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Abstract: This research presents an approach to the hybrid energy harvesting paradigm (HEHP)
based on suspended energy harvest. It uses a harvesting vibration absorber (HVA) with an SC/NMC-
lithium battery hybrid energy storage paradigm (SCB-HESP) equipped regenerative braking system
(SCB-HESP-RBS) for electric vehicles 2 tons in gross weight (MEVs) driven by a 30 kW permanent
magnet synchronous motor (PMSM). During regenerative braking, the ANN mechanism controls
the RBS to adjust the switching waveform of the three-phase power inverter, and the braking energy
transfers to the energy storage device. Additionally, a supercapacitor (SC) equipped with HVA can
absorb energy from vehicle vibrations and convert it into electrical energy. The energy-harvesting
efficiency of MEV based on SCB-HESP-RBS using HVA suspended energy harvesting enhances the
efficiency maximum to 50.58% and 15.36% in comparison to MEV with only-HVA and SCB-HESP-
RBS, respectively. Further, the MEV with SCB-HESP-RBS using HVA has a driving distance of up to
247.34 km (22.5 cycles) when compared with SCB-HESP-RBS (214.40 km, 19.5 cycles) and only-HVA
(164.25 km, 15 cycles).

Keywords: electric vehicles; harvesting vibration absorber; hybrid energy harvesting paradigm;
energy storage

1. Introduction

At present, direct greenhouse gas emissions from internal combustion engines result
in increased air pollution. In particular, land transportation is the primary source of air
pollution in urban areas. Faced with deteriorating air quality, many countries around the
world, including Europe, the United States, Japan, and China, have embraced electric vehi-
cles (EV) as a solution to combat carbon emissions from fossil fuels [1,2]. The replacement
of internal combustion vehicles with electric vehicles has begun to play a role in many
countries around the world. Because there are zero emissions from the exhaust pipe, this
reduces the amount of CO2 emissions associated with driving. This contributes to improved
air quality in urban areas, especially if electric vehicles apply new technology to create
comfort and are safe to drive [1–5]. Electricity is typically less expensive than gasoline,
and electric vehicles have fewer moving parts, leading to reduced maintenance costs. In
some regions, governments and organizations offer incentives, such as carbon credits or
offsets, to encourage the adoption of electric vehicles. Most electric vehicle batteries still use
electrochemical batteries for their main energy storage systems. Electrochemical batteries
still have many limitations, such as short life cycles, low energy density, high cost, and
limited driving range, which affect regenerative braking performance later [6,7]. Energy
storage technology is a turning point in the contemporary automotive industry, with the
potential to enhance vehicle energy efficiency and the fuel economy. In the scope of electric
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vehicle technologies, the focus primarily centers on harvesting energy from regenerative
braking and vehicular suspension-induced vibrations [8,9]. Moreover, achieving efficient re-
generative braking necessitates the inclusion of a sizable energy storage system comprising
multiple battery packs.

To address these limitations, a hybrid energy storage paradigm was employed, in-
corporating multiple SC and batteries, to enhance vehicle acceleration and extend the
longevity of the battery. Various energy management strategies have been suggested in the
literature to optimize power distribution in a hybrid energy storage paradigm [10]. Most of
the previous research has proposed fuel cell systems with SC and batteries. Comparable
energy management approaches can also be applied to SC/battery hybrid configurations.
Approaches grounded in heuristics or empirical knowledge can be readily put into prac-
tice through the utilization of rule-based control algorithms or by employing fuzzy logic
methodologies. In addition, straightforward filter-based or frequency-based power dis-
tribution strategies have been incorporated as demonstrated in [11]. In the context of a
traditional electric vehicle, a considerable quantity of energy is expended during urban
driving cycles due to braking [11].

To enhance the efficiency of EV, the RBS was devised [12]. This system makes use of
the electric motor, which applies negative torque to convert kinetic energy into electrical
energy, thereby replenishing the energy storage devices. Effectively harnessing the dis-
sipation of kinetic energy during braking is achieved through meticulous control of the
vehicle’s onboard power electronics for comprehensive energy management. Consequently,
regenerative braking proves to be a highly effective technology for enhancing the overall
efficiency of electric vehicles. Numerous efforts to meet the control performance require-
ments for regenerative braking have been documented in the literature, such as rule-based
strategies [13], PID control strategies [11–14], and ANN approaches [15]. In situations
where regenerative braking is active, the DC-link voltage experiences a rise, prompting
the RBS program, with the assistance of the ANN controller, to redirect the energy from
braking towards storage in the SC. The SC has SCB-HESP-powered scenario density and
high battery energy density, but there are still limitations in using high-power electronic
interfaces as a bidirectional dc/dc chopper is required to connect the battery to the SC,
which leads to higher costs [9–14] and high-power electronic systems. The interface causes
energy dissipation, and regenerative braking performance decreases later.

In practice, a vibration absorber or damper is a mechanical device designed to absorb
and stimulate damp vibrations by converting the kinetic energy of the impact into another
form of energy. Then that efficiency is distributed to the control condition, explanation, and
strength that comes from the system, which causes a beneficial effect on driving for a longer
time [16,17]. Typically, vehicles traverse uneven roads, and in such scenarios, a harvesting
vibration absorber can transform the linear vibration of the suspension into electricity
through an electromagnetic circuit. Regenerative suspension, which uses electromagnetic
harvesting, stands out as one of the most widely used harvesting technologies in automotive
energy harvesting, as mentioned in the literatures. The electromagnetic-equipped harvester
has gained prominence and is becoming increasingly attractive due to its high-energy
conversion efficiency, simple design, rapid response, strong controllability, and ability to
recover energy [18–21].

Several energy harvesting-related suspension systems have been proposed and opti-
mized accordingly. This ensures better performance when there are differences in usage.
In addition, regenerative braking is already presented and is also applied to hybrid and
commercial electric vehicles. However, both suspension systems for energy harvesting and
regenerative braking are still under development. Both energy harvesting methods have
limitations when the total weight increases and there is a need for additional space, system
loss, loss of efficiency, and cost.

This research proposes a combination of the HEHP based on the SCB-HESP-RBS and
using energy suspended by HVA for an MEV driven by PMSM 30 kW. In regenerative
braking conditions, the DC-link voltage is stimulated. Installation of the ANN program
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in the RBS results in the optimal switching pattern of the three-phase inverter. Transfer
braking energy to store in SC this harvest can increase the MEV driving range and extend
battery life [22–25].

2. The SCB-HESP Regenerative Scenario

The regenerative braking scenario under SC activates an increase in the DC-link
voltage, causing the power diode to become forward-conducting, thus establishing a boost
circuit within the three-phase inverter. The high side of the switch of the half-bridge is
closed and the bottom of the switch is pulse width-modulated. The regenerated braking
energy is then transferred and stored in the SC module. A buck-boost dc/dc chopper is used
to help transfer braking energy to SC as shown in Figure 1, (a) SC-activated regenerative
braking scenario by HVA, and (b) SC-activated regenerative braking by RBS.
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3. The Harvesting Vibration Absorber Design

This research combined the outstanding efficiency and other relevant factors of SC
and batteries: SC is highly efficient in terms of charging/discharging rates and cycle life.
Integration with traditional batteries leads to high energy density, but may have limitations
in terms of charging/discharging rates [6]. Specific information about SC and batteries
is shown in Table 1. Further, the application of SC-equipped HVA reduces unwanted
vibrations, which can lead to a loss of energy. HVA is designed to absorb and dampen
the shock impulses and vibrations generated by uneven road surfaces, bumps, and other
disturbances to improve energy efficiency in electric vehicles [9]. Figure 1a illustrates the
proposed scheme for the HVA equipped with an SC. It comprises three key components:
the suspension harvesting system, a conversion mechanism, and energy storage modules.

Table 1. The parameter characteristics of SC and battery.

Parameter Battery Supercapacitor

Cell type NMC EDLC
Cell voltage ~3.6–4.2 V ~2.1–3.3 V
Service life ~5–10 years ~10+ years

Specific energy 100–200 Wh/kg 5 Wh/kg
Series/Parallel 1P96S -

Cell amount (pcs) 96 140
System Capacity 196 Ah 3000 F

System Energy (kWh) 60 -
System Voltage (V) 355.2 380

System voltage ranger (V) 269.8 to 412.8 -
Continuous charging current of maximum (A) 169 200

Continuous discharging current of maximum (A) 169 200
Weight (kg) 400 -

Temperature charging temp 0 to 50 ◦C −40 to 65 ◦C
Temperature discharging temp −20 to 60 ◦C −40 to 65 ◦C

Battery assembly SOC 30% ± 3% -
Time of charge/discharge 10–90 min 5–15 s

3.1. The Suspension Harvesting System

Figure 2 illustrates the placement of the harvesting vibration absorber, which is in-
stalled between the vehicle frame and the chassis. Both the outer and inner cylinders of
the vibration absorber are attached to the vehicle’s frame. While driving on rough roads or
accelerating and decelerating, the vibrations of the suspension vibrations generate linear
movement between the two cylinders. Indeed, road roughness and vehicle speed are the
primary factors contributing to suspension vibrations [26]. In Figure 3, the simulation
example of suspension velocity between the unsprung mass and the sprung mass of the
proposed vibration absorber at a speed of 45 km/h is shown. This simulation was con-
ducted using CarSim with BMW X and the HB106-Class pavement scenario. The maximum
instantaneous speed recorded was 65 km/h. Suspension speed simulations were conducted
over a range of vehicle speeds, from 35 km/h to 70 km/h [6]. While the vehicle traveled at
45 km/h, the sprung and unsprung mechanisms worked in tandem to ensure a balanced
and controlled interaction with the road surface. Suspension systems play an important
role in managing forces and movement between sprung and unsprung masses. This affects
the overall performance, vehicle control, and driving comfort [9].
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3.2. The Conversion Mechanism

This conversion mechanism is a file that converts bidirectionally between the inner
and outer cylinders. Linear movement (up–down) becomes a unidirectional rotation to
drive the generator shaft. Figure 4a shows the prototype and 3D scenario of HVA consisting
of two cylinders, as well as bevel gears overrunning clutch, rack pinion, shaft, and interior
gear. Figure 4b shows a shaft with two gears assembled without being stationary in one
direction. An overrunning clutch (CSK-PP type) is installed at the shaft and attached to
the gear.
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Figure 4. The prototype and 3D scenario of the HVA: (a) outer and (b) inner structure.

When the vehicle vibrates, there is an alternating pattern of movement between the
inner and outer cylinders. The linear movement causes movement up and down the shelf.
Then, the shelf sends vertical movement in the left-right wing direction. In rack and pinion
assembly, the two pinions rotate in opposite directions [6]. For the couple type, the overrun
clutch alternately engages and disengages the shaft, which results in a single direction.
The rotational movement of the output shaft independent of shelf movement is shown in
Figure 5.
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3.3. The Energy Storage Module

The frequency and amplitude of suspension vibration are contingent on both road
roughness and vehicle speed. Swift changes in suspension vibration frequency and am-
plitude lead to fluctuations in the generator’s rotational speed, resulting in an unstable
regenerative current. To address this issue, a PMSM motor can serve as a three-phase
alternating current (AC) generator. However, a three-phase current is not well-suited for
recharging batteries or powering electrical loads. To convert a three-phase alternating
current into a pulsed current, a voltage regulator employing the LM311N8 as a stabilivolt
is utilized in an energy storage module (Figure 6a). Moreover, the rapid fluctuations in the
frequency and amplitude of vibrations within suspension systems require the incorpora-
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tion of SC for efficient storage of the pulse-like current. Figure 6b illustrates the rectifier
circuit [6].
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4. System Power Analysis

This research proposes a type of system power analysis which investigates the effects
of HVA model parameters, such as the damping force and impulse force, on the efficiency
of output power. The damping force (Fdamp) of HVA can be expressed as [27]:

Fdamp = Fe = meq
..
o + Lc = mcylinder + 2mrack+

Ig
I2 +Ipg+Ib+Is+2Ip

r2 × ..
x

1.5×k2
e

EgenEplangearEbevelErackp2r2(Rexternal+Rinternal)
× .

x

(1)

where Fdamp is the force with damping; Fe is the force of excitation; o is the speed of
excitation; and Egen, Eplangear, Ebevel, and Erack are the efficiencies of the generator, planetary
gearbox, bevel gear, and rack-pinion, respectively. mcylinder and mrack are the masses of the
outer cylinder and the rack, respectively. On the other hand, Ipg, Is, Ip, Ib, and Ig refer to
the inertia of the planetary gearbox, shaft, pinion, bevel gear, and generator. Ke signifies
the rotary damping coefficient, while Rinternal is the internal resistor within each phase of
the generator charging circuit, and Rexternal is the external resistor. The variables r, p, and
Lc correspond to the pinion radius, planetary gear ratio, and linear damping coefficient,
respectively [6].

The mechanical efficiency (Em) of the HVA can be mathematically expressed as

Em = EgenEplangearEbevelErack (2)

Substituting (2) into (1) yields:

EmPinput = Pelectrical (3)
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where Pelectrical is the electrical power, which consists of both the fragment charge harvesting
(Pharvesting) and the portion lost to the internal resistance (Pin,lost) of the generator. The
calculation for the fragment lost to internal resistance can be expressed as

Pelectrical = Pharvesting + Pin,lost (4)

Therefore, the electrical efficiency of the HVA can be calculated using the following
formula:

Ee =
Pharvesting

Pharvesting + Pin,lost
(5)

When considering mechanical performance and electrical performance. Therefore, the
total efficiency of a HVA is:

β = βm · βe (6)

where βe is electrical efficiency, βm is mechanical efficiency, and the total efficiency of the
HVA is β.

The linear damping coefficient can be determined through the following formula [27]:

Lc =
∆W

πωA2 (7)

where ∆W is the mechanical work input of the harvesting vibration absorber, and ω and A
are the frequency and amplitude of the sinusoidal vibration, respectively.

Further, the total efficiency (β) of HVA can also be calculated by:

β =
Poutput

Pinput
(8)

where Poutput stands for the average power output of HVA per cycle or electrical power
and Pinput stands for the average input power or mechanical power of the HVA per cycle.
Referring to Equation (6), the mechanical efficiency of HVA can be found as follows:

βm =
β

βe
(9)

Referring to Equation (5), the electrical efficiency of HVA is 0.89. Therefore, the input
power (mechanical power) of HVA per cycle can be calculated as:

Pinput =
∆W

T
(10)

where ∆W is the mechanical work data of HVA and T is the period of sinusoidal stimulation.

5. Design of Bench Test Experimental

This research used PMSM motors to use permanent magnets to provide field excitation.
These motors generate higher torque and have more efficiency than BLDC motors. The
PMSM 30 kW is designed to be more compact and lightweight. This can result in savings in
terms of vehicle weight, which can improve the overall efficiency of the vehicle and reduce
energy consumption. Table 1 is the simulation parameter of HESP in a different value
between the battery and supercapacitor. Additionally, Table 2 shows specific information
about the parameters of the PMSM motor. Figure 7 shows the design and experimental
test of the harvesting vibration absorption system. Figure 8 proposes a tachograph model
of the driving cycle of an NEDC vehicle. This driving cycle is a frequent urban driving
scenario. In addition, Table 3 shows the NEDC drive cycle parameters of electric vehicles.
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Table 2. Experimental test of permanent magnet synchronous motor parameters.

Symbols Parameters Value

Pmt Power of maximum transfer 60,000 Watt
Art Average rated torque 96 N·m
Arp Average rated power 30,000 Watt

Mtorque Maximum of torque 240 N·m
Icurrent Maximum of current 275 Amp

Arc Average rated current 100 Amp
Ats Average tated speed 3000 rpm
F Frequency 150 Hertz

Mspeed Maximum of speed 6000 rpm
Tc Torque constant 0.87 N·m/A

BEMF Back-EMF 165 Volts
Pphase Phase–phase resistance 0.01 Ω
Ppairs Pole pairs 3
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Table 3. The NEDC drive cycle parameters of electric vehicles.

Parameter Value Unit

Cycle name NEDC -
Driving distance 10.95 km

Total time 906.10 s
Accelerating time (%) 21.78 %
Decelerating time (%) 15.19 %

Braking time (%) 19.68 %
Stop duration (%) 24.05 %
Speed of average 33.26 km/h

Speed of maximum 111.22 km/h
Average positive acceleration 0.59 m/s2

Average negative acceleration −0.48 m/s2

6. Experimental Results and Discussion

The HVA bench-test experiments were conducted under sinusoidal vibration con-
ditions with varying frequencies of 2.5, 3, 3.5, and 4 Hz and amplitudes of 3.5, 7, and
10.5 mm to observe the force–displacement loops. Due to dimensional constraints, the
prototype HVA had a maximum amplitude of 10.5 mm. The experimental platform for
the HVA prototype involved the use of an HS-5051-AF3 electronic shock absorber testing
system and power, and Figure 9 shows data analysis of power, current, and voltage CAN
communication using a YOKOGAWA DL350 oscilloscope. Furthermore, Table 4 provides
the experimental findings, including the kinetic energy before braking and the energy
stored after braking, based on the speed just before braking, which averages 12.51 m/s
over a braking duration of 10 s. The energy recovered after braking averages 3838.81 joules,
while the kinetic energy before braking averages 28,367.76 joules. The recovered energy of
the system harvesting vibrations at different speeds before braking shows in Figure 10.

Figure 11 presents both simulation and experimental data illustrating the relationship
between speed and the time required for braking within a range of 10.38 s, starting from an
initial speed of 48.13 km/h. This evaluation was conducted to assess the supercapacitor
pressure before and after braking. The simulation results indicate that, during the preceding
period and after 10.38 s of braking at an average speed of 48.13 km/h before braking, the
supercapacitor voltage increased to 6.44 V.
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Table 4. Experimental and simulation specifications.

Set
Speed before

Braking
(m/s)

Final Speed
after Braking

(m/s)

Total Kinetic Energy
before Braking (J)

Duration of
Braking (s)

Energy
Recovered (J)

1 10.40 10.26 28,350.21 10.32 3130.81
2 10.63 10.54 29,714.69 10.57 2918.37
3 10.27 10.23 27,157.05 10.14 4194.13
4 10.39 10.19 28,428.82 10.22 4031.68
5 10.78 10.48 28,188.02 10.55 4919.05
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The efficiency of the proposed method can be assessed by comparing the state of
charge (SOC) of the hybrid energy storage device throughout the driving cycle of MEV.
Figure 12a,b gives a comparison between simulations and experiments for the charge
statuses of both the SC and the NMC-lithium battery under two conditions: The system
recovers braking using the SC, starting with an initial charge status of 88.4% for SC and
87.2% for the NMC-lithium battery. When the system recovers braking using the battery,
the SOC values of the SC and NMC-lithium batteries start at 98.4% and 89.7%, respectively.

The multi-layer feed-forward ANN demonstrates satisfactory capability in this pro-
posed scheme. The inputs include vehicle speed, the state of charge of both the SC and
NMC-lithium battery, as well as the number of braking situations per drive cycle. The
ANN algorithmic scheme generates regenerative braking force values for the front wheel
as its outputs, utilizing a hidden layer consisting of five neurons. These neurons in the
hidden layer employ sigmoid activation functions.

The optimization of the three-phase inverter switching scheme for the RBS was
achieved using an ANN-equipped control mechanism. During regenerative braking,
the ANN-equipped SC/NMC-lithium battery-RBS efficiently directed and stored braking
energy in the SC [6].

In the initial scenario, the SC began with a state of charge of 85.2%, while the NMC-
lithium battery started at a SOC of 87.7%. Since the SC voltage remained well below the
safety threshold of 97%, the NMC-lithium battery regenerative braking did not engage.
Consequently, only the SC was utilized to store energy from braking in this scenario.
Considering the statuses of both the SC and the NMC-lithium battery in this scenario, the
second braking case was used. In this case, the initial state of charge of the SC was set to
98.5%. Here, the capacitor’s SOC exceeded the predefined safety threshold.

Table 5 provides a tabulation of the optimal simulation parameters for the HVA scheme.
The HVA scheme was simulated using MATLAB under sinusoidal vibration conditions,
with varying frequencies of 2.5, 3, 3.5, and 4 Hz and amplitudes of 3.5, 7, and 10.5 mm
for the force–displacement loops. The sinusoidal vibration function can be expressed as
follows, where x is the sinusoidal vibration, t is the period time or reciprocal of frequency,
and π and ω are the amplitude and frequency of the sinusoidal vibration, respectively.
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Table 5. The experimental optimal simulation parameters of the HVA.

Parameter Symbol Value

Pinion inertia Ip 32.28 kg mm2

Shaft inertia Is 3.25 kg mm2

Bevel gear inertia Ib 4.81 kg mm2

Planetary gearbox inertia Ipg 0.22 kg cm2

Rotor inertia of generator Rg 0.50 kg cm2

Mass of external cylinder mc 3.40 kg
Mass of rack mr 0.20 kg

Rotary damping coefficient ke 0.05 V s/rad
Planetary gearbox ratio i 1:30

In Figure 13a–c, the simulated force–displacement loops correspond to the proposed
HVA scheme with amplitudes of 3.5, 7, and 10.5 mm, while considering frequencies of
2.5, 3, 3.5, and 4 Hz. The simulation results demonstrate that the HVA meets the criteria
for traditional vibration absorbers, particularly in terms of damping and elasticity. The
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force–displacement loops exhibit an orientation that is non-horizontal and oblong-shaped,
with the mass inertia being associated with the negative slope. Furthermore, achieving the
ideal force–displacement loops is possible with the use of optimal simulation parameters.
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The simulation results also indicated a positive correlation between the vibrational
frequency and the slope of the force–displacement loop for amplitudes of 3.5, 7, and
10.5 mm. In simpler terms, an increase in the excitation frequency leads to an increase
in the slope of the loops. The non-horizontal shape of the loops can be attributed to the
masses of the outer cylinder (mc) and the rack (mr), as well as the inertia of various moving
components, such as the pinions, shaft, bevel gears, planetary gearbox, and generator,
as estimated by Equation (1). In contrast, when comparing, the simulated mechanical
work input of the HVA (∆W) (inner-loop area), increases as the amplitude (3.5, 7, 10.5 mm)
increases while maintaining the same excitation frequency.

In Figure 14a–c, representations of the force–displacement loops for the HVA scheme
are shown, where the amplitude is 9 mm. These loops were generated experimentally
at frequencies of 2.5, 3, 3.5, and 4 Hz. Experiments have indicated a direct relationship
between higher vibration frequencies and forces. This suggests that when more vibration
is present, the system has the potential to store a greater amount of energy. The enclosed
area within these loops corresponds to the mechanical work input (∆W) associated with
the HVA.

In Figure 15, there is a comparison of the driving distances and durations (driving
cycles) of the MEV. In different configurations, the scenarios of three MEV systems are
considered: only HVA, SCB-HESP-RBS, and SCB-HESP-RBS using HVA. Observations
show that one propulsion cycle covers 10,000.95 m and takes 906.10 s to complete. The
experiment found that MEV with only HVA could drive 164.25 km or 15 cycles, while MEV
with SCB-HESP-RBS could drive 214.40 km or 19.5 cycles, and MEV with SCB-HESP-RBS
using HVA could drive 247.34 km or 22.5 cycles. Figures 16 and 17 depict the instantaneous
power and standalone voltage of the experimental external resistors, including the total
experimental resistors, at a frequency of 4 Hz and amplitude of 10.5 mm. Tables 6 and 7
show the simulated and experimental output power (mechanical power), respectively,
under varying frequencies and amplitudes. The results showed that the simulation and
experimental results were in good agreement. Figure 18 shows the experimental total
efficiency (β) of the HVA under variable frequencies (2.5, 3, 3.5, 4 Hz) and amplitudes (3.5,
7, 10.5 mm). With the given values of βRP, βB, βPG, and βG as 0.95, 0.98, 0.93, and 0.96,
respectively, the mechanical efficiency (βM) of the HVA is calculated to be 0.94. The electrical
efficiency (βE) of the HVA is 0.88. In addition, Table 8 shows an efficiency comparison of this
result and other literature reviews. From the reported results, it was found that this research
has energy harvesting efficiency comparable to that found in other literature reviews.
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Table 6. Simulated electrical power of HVA under variable frequencies and amplitudes.

Amplitude
Frequency

2.5 Hz 3 Hz 3.5 Hz 4 Hz

3.5 mm 1.105 W 1.302 W 1.795 W 2.401 W

7 mm 1.547 W 1.898 W 2.973 W 3.805 W

10.5 mm 1.976 W 2.894 W 4.035 W 8.401 W

Table 7. Experimental electrical power of HVA under variable frequencies and amplitudes.

Amplitude
Frequency

2.5 Hz 3 Hz 3.5 Hz 4 Hz

3.5 mm 0.938 W 1.194 W 1.589 W 2.091 W

7 mm 1.382 W 1.598 W 2.712 W 3.672 W

10.5 mm 1.827 W 2.692 W 3.894 W 8.253 W
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Table 8. Comparison of efficiency of energy harvesting according to other literature reviews.

Energy Harvesting Type Efficiency Ref.

SCB-HESP-RBS using HVA 50.58% This work
SC/Battery using shock absorber 45% [28]
SC/Battery using shock absorber 62% [29]
SC/Battery using shock absorber 39.3% [30]
SC/Battery using shock absorber 39.46% [31]

7. Conclusions

This research proposed an up-scaling of the hybrid energy harvesting paradigm
(HEHP) from the laboratory into a real vehicle for a MEV driven by PMSM at 30 kW.
This system combines the unique characteristics of SC and batteries, also known as the
hybrid energy storage paradigm (SCB-HESP), and integrates it with RBS and HVA, which
can enhance the efficiency of electric vehicles. In the regenerative braking scenario, the
ANN mechanism controls the RBS to adjust the switching waveform of the three-phase
power inverter and transfers the braking energy to the energy storage device. As for the
purpose, HVA-equipped in SC consists of three main parts: the suspension harvesting
system, a conversion mechanism, and energy storage modules. When the vehicle moves
along a rough road, the vibration of the harvesting energy is converted by generator
module into electrical energy and transferred to storage in SC, which can help to extend
the battery life and driving range. In an experiment comparing driving between three
different systems, MEV only-HVA, SCB-HESP-RBS, and SC-HESP-RBS using HVA in an
NEDC standard, given one drive cycle of 10.95 km, it was found that MEV with only HVA
could drive 164.25 km (15 cycles), while MEV with SCB-HESP-RBS could drive 214.40 km
(19.5 cycles), and MEV with SCB-HESP-RBS using HVA could drive 247.34 km (22.5 cycles).
The efficiency of energy harvesting of MEV based on SCB-HESP-RBS using HVA suspended
energy harvesting was enhanced up to 50.58% and 15.36% in comparison with MEV with
only-HVA and SCB-HESP-RBS, respectively.
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Abbreviations
The abbreviations utilized in this paper are outlined as follows:

Abbreviation Full Name
HEHP Hybrid energy harvesting paradigm
HESP Hybrid energy storage paradigm
SC Supercapacitor
NMC Nickel–magnesium–cobalt
SC/NMC Supercapacitor and nickel–magnesium–cobalt
SCB-HESP Supercapacitor and battery hybrid energy storage paradigm
RBS Regenerative braking system

SCB-HESP-RBS
Supercapacitor and battery hybrid energy storage paradigm equipped
regenerative braking system

MEV Gross weight 2 tons electric vehicles
PMSM Permanent magnet synchronous motors
BLDC Brushless direct current motor
ANN Advanced artificial neural network
SOC States of charge
IGBTs Insulated gate bipolar transistors
PID Proportional Integral Derivative
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