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Abstract: This study aims to explore an intelligent vehicle trajectory tracking control method based on
optimal control theory. Considering the limitations of existing control strategies in dealing with signal
delays and communication lags, a control strategy combining an anthropomorphic forward-looking
reference path and longitudinal velocity closure is proposed to improve the accuracy and stability
of intelligent vehicle trajectory tracking. Firstly, according to the vehicle dynamic error tracking
model, a linear quadratic regulator (LQR) transverse controller is designed based on the optimal
control principle, and a feedforward control strategy is added to reduce the system steady-state error.
Secondly, an anthropomorphic look-ahead prediction model is established to mimic human driving
behavior to compensate for the signal lag. The double proportional–integral–derivative (DPID)
control algorithm is used to track the longitudinal speed reference value. Finally, a joint simulation is
conducted based on MatLab/Simulink2021b and CarSim2019.0 software, and the effectiveness of
the control strategy proposed in this paper is verified by constructing a semi-physical experimental
platform and carrying out a hardware-in-the-loop test. The simulation and test results show that the
control strategy can significantly improve the accuracy and stability of vehicle path tracking, which
provides a new idea for future intelligent vehicle control system design.

Keywords: intelligent vehicles; trajectory tracking; optimal control; hardware-in-the-loop testing;
hardware-in-the-loop simulation

1. Introduction

With the development of artificial intelligence and control theory, intelligent driving
technology has gradually matured, and the intelligent level of transportation systems
has been further improved [1]. And the intelligent driving car has made it a worldwide
research hotspot due to its great advantages in driving safety and comfort [2]. Intelligent
driving technology mainly includes environment sensing and localization, decision making,
path planning, and trajectory tracking [3]. Among them, trajectory tracking control is the
core of intelligent driving technology, which is an important component to ensure the key
performance of vehicle driving safety and maneuvering stability [4].

In recent years, domestic and foreign scholars have also conducted a lot of research on
the trajectory tracking of intelligent driving vehicles, such as trajectory tracking control based
on optimal control [5], linear quadratic regulator (LQR) [6], proportional–integral–derivative
control [7], Stanley modeling [8], model predictive control [9], and other methods. The
optimal controller LQR is one of the most popular optimal control theories, which is highly
important and representative in modern control theory [10] and has been widely used
in a number of fields [11,12]. In 2009, Snider first proposed to utilize the LQR control
method for trajectory tracking by using the center of mass of the vehicle as the control
point and modeling the system in the presence of path curvature perturbations. In turn,
the LQR controller was designed [13]. As described by Xu et al. and Zhang et al., the
time delay within the whole vehicle is a major reason for the limitation of trajectory
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tracking accuracy and instability [14,15]. So, the signal time delay has become a non-
negligible issue in the control system for the responsiveness and control accuracy of the
vehicle. The signal time delay, either from the sensors and actuators inside the vehicle or
from the external communication system, may lead to a lag in the execution of control
commands, which in turn affects the tracking performance of the vehicle. To address this
problem, numerous studies have proposed various compensation strategies in an attempt
to minimize the negative impact of delays. The proportional–integral–derivative (PID)
controller is one of the most basic and widely used trajectory tracking algorithms [16].
However, as a linear controller, PID control cannot adapt to complex and variable nonlinear
operating conditions [17]. The Stanley controller is considered by many scholars to be a
simple, efficient, and proven solution that can provide adequate control performance at
low speeds [18]. AbdElmoniem et al. proposed a predictive Stanley lateral control method
to calculate steering angle setpoints considering future driving states [19]. However, the
Stanley controller is a better solution for applications requiring higher speeds and high
dynamics. In the field of trajectory tracking control research, model predictive control
(MPC) has also been widely used as a delay compensation method [20]. Yu et al. describe
an MPC method that predicts the actual position of the vehicle and uses the delay time as a
prediction time to compensate for the effect of delay [21]. While model predictive controllers
(MPCs) produce relatively better accuracy at higher speeds and in more dynamic driving
situations, they lead to more complex algorithms and higher computational effort [22–24].
LQR controllers can be designed to systematically balance performance and stability by
minimizing a quadratic cost function that includes state bias and control power usage, even
in the presence of some degree of system uncertainty and external perturbations, and thus
are widely used in solving the problem of signal delay. NR Kapania proposed a feedforward
steering controller incorporating feedback, which was designed by first considering the
modeling of nonlinear vehicle dynamics and the construction of the controller for the
feedforward control method. Meanwhile, the steady-state path deviation at high speeds
tends to increase significantly [25]. Xu et al. suggested introducing feedforward control
related to path curvature in LQR feedback control to reduce the steady-state deviation of the
controller [26]. In 1969, Hayase and Ichikawa provided the concept and model of preview
control [27]. Subsequently, Katayama and Hirono proposed an optimal preview controller
design for deterministic and stochastic linear time-invariant systems in continuous time
and discrete time domains based on linear-quadratic optimal control theory using the
Riccati equation method [28]. A new preview control strategy was proposed by Wuetal.
by combining stochastic and optimal control theories. The preview control problem was
solved for continuous-time stochastic control systems [29]. The preview LQR designed
by Katayama et al. improves the accuracy and stability of path tracking by acquiring
the road information in advance so that the control system is able to predict the optimal
control strategy for the future period [30]. However, although preview LQR shows excellent
performance in theory and simulation experiments, accurate prediction of future trajectories
in complex traffic environments is difficult, and the controller design needs to fully take
into account the complexity and uncertainty of the vehicle dynamics model [31–33]. The
advantage of the LQR controller as an optimal control strategy lies in the fact that it can
ensure the stability of the system while optimizing the control forces through the application
and minimizing energy consumption. Although LQR-based control methods have been
widely used in the field of intelligent vehicles, the input instability and computational
problems in solving LQR may affect the real-time performance and stability of the controller,
which in turn affects the accuracy and stability of trajectory tracking.

In order to improve the accuracy of trajectory tracking and the system response
speed, this study proposes a novel trajectory tracking method based on optimal control
theory for the horizontal and vertical joints of intelligent vehicles. The method is based on
Pontryagin’s maximum principle [34] and Bellman’s optimality principle [35] and aims to
find the optimal control strategy for the dynamic system under the framework of optimal
control theory to ensure that the intelligent vehicle can accurately and stably track the
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predetermined trajectory and to improve the maneuverability and safety of the intelligent
vehicle. This study aims to realize the precise and stable control of intelligent vehicles by
designing an optimal lateral control strategy for anthropomorphic prospective reference
paths as well as adopting a longitudinal velocity closed-loop control algorithm. The main
contributions of this paper are as follows: (1) A controller combining an anthropomorphic
foresight model and an optimal controller for intelligent vehicles is designed by considering
the actual traffic driving scenarios and reducing the unnecessary steering process. (2) A
dual PID (proportional–integral–derivative) controller is designed, which provides precise
control of speed and position, respectively. The speed control PID directly affects the
acceleration of the vehicle, while the position control PID can adjust the speed setting value
based on the distance difference with the vehicle in front, and the combination of the two
can respond to the change in traffic conditions more flexibly. (3) Based on the software
simulation, this study constructed a semi-physical experimental platform for verification
testing. The hardware-in-the-loop test results show that the control strategy proposed in
this study effectively improves the control accuracy of the vehicle in path tracking.

The rest of the paper is divided as follows: Section 2 describes vehicle dynamics
modeling and discretization. In Section 3, we design the LQR lateral trajectory tracking
controller based on the predictive feedforward and feedback algorithms. Section 4 uses
a combination of a position closed-loop controller and velocity closed-loop controller for
longitudinal controller design. Simulation results under Simulink-Carsim co-simulation as
well as hardware-in-the-loop tests are given in Section 5 to evaluate the tracking perfor-
mance of the combined transverse-longitudinal controller. Finally, we conclude the paper
in Section 6.

2. Vehicle Dynamics Modeling and Discretization

Considering the dynamic model of the intelligent vehicle as a system equation, the
goal is to make the vehicle move along a predetermined trajectory and minimize the
trajectory tracking error. The problem faced in this paper is how to minimize the vehicle
trajectory tracking error through a set of control parameters, taking into account both phase
constraints and dynamic constraints to ensure the accuracy of trajectory tracking and the
stability of the system.

2.1. Vehicle Dynamic Error Tracking Model

It is essential to analyze the trajectory tracking problem to study vehicle lateral dy-
namics since the vehicle system is an unknown, complicated system with substantial
nonlinearity and hysteresis. The vehicle dynamics model is reduced in this work to a
two-degree-of-freedom lateral dynamics model for error modeling. Approximations are
simplified based on the modeling. The lateral force and the lateral acceleration are roughly
proportionate to the tire’s lateral deflection angle and lateral acceleration, respectively.

In Figure 1, φ is the swing angle of the vehicle (rad); β is the lateral deviation angle
of the center of mass of the vehicle (rad). The black arrow Vx is the longitudinal speed of
the vehicle (m/s); Vy is the lateral speed of the vehicle (m/s); X,Y is the natural coordinate
system; R is the radius of vehicle trajectory. The red arrow u indicates the velocity of
the vehicle’s center of mass; v denotes the transverse velocity of the center of mass of
the vehicle.

With the two-degree-of-freedom vehicle model, the following differential equations
are obtained assuming a small wheel turning angle and uniform speed:( .

Vy..
φ

)
=

 Cα f +Cαr
mVx

aCα f −bCαr
mVx

− Vx
aCα f −bCαr

IVx

a2Cα f +b2Cαr
IVx

(Vy.
φ

)
+

(
−Cα f

m

− aCα f
I

)
δ f (1)

where m is the mass of the vehicle (kg); a, b is the distance from the center of mass to the
front and rear axes (m); Cα f , Cαr is the lateral stiffness of the front and rear wheels (N/rad);
and I is the rotational moment of inertia of the center of mass about the Z-axis (kg·m2).
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Figure 1. Two-degrees-of-freedom model of vehicle.

When the vehicle is under transverse control, the transverse error ed as well as the
cross-swing error eφ are expected to converge to zero as much as possible to ensure the
safety and stability of the tracking control. The lateral and longitudinal decoupling is
carried out in the Frenet coordinate system and calculated:

.
ed =

∣∣∣∣⇀V∣∣∣∣ sin(β + φ − θr) (2)

θr = θ + κres (3)

where
∣∣V∣∣ is the center-of-mass velocity of the vehicle (m/s); θr is the reference heading

angle at the current moment (rad); θ is the heading angle of the matching point (rad); es is
the longitudinal error (m); kr is the curvature of the matching point.

The first-order derivative and second-order derivative of the simplified transverse er-
ror ed by the decomposition of coordinate vectors with a small angle assumption
are, respectively:

.
ed = Vy + Vx(φ − θr) = Vy + Vxeφ (4)

..
ed =

.
Vy + Vx

.
eφ (5)

The general road curvature change is relatively small, ignoring
..
θr , and the transverse

pendulum error and its derivatives are, respectively:

eφ = φ − θr (6)

.
eφ =

.
φ −

.
θr (7)

..
eφ =

..
φ (8)

Substituting Equations (4), (5), (7), and (8) into (1) yields a dynamic error tracking
model of the vehicle in the natural coordinate system:

.
ed..
ed.
eφ..
eφ

 =


0 1 0 0

0
Cα f +Cαr

mVx
−Cα f +Cαr

m
aCα f −bCαr

mVx
0 0 0 1

0
aCα f −bCαr

IVx
− aCα f −bCαr

I
a2Cα f +b2Cαr

IVx




ed.
ed
eφ.
eφ

+


0

−Cα f
m

0

− aCα f
I

δ f +


0

aCα f −bCαr
mVx

− Vx

0
a2Cα f +b2Cαr

IVx


.
θr

Thus, the state space is obtained as

.
er = Aer + Bu + C

.
θr (9)
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Among them:

A =


0 1 0 0

0
Cα f +Cαr

mVx
−Cα f +Cαr

m
aCα f −bCαr

mVx
0 0 0 1

0
aCα f −bCαr

IVx
− aCα f −bCαr

I
a2Cα f +b2Cαr

IVx



B =


0

−Cα f
m

0

− aCα f
I

C =


0

aCα f −bCαr
mVx

− Vx

0
a2Cα f +b2Cαr

IVx


2.2. Continuous Error State Space

Consider that the optimal control problem can be defined abstractly as a function of
the objective to minimize the trajectory tracking error, subject to the vehicle dynamic model,
control input limitations, and environmental factor constraints, while taking into account
the phase constraints to ensure that the implementation of the control strategy does not
lead to unstable vehicle behavior.

Minimize = J(X(t), U(t)) (10)

Subject to:
Xt+1 = f (xt, ut) (11)

The discretization of Equation (8) starts by neglecting
.

Cθr, and integrating both sides
of the equation simultaneously:

∫ t+dt

t

.
erdt =

∫ t+dt

t
(Aer + Bu)dt (12)

Through the integral median theorem as well as Euler’s formula:

X(t + dt) = (I − Adt/2)(−1)(I + Adt/2)X(t) + BdtU(t) (13)

where I is the unit matrix and dt is the sampling time (s).
The state space equation tracking error of the discrete vehicle model can be expressed

as
Xk+1 = AXk + Buk (14)

where
A = (I − Adt/2)−1(I + Adt/2)

B = Bdt

3. Lateral Trajectory Tracking Controller Design

Based on the intelligent vehicle lateral tracking error model, the lateral controller
shown in Figure 2 is designed to suppress the distance error and heading error during the
tracking process and eliminate the state error between the current position of the intelligent
vehicle and the reference position.
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3.1. Design of an Optimal Controller

Using LQR in lateral trajectory tracking control can ensure vehicle driving stability
when the vehicle deviates from the equilibrium state. Therefore, LOR control in intelligent
driving can realize closed-loop optimal control through state feedback. Based on the
two-degree-of-freedom differential equations of the vehicle established above, the lateral
velocity and the transverse angular velocity are taken as the system’s state variables, and
the front wheel angle is taken as the input variable of the system. Based on the discrete
vehicle state space equation established by Equation (13) in the previous section, the cost
function of the LOR controller is constructed as

J = ∑+∞
k=0 (XT

k QXk + uT
k Ruk) (15)

where Xk is the state variable of the system, uk is the control quantity of the system, Q is
the weighting matrix of the state errors, and R is the weighting matrix of the control inputs.

The Lagrange multiplier method is used to solve Equation (14) for the minima under
the constraints of Equation (13):

J = ∑n−1
k=0 (XT

k QXk + uT
k Ruk) + XT

n QXn

+∑n−1
k=0 λT

k+1(AXk + Buk − Xk+1)
(16)

The simplification yields:

uk = −(R + BT PkB)
−1

BT Pk+1 Axk (17)

where Pk = Q + AT Pk(I + BR−1BT Pk)
−1 A is the Riccati equation and XK represents

the error.
The optimal sequence of feedback control is obtained by iterative solving, and the

control quantities of the LQR controller for intelligent driving vehicles are obtained as

uk = −kXk (18)

where k = (R + BT Pk+1B)−1BT Pk is the feedback gain of the LQR controller.

3.2. Anthropomorphic Prediction Module
3.2.1. Feedforward Control Design

At this point, the controller will have some steady state error, which requires the use
of the previously ignored

.
Cθr to calculate the amount of feedforward control.

.
err = (A − BK)err · C

.
θr (19)
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Introduce feedforward control and wait for the system to stabilize:

err = −(A − BK)−1(Bδa + C
.
θr) = 0 (20)

where δa is the amount of feedforward control.

err =


1
k1
(δa −

.
θr
Vx
(a + b − bk3 − mVx

2

a+b ( b
Cα f

+ a
Cαr

k3 − a
Cαr

)))

0

−
.
θr
Vx
(b + a

a+b
mVx

2

Cαr
)

0


When δa =

.
θr
Vx
(a + b − bk3 − mVx

2

a+b ( b
Cα f

+ a
Cαr

k3 − a
Cαr

), lateral displacement error is

equal to zero, where k =
[
k1 k2 k3 k4

]
is the feedback matrix.

As .
θr = kr · vx (21)

Equation (20) is brought into the feedforward control to obtain

δa = kr(a + b − bk3 −
mVx

2

a + b
(

b
Cα f

+
a

Cα f
k3 −

a
Cαr

)) (22)

kr(t) =
y′′ · x(t)(

1 + y′ · x(t)2
) 3

2
(23)

where kr is the curvature of the projection point.
In summary, the control volume of the whole system can be obtained as

U = −kerr + δa (24)

3.2.2. Anthropomorphic Prediction Module

As shown in Figure 3a,b, Snow is the current location of the driverless car, Spre is the
prediction point, and d is the lateral error between the current moment and the reference
trajectory. In the case of someone’s cab, the driver will predict the future path for efficient
and accurate trajectory tracking in time, the current moment, and the reference path error;
the driver will not turn the steering wheel, the future moments will be able to drive into
the reference trajectory, and the algorithm can only mechanically calculate the current
moment of the position and the matching point of the existence of the error, for the front
wheels of the corner control, but not predict the future reference path. Therefore, adding
the prediction module can solve the lag of the controller, offset the delay, and improve the
driving efficiency.

The prediction time is set to ts, replacing the information of the current point with the
information of the predicted point, as can be seen in Figure 3b:

xpre = x + (Vxts +
1
2

axt2
s ) cos φ − (Vyts +

1
2

ayt2
s ) sin φ (25)

ypre = y + (Vyts +
1
2

ayts
2) cos φ − (Vxts +

1
2

axt2
s ) sin φ (26)

φpre = φ +
.
φts (27)

vxpre = vx vypre = vy (28)

where ax is the longitudinal acceleration and ay is the lateral acceleration.
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where 𝑎௫ is the longitudinal acceleration and 𝑎௬ is the lateral acceleration. 
The main parameter values of the lateral controller are shown in Table 1: 
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Symbol Value Unite 
a 1015 mm 
b 1895 mm 

Figure 3. (a) Anthropomorphic prediction scene; (b) predicted position and actual position reference.

The main parameter values of the lateral controller are shown in Table 1:

Table 1. Main parameter values of the lateral controller.

Symbol Value Unite

a 1015 mm
b 1895 mm
m 1270 kg
I 1536.71 kg·m2

C∂ f 124,760 N/rad
C∂r 85,200 N/rad

3.3. Lateral Velocity Viewer Design

In trajectory tracking control research, it is impossible to observe the lateral velocity of
intelligent vehicles due to the lack of lateral velocity sensors. Thus, numerous lateral speed
observation algorithms are derived, and different algorithms have different advantages.
The Luenberger observer utilizes the pole configuration method to freely set the bandwidth
of the observer, which is widely used in engineering technology [36]. Firstly, the observation
error equation is established according to the vehicle two-degree-of-freedom model and the
Luenberger observer to analyze the source of uncertainty of the observation error; secondly,
by setting up the observation feedback gain L-matrix, to achieve error compensation and
optimize the observer bandwidth. The Luenberger observer with gain matrix L mainly
consists of the gain matrix L and the observer state-space equation is based on the vehicle’s
two degrees of freedom, as shown in Figure 4.
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where x is the state quantity of the CarSim vehicle model containing the transverse angu-
lar velocity and lateral velocity of the sensor outputs, A, B, C, and D are the matrices of 
state-space equation coefficients of the approximate two-degree-of-freedom model, and 
the inputs are 𝛿. 
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The observer error equation is established based on the state space equation of the 
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Luenberger Observer with Gain Matrix L

In this section, a closed-loop Luenberger observer is chosen for lateral velocity obser-
vations to improve the accuracy of the estimation of the parameters. A CarSim real-time
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vehicle model is used instead of an actual vehicle, and to analyze the characteristics of the
observer, a two-degree-of-freedom vehicle model will be used:{ .

x = Ax + Bu
y = Cx + Du

(29)

where x is the state quantity of the CarSim vehicle model containing the transverse angular
velocity and lateral velocity of the sensor outputs, A, B, C, and D are the matrices of
state-space equation coefficients of the approximate two-degree-of-freedom model, and the
inputs are δ.

Similarly, the state space equations of the observer are simplified to the same form as
for the two-degree-of-freedom model of the vehicle:{ .

x̃ = Ãx + B̃u + L(y − ỹ)
ỹ = C̃x + D̃u

(30)

The observer error equation is established based on the state space equation of the
Lomborg observer with CarSim:( .

x̃ − .
x
)
=
(

Ã − LC̃
)
(x̃ − x) + ∆Ax + ∆Bu + L∆Cx + L∆Du (31)

where ∆Ax + ∆Bu + L∆Cx + L∆Du is generated by parameter uncertainty. In order to
reduce the effect of parameter uncertainty and the amplification of the error by the observer,
the amount of error in each error matrix will be specifically analyzed in the following equation:

∆A =

 ∆
(Cα f +Cαr

mvx

)
∆
( aCα f −bCαr

mvx

)
∆
( aCα f −bCαr

Ivx

)
∆
(

a2Cα f +b2Cαr
Ivx

) ∆B =

[
−∆Cα f

m

− a∆Cα f
I

]

∆C =

[
0 0

∆
(Cα f +Cαr

mvx

)
∆
( aCα f −bCαr

mvx

) ] ∆D =

[
0

−∆Cα f
m

] (32)

Parameter uncertainty analysis does not analyze every parameter, but analyzes the
elements in the parameter error matrix and turns them into the comprehensive error of
many elements, which is convenient ffor the subsequent calculation and design. Split the
state space equation into lateral velocity and transverse pendulum angular velocity, and
specifically analyze the role of different elements of the feedback matrix L in the two states.
According to the analysis, the following can be obtained.

Conclusion 1: When L12 = 0.5 ∼ 1.0, where L12 is the first row and second column
elements of the L matrix, which can minimize the error caused by the uncertainty of the
parameters, the specific analysis process is as follows:

.
ṽy −

.
vy = (1 − l12)

Cα f +Cαr
mvx

(ṽy − vy)

+
( aCα f −bCαr

mvx
(1 − l12)− vx − l11

)
(φ̃ − φ)

+∆
(Cα f +Cαr

mvx

)
vy + ∆

( aCα f −bCαr
mvx

)
φ +

(
−∆Cα f

m

)
u

−l12∆
(Cα f +Cαr

mvx

)
vy − l12∆

( aCα f −bCαr
mvx

)
r − l12

(
−∆Cα f

m

)
u

(33)

By analyzing the error equation for lateral velocity separately, the above setting of the
magnitude of L12 affects the magnitude of the lateral velocity error, which can play the role
of feedforward compensation and also reduces the effect of parameter uncertainty in the
lateral velocity error equation.
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Conclusion 2: When L22 = 0, where L22 is the second row and second column element
of the L matrix, which can reduce the error caused by parameter uncertainty, the specific
analysis process is as follows:

.
φ̃ − .

φ =
( aCα f −bCαr

Ivx
− l22

Cα f +Cαr
mvx

)
(ṽy − vy)

+

(
a2Cα f +b2Cαr

Ivx
− l22

aCα f −bCαr
mvx

− l21

)
(r̃ − r)

+∆
( aCα f −bCαr

Ivx

)
vy + ∆

(
a2Cα f +b2Cαr

Ivx

)
r + ∆

(
− a∆Cα f

I

)
u

−l22∆
(Cα f +Cαr

mvx

)
Vy − l22∆

( aCα f −bCαr
mvx

)
r − l22

(
−∆Cα f

m

)
u

(34)

By analyzing the error equation for the transverse pendulum angular velocity sepa-
rately, the size of L22 mentioned above ensures the convergence speed of the transverse
pendulum angular velocity. It achieves a rapid reduction in error.

4. Longitudinal Controller Design

To ensure that the vehicle can travel along the target path, longitudinal tracking control
and lateral control are required. In the longitudinal tracking control, to meet the speed
tracking conditions, this paper will add longitudinal position error for PID control to the
speed PID control so that the position and longitudinal speed are in the ideal range.

ev = vp −
.
s (35)

Vp =
√

.
xr +

.
yr (36)

ap =
√

..
xr +

..
yr (37)

.
s =

Vx cos(φ − θr)− Vy sin(φ − θr)

1 − κred
(38)

where ev is the longitudinal error (m);
.
s is the longitudinal velocity (m/s); ap is the desired

acceleration (m/s2).; and xr, yr is the planning point.
The longitudinal tracking control framework diagram is shown in Figure 5:
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For the setting of the above two controller parameters, the position of the outer loop
controller plays a role in compensating for the speed controller, so the coefficient should
not be too large; among the speed controllers, the speed change should be kept continuous,
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and the change is not easy to be too large, so the coefficient size of the speed controller can
be set moderately. The optimal controller parameters can be obtained through repeated
parameter adjustments.

Combining the above transverse and longitudinal controls, the trajectory tracking
controller is designed as shown in Figure 6.
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pared to the other two control methods, and the accuracy is more accurate and more sat-
isfied with the expected value. Figure 8c shows the traverse angle error curve. The traverse 
angle error at the peak of the LQR controller is 0.030 rad/s, the traverse angle error at the 
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peak of the predictive+feedforward LQR controller is 0.025 rad/s. Through comparative 
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5. Simulation Verification
5.1. Software Simulation Verification and Analysis
5.1.1. Experimental Verification of Trajectory Tracking Simulation

To verify the performance of the designed tracking algorithm, the dynamics model of
the vehicle is modeled using Carsim2019.0 software, and the control system is simulated
using Matlab/Simulink2021b software for joint simulation of the control system integra-
tion and vehicle dynamics model. Three horizontal control strategies using traditional
linear quadratic regulator (LQR), feedforward LQR, and prediction+feedforward LQR as
comparisons, and two vertical control strategies using traditional PID and double PID as
comparisons are selected, aiming to demonstrate the effectiveness of the proposed anthropo-
morphic look-ahead reference path and longitudinal speed closed-loop control strategies in
the enhancement of the trajectory tracking accuracy and stability of the intelligent vehicles
through the comparisons of different methods.

The path in Figure 7, Case 1, is used as the reference path for simulation experiments
to verify.
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In Figure 7, the dashed line indicates the distance between the vehicle and the vehicle
in front of it. The green line indicates the reference path of the vehicle. A is the starting
point of the vehicle and B is the target point.

Figure 8 shows the trajectory tracking simulation results for Case 1. Figure 8a shows
the longitudinal displacement curve. As shown in the figure, both the PID controller and
double-PID controller can track the longitudinal displacement well, but it can be seen that
the longitudinal tracking error of the vehicle with double-PID control is smaller and more
accurate. Figure 8b shows the transverse displacement curve. As shown in the figure,
the LQR controller, feedforward LQR controller, and prediction + feedforward LQR con-
troller can track the transverse displacement very well, but it can be seen that the vehicle
transverse trajectory tracking error of the prediction + feedforward LQR control is smaller
compared to the other two control methods, and the accuracy is more accurate and more
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satisfied with the expected value. Figure 8c shows the traverse angle error curve. The
traverse angle error at the peak of the LQR controller is 0.030 rad/s, the traverse angle error
at the peak of the feedforward LQR controller is 0.029 rad/s, and the traverse angle error at
the peak of the predictive+feedforward LQR controller is 0.025 rad/s. Through comparative
analysis, the predictive+feedforward controller has a 16.7% reduction in error compared with
that of the LQR controller, and the predictive+feedforward controller has a 16.7% reduction
in error compared with that of the LQR controller. By comparison, the error of the predic-
tion+feedforward controller is reduced by 16.7% and the error of the prediction+feedforward
controller is reduced by 13.8% compared with the feedforward LQR controller, and the error in
the whole tracking process is less than 0.03 rad/s. The error meets the theoretical requirement
and satisfies the stability of the vehicle. Figure 8d shows the lateral error curve: the lateral
displacement error at the peak of the LQR controller is 0.135 m, the maximum lateral dis-
placement error at the peak of the feedforward LQR controller is 0.124, and the maximum
lateral displacement error at the peak of the prediction+feedforward LQR controller is
0.078 m. The prediction+feedforward LQR controller decreases the error by 42.2% compared
to the LQR controller, and the prediction+feedforward LQR controller decreases the error
by 13.8% compared to the LQR controller, and the prediction+feedforward LQR controller
decreases the error by 13.8% compared to the LQR controller. Prediction+feedforward LQR
controller reduces the error by 37.1% compared to the feedforward LQR controller, and
the error is less than 0.1 m during the whole tracking process, which not only ensures the
smoothness of the vehicle traveling but also ensures sufficient tracking accuracy.
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The path in Figure 9, Case 2, is taken as the reference path for simulation experiments
to verify.
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Figure 9. Reference path for working condition 2.

In Figure 9, the black square indicates the obstacles on the path. The green line
indicates the reference path of the vehicle.

Figure 9 shows the trajectory tracking simulation results for Case 2. In Figure 10a, the
red solid line is the actual lateral position, and the dashed line indicates the desired lateral
position, from which it can be seen that the lateral position error is within a reasonable
range, and continuous obstacle avoidance can be performed. In Figure 10b, the solid line is
the actual longitudinal speed of the vehicle, and the dashed line is the desired longitudinal
speed, from which it can be seen that its longitudinal speed can also track up the desired
speed better. Figure 10c shows the traverse angle error curve. The traverse angle error
at the peak of the LQR controller is 0.033 rad/s, the traverse angle error at the peak of
the feedforward LQR controller is 0.029 rad/s, and the traverse angle error at the peak
of the prediction+feedforward LQR controller is 0.028 rad/s. Through the comparative
analysis, the prediction+feedforward controller reduces 15.2% of the traverse angle error
compared with that of the LQR controller, and the prediction+feedforward controller re-
duces 15.2% of the error compared with that of the LQR controller. reduced by 15.2%,
and the error of the prediction+feedforward controller is reduced by 3.5% compared to
that of the feedforward LQR controller, and the error in the whole tracking process is less
than 0.04 rad/s. It meets the theoretical requirement error and satisfies the stability of the
vehicle. Figure 10d shows the lateral error curve: the lateral displacement error at the peak
of the LQR controller is 0.148 m, the maximum lateral displacement error at the peak of the
feedforward LQR controller is 0.147, the maximum lateral displacement error at the peak
of the prediction+feedforward LQR controller is 0.098 m, and the prediction+feedforward
LQR controller reduces the error by 38.0% compared to the LQR controller, the predic-
tion+feedforward LQR controller reduces the error by 3.5% compared to the LQR controller,
and the prediction+feedforward LQR controller reduces the error by 3.5% compared to
the LQR controller. feedforward LQR controller reduces the error by 33.3% compared to
the feedforward LQR controller, and the error is less than 0.01 m throughout the tracking
process, which not only ensures the smoothness of the vehicle traveling but also ensures
sufficient tracking accuracy.
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Figure 10. Trajectory tracking curve for condition 2. (a) Comparison of horizontal line displacements;
(b) longitudinal velocity comparison diagram; (c) transverse pendulum angle error; (d) lateral error.

5.1.2. Experimental Validation of Lateral Observer Simulation

To verify the effectiveness of the observer, CarSim and MATLAB/Simulink are utilized
for joint simulation to set different steering frequencies, and the estimation algorithm of
lateral velocity has a strong tracking performance. The simulation results are plotted in
Figure 11.
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As shown in Figure 10a,b, the accuracy of the lateral velocity observation algorithm
is verified under different steering frequencies. It can be seen from the simulation graphs
that when the steering wheel is rotated faster, the lateral velocity performance decreases
slightly. However, it is also within a reasonable range. From the above simulation results, it
can be seen that the Lomburg observer with gain matrix L can observe the lateral velocity
more accurately.

5.2. Hardware-in-the-Loop Simulation Verification and Analysis

Figure 12 shows the schematic diagram of the HIL test in this section. In this HIL
system, the vehicle-road system model of CarSim2019.0 and the obstacle avoidance lane
change trajectory tracking algorithm are embedded into the PXI real-time system through
the upper computer software Veristad2011, which calculates the target steering angle and
target acceleration/deceleration signals and sends the control commands to the actuator
controller through the CAN bus. Then, the column angle and rotational speed data of the
steering system and the pressure data of the brake wheel cylinder are collected by the angle
sensor and pressure sensor and sent to the PXI real-time system to realize the closed loop.
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The trajectory tracking algorithm was verified and analyzed using a steer-by-wire
testbed, as shown in Figure 13.
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From the HIL bench test, it can be seen that Figure 13 transverse displacement com-
pared to the software simulation error will become more extensive but also within a
reasonable range; the reason for the more significant error may include the controller and
the communication of the real-time poor and other situations. The longitudinal and lateral
displacements are more similar, but the error is also to meet its requirements. (c) The
pendulum angle data collected through the test is closer to the pendulum angle obtained
from the simulation, and the maximum error is within 0.002 rad. (d) As shown in (d),
the maximum longitudinal position error is about 0.24 m, which also meets the tracking
requirements in the longitudinal control.

6. Conclusions

In this paper, a trajectory tracking control method with anthropomorphic horizontal
and vertical joint control is studied for intelligent vehicles. To address the problem that most
of the current algorithms in the trajectory tracking process require too much computational
power from the controller, which makes it difficult to ensure the real-time sensitivity and
stability of the control and thus affects the accuracy and stability of the trajectory tracking.
Firstly, based on the dynamic tracking error model of the vehicle, an anthropomorphic
prediction model of the intelligent vehicle is designed to be combined with the optimal
controller for the transverse tracking control algorithm. Secondly, to improve the accuracy
of vehicle longitudinal speed tracking, a vehicle speed tracking controller is designed to
incorporate longitudinal position error control into speed control. Aiming at the problem
that it is difficult to observe the vehicle lateral speed, the vehicle lateral speed observation
algorithm is designed according to the vehicle two-degree-of-freedom model and the
Luenberger observer to observe the vehicle lateral speed. Finally, two typical working
conditions are selected for joint simulation on CarSim2019.0 and MatLab/Simulink2021b
software, as well as hardware-in-the-loop testing on a semi-physical experimental platform.
The simulation and test results show that the lateral tracking control algorithm designed in
this paper can effectively compensate for the system delay and improve the accuracy of the
track lateral trail tracking. The speed tracking controller designed in this paper can realize
a more accurate and stable speed tracking effect, improve the driving safety and stability of
intelligent vehicles in complex road environments, and also provide a new way of thinking
for the design of the control system of intelligent vehicles in the future.

This study also has some limitations. The proposed algorithm in the current study has
only been verified by software simulation and hardware in-loop testing. The actual effec-
tiveness of the algorithm has not been verified on real vehicles. Therefore, the effectiveness
of the algorithm can be further verified for application on real vehicles in future work.
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