electric motor is considered as compensative 
power. The design goal of the control system is to 
make sure that the engine operates according to 
the optimal performance curve. Only in the 
scenario when the torque from the electric motor 
and the battery SOC are either insufficient or 
overly abundant comparing to vehicle demand, 
the engine may operate off curve. To ensure that 

the engine operates efficiently, the battery SOC 
should vary within a reasonable interval. 
According to engine efficiency and design 
objective specified above, we define the input 
variable of the fuzzy torque controller as: the ratio 
P of the required torque (Tr) divided by the 
optimal efficient torque under current speed (Te_opt) 
and the battery SOC. The torque coefficient of the 
engine (which named as “r”) is defined by the 
output variable of the fuzzy torque controller. The 
torque output of the engine is defined as the 
following function: Te =r×Te_opt .Then, we adjust 
the engine output torque from the fuzzy controller 
to satisfy: when Te<Te_min, Te=0, Tm=Tr; When 
Te>Te_max, Te=Te_max，Te+Tm=Tr（Te_opt，Te_max，
Te_min are the optimal efficient curve, max torque 
curve, and shut down torque curve of the engine 
respectively. Shown in Fig 5）  

Fi
gure 2: fuzzy torque distribution controller diagram 

As shown in the fuzzy torque controller diagram, 
Fig. 2, we identify the required torque of the 
vehicle by torque sensing / identification, 
combined with SOC as inputs. Then we analyze 
data using fuzzy controller, pass it through the 
torque adjustment device then obtain optimal 
engine and electric motor torque.  

1.2 Selection of the fuzzy rules 
In order for fuzzy logic controller to cover the full 
range of engine and motor operation, HEV 
requires various operation modes. Therefore, we 
categorize the ratio p (Tr/Te_opt) into 5 subclasses: 
{NB, NS, OK, PS, PB} and define its domain as 
[-1.5, 1.6]. Similarly, we divide SOC into 5 
subclasses according to its range, which are {z1, 
z2, z3, z4, z5}, and the domain is [0, 1]. We also 
divided the engine coefficient “r” into 5 fuzzy 
subclasses: {A1, A2, A3, A4, A5} with a domain 
of [1, 1.6]. The membership function of p, SOC 
and r are shown in Fig.7 and the input language 
variable and output language variable use 
trapeziform and deltoid membership functions 
In the fuzzy inferencing, we take the minimum 
value when running AND operation, and use 
Mamdani method when running implication 
operation. Moreover, we employ summation 
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method to synthesize the conclusion, adopt 
centroid of area to perform non-structural fuzzy 
operation, and establish correspondent 
membership functions and fuzzy rules. 

2. Using genetic algorithm to 
optimize Fuzzy controller 

According to the characteristics of the fuzzy 
controller, the establishment of the fuzzy control 
membership functions is based on experience and 
thus, cannot achieve optimal control. Therefore, 
we use genetic algorithm to optimize the 
membership functions of the HEV fuzzy 
controller introduced in the above pages. 
The optimal design of the parallel HEV 
powertrain is a nonlinear restriction task, its 
mathematic model can be stated as follows: 

1 2

min ( )
. . ( ) 0, 1,2, ,

, 1,2, ,
i

i i i

f x
s t g x j m

x x x i n

t  

d d  

        (1) 

Among which, f(x) is the emission and system 
efficiency objective function, while constraint 
conditions gi(x) are a series of nonlinear 
inequations that stand for the power output of the 
vehicle. Optimal design variables are represented 
by control parameter of the HEV torque 
distribution controller, and the boundary is [xi

1, 
xi2]. 

2.1      Generation of the population 
initialization 

In fig.3, we define the fuzzy division of the fuzzy 
variables and the membership functions of each 
fuzzy subclass, employing x1……x7 to represent 
each point of the membership functions. Since 
coding are needed in input and output variable 
membership functions, a single one dimension 
decimal matrix of 21 in length is created in 
sequence to represent the dividing points of p’, 
SOC’ and r’ membership functions. 

 
Fig 3 The membership functions for the fuzzy inference 

engine 

The population initialization is consisted of n 
chromosomes, and each digit of every 
chromosome is of 0-1 binary notation. When 

defining fuzzy functions, we define each dividing 
point with decimal notation, and make the coding 
precision of each variable no more than 0.1 to 
achieve an appropriate coding precision. 
Meanwhile, we use 5 binary places to represent 1 
decimal place. The coding precision of each 
input/output variable are shown in table.2. Then 
the length of each chromosome is 21×5=105. 
During the operation, we need to convert the 
population initialization into recognizable data for 
fuzzy controller, meaning to transform binary 
notation into decimal notation. Moreover, because 
each digital of binary notation is randomly created, 
when switching into decimal notations 
(x1……x7，x8……x14，x15……x21), we cannot 
assure that the matrix is in ascending order from 
x1 to x7. As a result, when finishing the 
conversion from binary to decimal, we should sort 
the newly-generated numeric string to be in 
ascending order. x1 to x7, x8 to x14, and x15 to x21 
respectively represent each dividing points of 
different input/output membership functions. For 
each variable has a different domain, we need 
transform different variable respectively when 
doing decimal converting. 

2.2        Fitness Functions 
In this step, we choose objective function of 
control system as initial fitness function; different 
objective functions affect the optimized results of 
the genetic algorithm significantly differently. 
The fuel consumption and emission in the whole 
driving cycle are chosen as objective function 
values [7-8], and represent optimized objectives in 
different weight to establish objective functions.  
Here are the objective functions: 
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In which： 
X——the corresponding number of each 
chromosome； 
w1、w2、w3、w4 ——Weights for FC、HC、
NOx、CO； 
FC、HC、NOx、CO ——The fuel consumption 
and emission parameters of the engine； 

FC 、 HC 、
x

NO 、CO  ——The optimal objective 
value for each parameter； 
TDC ——during the whole driving cycle, each 
objective value calculated by integral method. 
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In order to optimize fuzzy control membership 
functions by the genetic algorithm, we must fix 
the fitness function in the genetic operation. From 
the objective functions, it is shown that the 
smaller the objective function’s values, the better 
optimization results have been achieved. However, 
in selecting stage of the genetic algorithm, the unit 
with higher fitness has a better chance to be 
inherited downwards. So we sort the objective 
function in order by using “Ranking” (Sheffield 
University genetic toolbox function) functions to 
distribute fitness functions to each objective 
function, making the minimal objective function 
value correspond with the maximal fitness 
function value. 

2.3        Operation Parameter Setup 
In the genetic algorithm, there are several 
operation parameters that are required to be set up: 
the length of individual coding (I), the size of 
colony (M), crossing probability (Pc), mutation 
rate (Pm), and terminate algebra (n), shown in 
table.2. 

Table 2 The parameters of operation 

Lengt
h (l) 

Size(M
) 

crossing 
probabilit
y (P c) 

mutatio
n rate 
(P m) 

terminat
e 
algebra
（n） 

10
5 80 0.7 0.01 80 

2.4        Constraint condition 
The genetic algorism must be constricted in order 
to perform in a efficient and reliable fashion. 
 (1) the SOC constraints 
In the fitness function, if we take the economical 
efficiency of the HEV system as the objective of 
optimization, it only contains fuel consumption 
parameter when performing fitness value 
calculation. Because fuel consumption can be 
determined only after the whole cycle has been 
completed, if we do not restrict SOC values, the 
optimized SOC value can be determined as 0 after 
the cycle is complete.Therefore, we set a limit to 
the SOC, making the 0.03SOC' d , between the 
start and the end of the cycle. 
(2) Fuzzy Controller Constraints 
After finishing the decimal conversion, the 
maximal value of x1……x7，x8……x14，
x15……x21 should be no larger than the maximal 
value of their corresponding domain, and their 
minimum values should not be less than the 
minimal value of the domain. 
 (3) Power Constraints 

In the optimization operation, we set constraint to 
the power parameter of the vehicle model in order 
to obtain the optimal power output of the vehicle. 

Table 3 The constraint condition of the power 
performance 

Power parameters Constraint Conditions 
Max speed 180km ht  

Accelerating Performance 11 (0 96.6 )s km hd �  

trace'  1km hd  
trace' : the different between the actual speed 

and the demanding speed during the driving cycle 
in simulation. 

3.  Analysis of Simulation Results 
3.1       optimal calculation for economic 

in NEDC cycle 
When the optimization objective is economic 
performance only, we define the weight value W1 
in the fitness function (function 2) as 1, while the 
rest are 0. The purpose of such a setup is to 
monitor the change in fuel consumption when the 
fuzzy control strategy is changed so that it 
becomes possible to determine the best fuzzy 
control strategy to achieve minimum fuel 
consumption of the HEV system. Then we can 
determine the operation parameter in genetic 
algorithm and run simulation in 
MATLAB/simulink to obtain the results. 

 
Fig. 4 The convergence curve of the object function 

Fig.4 shows the constringency curve of the 
objective function in the genetic algorithm 
optimization operation, while the x-axis 
represents the genetic algebra and the y-axis is the 
value of objective function. Therefore we obtain 
the optimal results in the 80th generation and 
therefore, confirm the optimized fuzzy 
membership function, as shown in Fig.8. 
We put the optimized results in “ADVISOR” and 
repeat the simulation; obtain the chart figures of 
each operation parameter in parallel HEV system, 
and compare them with previous data (before 
optimization). From the SOC curve in Fig.10 (a), 
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(b), we can see that the maximum difference of 
SOC is between ±0.005, fitting with the 
requirement of SOC control. From Fig.11 (a), (b), 
and 12(a), (b), we can see that the efficiency of 
the electric motor has been improved and the 
engine operation point clearly comes close to the 
expected optimal operation curve of the engine. 
After a comparison of the Fuzzy control strategy 
and genetic algorithm economical optimal 
parameter in Table.4 we can conclude that when 
using genetic algorithm, the fuel consumption of 
the parallel HEV powertrain system can be 
reduced by 5.3% without negatively affecting its 
power performance. However, the emission of CO 
and NOx are increased. 

Figure 5 The effect of the engine 

3.2      Analysis of Muti-Objective 
Optimization Results 

According to fitness function (2), we set the 
weights as w1=0.25 、 w2=0.25 、 w3=0.25 、
w4=0.25 when considering both efficiency and 
emission, and we perform optimization with 
genetic algorithm in NEDC cycle.  
After defining the fitness function, we run 
simulation in MATLAB/simulink with the genetic 
algorithm operation parameter (mentioned above) 
to get the simulation results. 
Fig.6 shows the constringency curve of the object 
function, and the x-axis represents genetic algebra 
and the y-axis represents objective function’s 
value. The optimized fuzzy membership functions 
are shown in Fig.9.  

 
Figure 6 The convergence curve of the object function 

We input the optimized results into “ADVISOR” 
to repeat the simulation, obtaining the chart 

figures of each operation parameter in parallel 
HEV system, and compare them with previous 
data (before optimization). Form Fig. 11(a), (c), 
and 12(a), (c) we know that the difference 
between the initial and final value of SOC is 
satisfied with the control demand. From Fig.11 (a), 
(c), and 12(a), (c) we can see that the engine 
operation point clearly moves downwards, and it 
therefore moves forward to the zone of higher fuel 
consumption. At the same time, comparing the 
NEDC testing cycle and SOC curve, shut down 
the engine in low speed, and the whole vehicle 
was driven by electric motor; While in middle 
speed, the vehicle was driven by engine and its 
operation point came close to the optimal torque 
curve; In the acceleration and high speed driving 
circumstance, the vehicle was driven by both 
engine and electric motor. 

Table 4 Compare of the simulation result 

Power parameter 

Fuzzy 
contro

l 
srateg

y 

Optimize
d genetic 
algorithm 

Muti-
objectiv

e 
optimiz

ed 
genetic 
algorith

m 
64.4-96.6km/h (s) 6.3 6.5 7.4 
Max acceleration 

(m/s2) 3.9 3.9 3.7 

Fuel 
consumption(L/10

0km) 

4.699
5 4.4845 4.5281 

HC (g/km) 0.316
26 0.31217 0.31156 

CO (g/km) 1.128
5 1.1920 1.1047 

NOx (g/km) 0.204
06 0.21661 0.18814 

After we compared the fuzzy control strategy with 
the Muti-objective optimized genetic algorithm 
parameter, we know that after optimized by the 
genetic algorithm, the power output of the parallel 
HEV powertrain system decreased slightly, but its 
fuel consumption can be reduced by 4.3%, and the 
emission parameter HC, CO and NOx all 
significantly decrease. 
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Figure 7 The membership functions of p、SOC and r 

for the fuzz control strategy 

 

 

 
Figure 8 The membership functions of p、SOC and r 
for the economy optimums with genetic algorithms 

  

 

 
Figure 9 The membership functions of p、SOC and r 
for the multi-object optimums with genetic algorithms 

 

 

 
Figure 10 The SOC curve of fuzz control, economy 
optimized results and multi-object optimized results 
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Fi
gure 11 The motor operation area of fuzz control, 

economy optimized results and multi-object optimized 
results 

         

 

Fi
g. 12 The engine operation area of fuzz control(a), 

economy optimized results(b) and multi-object 
optimized results 

Conclusion 
1) In this paper, we designed single-axis dual-
clutch torque coupling parallel hybrid torque 
distribution fuzzy control strategy, and employed 
genetic algorithm to optimize the distribution of 
torque in fuzzy controller, mending the problem 
that the traditional fuzzy control strategy was 
based on experience and the optimal control can 
hardly be achieved. 
2) In NEDC cycle, we used genetic algorithm 
which only optimize fuzzy control strategy for 
best economy, and the fuel consumption 
decreased by 5.3% but the emission of CO and 
NOx both increased. 
3) In NEDC cycle, we used genetic algorithm 
which optimize fuzzy control strategy for better 
economy and emission all together, and fuel 
consumption decreased by 4.3% with emission 
quality improved. 
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