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Abstract: The Electric Bus Dynamic Wireless Charging (EB-DWC) system is a bus charging system
that enables electric buses to receive power wirelessly from ground-based electromagnetic induction
devices. In this system, how to optimally configure the charging infrastructures while considering
the unpredictable nature of bus movement is a great challenge. This paper presents an optimization
problem for an EB-DWC system in urban settings, addressing stochastic elements inherent in the
vehicle speed, initial charging state, and dwell time at bus stops. We formulate a stochastic planning
problem for the EB-DWC system by integrating these uncertainties and apply Monte Carlo sam-
pling techniques to effectively solve this problem. The proposed method can improve the system’s
robustness effectively.

Keywords: dynamic wireless charging; electric vehicle; stochastic planning

1. Introduction

The wireless charging of an electric vehicle (EV) is performed using wireless power
transfer (WPT) technology, which does not require any physical contact in the process
of transferring electric energy [1]. Wireless charging EV systems can be categorized into
stationary and dynamic wireless charging systems [2]. Stationary wireless charging systems
are operated to transfer energy when the EV is parked over fixed couplers, e.g., as in [3].
Dynamic wireless charging (DWC) systems involve the use of electromagnetic induction
devices to wirelessly transmit electrical energy to the EVs while they are in motion [4,5].
The application of DWC technology enhances the convenience of EV charging and extends
the EV’s range [6]. Additionally, compared to conventional plug-in charging, DWC can
reduce the required battery capacity of the EV for long-distance travel, therefore reducing
the on-board battery costs of electric buses. Therefore, many applications of DWC exist
across different fields, for instance public transit systems [7], logistics and delivery [6],
autonomous vehicles [2], underwater autonomous vehicles [8], etc.

The Electric Bus Dynamic Wireless Charging (EB-DWC) system [7] is a bus charging
system that operates on the principle of DWC, enabling electric buses to receive power
wirelessly from ground-based electromagnetic induction devices while driving or parked,
eliminating the need for traditional plug-in charging. Developed by a research team at the
Korea Advanced Institute of Science and Technology (KAIST) [7,9], EB-DWC has undergone
pilot implementations in public transportation systems in some cities. The advancement
of EB-DWC represents an innovative approach to electric vehicle charging, promising a
more convenient and efficient charging method, which could contribute to the widespread
adoption and usage of electric vehicles in the future [10].
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The charging infrastructure allocation problem is one of the most actively investigated
topics for the wireless charging of EVs. For EB-DWC systems, the charging infrastructure
allocation problem seeks an optimal location for the charging infrastructure on a given
path of the vehicles, which is called the microscopic allocation problem [1]. In addition,
the macro-allocation model offers a broader perspective, focusing on scientific insights
for wireless charging of EVs and assessing how their integration affects the overall traffic
behavior in larger transit systems. The routing of passenger vehicles or commercial trucks
is typically dealt with, which have greater flexibility in choosing their routes [2,11,12].

Ref. [13] is the first work on the microscopic allocation problem, and it focused on the
distribution of charging infrastructure and the optimization of the battery size for EVs. It
utilized a continuous spatial decision space to allocate charging lanes efficiently, balancing
battery capacity and the extent of charging infrastructure required. Then, [14] discretized
the route into multiple small segments, turning the optimization approach proposed by Ko
and Jang (2013) into a discrete problem. Specifically, they proposed an optimization-based
approach aimed at identifying the most efficient distribution of wireless charging lanes
along a designated route within a closed environment, such as the online electric vehicle
(OLEV) system at KAIST, which operates under regulated velocities with minimal traffic
interference. Ref. [5] incorporated battery life into the economic analysis, acknowledging
the cost implications associated with the frequency and depth of battery charging cycles.
Their findings underscored the economic efficiency of installing numerous shorter power
tracks as opposed to fewer, longer ones, thus highlighting the critical influence of battery
life on long-term infrastructure planning.

The initial focus on single-route transit systems [5,13,14] gradually expanded to en-
compass more complex, multi-route scenarios [15–17], acknowledging the realities of urban
transit networks where routes often intersect. Studies have [18,19] delved into these com-
plexities, exploring optimization models that consider shared route segments, thereby
enhancing the efficiency of power track allocation. Particularly noteworthy is the intro-
duction of robust optimization techniques by [19], which account for the uncertainties
inherent in energy consumption and travel time, marking a significant leap forward in the
strategic planning of EV charging infrastructure. This burgeoning field of research not only
highlights the technical and economic considerations involved in the deployment of EV
charging systems, but also underscores the critical role of optimization and robust planning
in achieving efficient, sustainable urban transit solutions.

However, in all the above-mentioned research, the following assumption were made [2,20]:

1. Each bus line within the system follows a predetermined route.
2. A base station is designated for each bus line, serving as the starting and ending

points for the buses’ operational loops.
3. After completing a service loop, a bus will be fully recharged at its base station before

the next loop.
4. The velocity at which buses travel and the passenger traffic for boarding and alighting

at each station are pre-determined.

These four assumptions introduce a gap between the theoretical study and the real-
world operation of EB-DWC systems. Although [19] has somewhat relaxed the last as-
sumption above, a significant disparity still exists between the modeled scenarios and
the actual system dynamics. In real-world applications, vehicles may not align precisely
with the predicted or predefined charging spots, deviating from the expected speed or
parking configurations due to diverse factors like driver behavior, traffic conditions, or
unforeseen circumstances. Furthermore, in real systems, it cannot be guaranteed that buses
will be fully charged before every departure. For instance, delays in arrival times lead
to insufficient charging time. Consequently, when transitioning these optimized models
to real-world applications, the lack of consideration for vehicle randomness can lead to
sub-optimal performance.

This study addresses the charging-infrastructure-optimization challenge of an EB-
DWC system in urban environments by considering the stochastic nature of variables
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like bus speed, initial charging state, and bus stop dwell times. First, we formulate an
optimization model that integrates these random factors, which focuses on maximizing the
allocation of charging resources, scheduling charging intervals, and planning routes. Then,
by employing the Monte Carlo sampling method, our approach iteratively evaluates the
system’s performance under various stochastic conditions. This work provides a promising
strategy to enhance the EB-DWC bus system’s functionality in real-world urban scenar-
ios, ensuring optimized charging and reliable services for passengers while considering
unpredictable environmental factors.

2. Model Description
2.1. General Model

In the existing work, the EB-DWC system operates as follows: Several buses operate
on a predefined route at constant speeds. The batteries are discharged at a specific rate
during their operation. Additionally, when the EBs pass through sections equipped with
charging infrastructure, they receive a certain charging power. It is important to note the
assumption that the charging and discharging power of the vehicles remain constant, and
the amount of energy exchanged is solely dependent on time. Furthermore, due to the
buses’ constant speed, the charging and discharging times are only related to the location
and length of the charging cables. Moreover, when the buses arrive at the primary station,
they would be fully charged. The problem of the optimization of the EB-DWC system
operating in a closed environment is formulated as follows [14]:

Minimize Cable Cost + Transmitter Cost + Battery Cost

Subject to
All online electric vehicles (OLEVs) must complete their services
without depleting the battery’s energy during one working day

Decision Variables: 1. Battery Capacity

2. Power Track Location.

(1)

The parameters referenced in Equation (1) encompass a wide range of factors, includ-
ing, but not limited to: route length, number of buses, velocity profile, wireless charging
power, the initial state of charge (SOC) of the buses, cable unit cost, battery unit cost, the
power transmitter’s unit cost. The decision variables include buses’ battery capacity and
power track locations. It is worth noting that, in the current model, both the velocity profile
and the initial SOC of the buses are treated as deterministic, which may not accurately
reflect real-world scenarios.

In this paper, we propose a stochastic optimization approach for electric bus wireless
charging systems based on the general model in Equation (1), and considering the stochastic
nature of vehicle speed profiles and initial battery charge levels. We provide a detailed
exposition of our system model in this section.

2.2. System Definition

First, we present the basic model to conceptualize the system of EB-DWC. For ease of
reference, comprehensive lists of symbols used in the model are provided in
Tables 1–3. We consider a total of K buses circulate on a predetermined route, as illustrated
in Figure 1. The route is divided into N segments, as shown in Figure 1 by the short
dotted lines. The length of segments, xn, can be different and predefined by the system
operator. Specifically, a segment in the model is defined as the smallest unit for installing
charging cables, such as dividing each meter of the route into individual segments. The
varying segment lengths takes into account the different road conditions. For instance, if a
particular stretch of road is unsuitable for installing charging cables, that entire stretch is
designated as a single segment.
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Table 1. System parameters.

Symbol Description Unit

K Number of buses -
k Index of bus -
K [1, 2, · · · , K], set of all buses -
N Number of segments -
n Index of segment -
D [1, 2, · · · , 97], set of all bus departures in a working day -
d Index of bus departure -
S [1, 2, · · · , N], set of all segments -
Sr Set of segments containing regular stations -
S+ Segments where charging cables can be installed -
S− Segments that are not allowed to install DWC

infrastructures
-

Mk Number of bus k’s departures in a working day -
Dk Set of departures of bus k -
dk

m m-th departure of bus k in the working day -
xn Length of segment n Meters (m)
η Charging/discharging efficiency of EV battery -

Pmax Upper limit of wireless charging power kWh/s

Table 2. Random variables and intermediate variables.

Symbol Description Unit

vd(n) Velocity of bus for d-th departure on segment n m/s
v̄t Expected speed of bus for the d-th departure m/s

△v(n) Stochastic error of bus speed on segment n m/s
σv Standard variance of speed error m/s

Ts(n) Dwell time at station located in segment n Seconds (s)
T̄s(n) Predefined dwell time on the regular station located in

segment n
s

△Ts(n) Stochastic error of dwell time on segment n s
σtx Standard variance of dwell time s

Sock
0 Initial SOC of bus k -

soc0 Lower bound of initial SOC -
soc0 Upper bound of initial SOC -

Dm
k (n) Energy received by the battery on segment n Kilowatt hours

(kWh)
Sm

k (n) Energy requirement on segment n kWh
P(v) Instantaneous power required to maintain a constant

speed v
Watts (W)

Ω Random variable space -

Along this route, there are multiple stations, including a primary one referred to as
the base station. This base station serves as both the starting point and the termination
point of each round trip. It is also the park location when the vehicles are not in operation.
To simplify our description, we call all stations except the base station as regular stations.
Additionally, during the service time, the bus will make a stop at each regular station for
ts(n) seconds for n ∈ Sr.
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Table 3. Decision variables.

Symbol Description Unit

ln Installation decision variable of inductive cable on
segment n

-

zn Installation decision variable of power inverter on
segment n

-

Lcable Total length of inductive cable installed Meters (m)
Ninv Total number of power inverters -

B Battery capacity Kilowatt hours
(kWh)

pd(n) Wireless charging power on segment n kWh/s
Pch Set of all charging power decisions in a day -
D Decision variable space -

Figure 1. Single-route DWC-EBs.

We assume that the public bus system operates for 16 h each day, from 6:00 to 22:00,
with a bus frequency of 10 min. This means that there are a total of 97 bus departures
during the working hours of a day. Assume that, at the base station, all buses are ser-
viced in a first-come, first-served (FIFS) manner. As a result, we can obtain the schedule
of every bus. Furthermore, there will be one and only one bus in a departure. Then,
Equation (2) and (3) hold.

∑
k∈K

Mk = 97 (2)

Dk ⋂ Dj = ∅, ∀j ̸= k and j ∈ K, k ∈ K. (3)

2.3. Power Transmitter Installation Model

As shown in Figure 2, when there are multiple consecutive segments installed with
power cables, the first of these segments will be equipped with a power inverter. These con-
secutively installed cable segments form a cluster. In this scenario, the clustered segments
can be interpreted as a single power transmitter.



World Electr. Veh. J. 2024, 15, 137 6 of 14

Figure 2. Installation of power transmitter.

Denote ln as the installation decision variable of the inductive cable on segment n.

ln =

{
1 inductive cable is installed at segment n
0 otherwise.

(4)

Denote zn as the installation decision variable of the power inverter on segment n.

zn =

{
1 if ln = 1 and segment n is the first segment of the cluster
0 otherwise.

(5)

Moreover, the model incorporates constraints to reflect these installation limitations,
ensuring that no charging cables are assigned to segments deemed unsuitable.

ln = 0, ∀n ∈ S− (6)

Then, the total length of the inductive cable installed in the DWC-EV bus system is
Lcable = ∑n∈N ln ∗ Xn and the total number of power inverters is Ninv = ∑n∈N zn.

2.4. Stochastic Model

In contrast to the previously mentioned general model, this study introduces
non-deterministic elements into the model. Specifically, we account for the variability in
the velocity, the initial SOC of each EV bus, and the stopping time at regular stations. This
incorporation of uncertainty aligns more closely with the real-world dynamics of transportation
systems.

2.4.1. Velocity Model

In prior research, the velocity profiles of these buses during transit have been prede-
termined. However, this assumption often does not hold true in real-world public transit
systems, primarily due to two key factors. First, the variability in human driving behaviors
makes it challenging for drivers to adhere to preset speeds at all times. Second, the velocity
of the buses is frequently influenced by the actions of other vehicles and pedestrians, which
adds an unpredictable element to their speed patterns. Then, we model the velocity of the
buses for its d-th departure on segment n as Equation (7).

vd(n) = v̄d +△v(n) (7)

To model the error, we employ a normal distribution with a mean of 0 and a variance
of σ2

v as in Equation (8).
△v(n) ∼ N (0, σ2

v ). (8)

Furthermore, we utilize a time-of-day (TOD) model to characterize the average speed
of the vehicles, v̄d, as shown in Figure 3. Specifically, we divide the daily operational hours
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into peak hours, off-peak hours, and regular hours, each with its own designated average
speed, as shown in Equation (9).

v̄d =


6.1 m/s if d ∈ [1, 10)

⋃
[86, 97], off-peak

4.7 m/s if d ∈ [10, 22)
⋃
[64, 76), peak

5.3 m/s otherwise, regular.

(9)

It is worth noting that the TOD model defines the expected speed for the entire journey,
from when a bus departs from the base station until it returns to the base station.

Figure 3. TOD velocity profile.

2.4.2. Dwell Time Model

In the DWC-EV bus system, there is typically a prescribed duration for each station
stop, such as 10 s per stop. However, in actual operations, due to factors like passenger
flow, the stop duration often becomes an uncertain variable. Therefore, in this paper, we
model the stop duration as follows:

Ts(n) = T̄s(n) +△Ts(n), ∀n ∈ Sr, (10)

where T̄s(n) is the predefined dwell time and △Ts(n) ∼ N (0, σ2
ts) is the error of the dwell

time, which follows a normal distribution, a mean of 0, and a variance of σ2
ts.

2.4.3. Initial SOC Model

In the existing work, it is usually assumed that, before every trip, the EV battery is fully
charged. Taking into account the electricity pressure at the base station or the possibility of
unforeseen circumstances that may prevent each bus from starting with a 100% SOC, we
model the initial SOC of each bus at the beginning of the working day as a random variable
uniformly distributed between soc0 and soc0 as in (11):

Sock
0 ∼ U(soc0, soc0) (11)

Generally, we set soc0 = 0.5 and soc0 = 1.
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Differing from [14], we assume that all buses can only be charged at the base station
at the end of each working day. Throughout the working day, there is no provision for
bus charging at the base station. This assumption holds when considering the minimal
construction cost for the primary station. Furthermore, our model can be readily extended
to scenarios where buses can be charged at the primary station during the working day.

Define Socdk
m
(n) as the SOC of bus k on its m-th departure at the start point of segment

n. Specifically, Socdk
1
(1) defines the initial SOC of bus k at the beginning of its’ first trip, as

shown in (12):
Socdk

1
(1) = Sock

0. (12)

Socdk
1
(1) defines the SOC of bus k on its first departure at the base station, which is

equivalent to the ending SOC of its preceding trip, as shown in (13).

Socdk
m
(1) = Socdk

m−1
(N)− Sm−1

k (N) + Dm−1
k (N), (13)

where Sm−1
k (N) is the energy consumed on segment N of bus k during its m-th departure

and Dm−1
k (N) is the energy charged on segment N of bus k during the same departure. The

model of Dm−1
k (N) and Sm−1

k (N) will be introduced in the next section.

2.5. Energy Model

We assume that all the batteries equipped on the buses are the same, and the value of
the battery capacity, B, is modeled as a decision variable in the model. The SOC of bus k on
its m-th departure dynamics is as follows:

Socdk
m
(n + 1) = Socdk

m
(n) +

Dm
k (n)− Sm

k (n)
B

, ∀n >= 1, (14)

where Dm−1
k (n) is the energy received by the battery and Sm

k (n) is the energy requirement
on segment n, respectively.

As shown in Figure 4, when a bus moves in segment n on the m-th departure in a
day, its velocity vd(n) is modeled as Equation (9). As a common assumption, vd(n) keeps
unchanged in the segment. Therefore, the time on the segment is shown in Equation (15).

td(n) =


Xn

vd(n) + ts(n) if n ∈ Sr
Xn

vd(n) if n ∈ S − Sr.
(15)

Figure 4. Vehicle moves in segment n.
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Suppose the charging power is constant during the traveling on segment n − 1 and
denoted as pd(n − 1). Pch = {pd(n),∀d ∈ D,∀n ∈ N} is the set of all charging power
decisions in a day. Then, the amount of energy charged in the battery can be calculated as (16):

Dm
k (n − 1) = ηpd(n − 1)td(n − 1)l(n − 1), (16)

where η is the charging efficiency and pd(n − 1) should be no more than the power limit of
the power transmitter Pmax, as in (17):

0 ≤ pd(n − 1) ≤ Pmax (17)

According to [21], the EV’s required tractive effort F is formulated as:

F = (ma + kv2 + frlmg + mgsinθ), (18)

where m is vehicle mass, a is acceleration, k is the aerodynamic resistance constant, v is the
vehicle speed, frl is the rolling resistance constant, g = 9.8 is the gravity acceleration, and θ
is the roadway grade.

Then, the EV’s instantaneous power can be estimated by:

P =
rR2

K2 F2 + vF + mav, (19)

where r represents the resistance of the conductor, R is the radius of the tire, K is a constant
representing the product of the armature constant, and s the magnetic flux.

Without loss of generality, we assume all the EVs keep a constant speed in every
segment and the road is flat. Therefore, θ = 0 and a = 0. Then, we can simplify the
relationship between P and v as:

P = Cv4 + kv3 + frlmgv, (20)

where C = rR2

K2 k2. We substitute the parameters in (20) with real values from [21] and
set m = 180,000. In this study, we set the value of m by the average mass of common EBs,
omitting the impact of the battery weight on the overall vehicle mass. In future work, we
plan to consider more complex mass models.

P(v) = 0.000457v4 + 1.3v3 + 0.745v2 + 1058.4V + 303. (21)

Then, we can calculate the unit energy consumption in one segment n as:

Sm
k (n − 1) =

Xn−1

vd(n − 1)
P(vd(n − 1))

= Xn−1(0.000457v3 + 1.3v2 + 0.745v + 1058.4 + 303/v), v = vd(n − 1)
(22)

In order to simplify the model, we linearize function Sm
k (n − 1) for vd(n) ∈ [4.17, 6.94]

as follows:
Sm

k (n − 1) = Xn−1(1.134vd(n − 1) + 0.004). (23)

The unit of Sm
k (n − 1) is kw · s, and it is observed that the higher vehicle speed leads higher

energy consumption per kilometer.
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3. Problem Formulation

The optimization problem determines the location to install the power transmitters,
the battery capacity of the vehicles, and the wireless charging power as follows:

Minimize: E{CcableLcable + CinvNinv + Cbat ∗ K ∗ B} (24)

Subject to: prob({Socmin ≤ Socd(n) ≤ Socmax}) ≥ α, ∀d and ∀n (25)

(6), (12), (13), (14), (17)

Random Variables Space: Ω = {△v(n),△Ts(n), Sock
0}

Decision Variables Space: D = {{ln, ∀n ∈ N}, Pch, B}.

The unit costs of the inductive cable and the inverter are denoted by ccable and cinv,
respectively. Cbat is the unit cost of the EV bus battery. The requirements on the SOC are
formulated as a probabilistic constraint as in (25). This indicates that the probability of the
SOC of a bus does not meet its upper and lower bounds of α or more.

4. Model Reformulation and Solution

The DWC-EV-system-optimization problem is an NP-hard problem. As an initial step
towards simplifying this issue, it has been observed that the upper bound constraint of the
SOC depends solely on the variable Pch, which has no effect on the objective function. This
constraint can be effectively satisfied through the following strategy, which can reduce the
computational complexity of the original problem.

pd
t (n) =

{
Pmax(n) if Socd

t (n) <= Socmax

0 otherwise.
(26)

In (26), it is important to clarify that pd
t (n) represents the instantaneous charging power

of the vehicle at any given moment t on segment n. (26) signifies real-time monitoring of the
vehicle’s SOC. Charging is halted immediately once the SOC exceeds Socmax. Otherwise,
the vehicle is charged at a power rate of Pmax(n).

Consequently, the stochastic constraint (17) turns into: prob(Socd(n) ≥ Socmin) ≥ α, ∀d.
It includes multidimensional numerical integration, and it is difficult to describe it directly
in a modeling language or apply optimization software. To effectively address this issue,
we first discretize the probability density of random variables by the Monte Carlo Sampling
Method (MCSM) [22] and obtain their discrete realizations ω and probabilities πω . Then, we
show the formulation by the following mixed 0-1 plan with reference to the method of [23]:

Minimize: CcableLcable + CinvNinv + Cbat ∗ K ∗ B (27)

Subject to: Socmin + Socd(n, ω) ∗ yn
d(ω) ≥ Socd(n), ∀d and ∀n

∑
ω∈Ω

πωyn
d(ω) ≤ 1 − α

yn
d(ω) ∈ {0, 1}

(6), (12), (13), (14), (26).

By solving (27), we can obtain the optimal installation of the power transmitters and
battery sizing of the DWC-EV bus system. Furthermore, (27) is a typical Mixed-Integer
Programming (MIP) problem, which can be solved by existing integer programming
algorithms, such as branch-and-bound. Due to space limitation, we omit the details here.

5. Numerical Results

In this section, we present the numerical results obtained from our computational
simulations and experiments conducted for evaluating the DWC-EV bus system in urban
environments. The settings of the system are as in Table 4.
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Table 4. The value of system variables.

Ccable The unit cost of cable (USD/m) 60
Cinv The unit cost of inverter (USD) 5000

Cbattery The battery cost per unit capacity (USD/kwh) 400
k No of EV buses in the system 5
N No. of segments 560
Sr The segments where there is a regular station [100, 200, 300, 400, 500]
S− No segment that has forbidden cable installation ∅
x Length of every segment (km) 0.0005

Socmin The minimal requirement on SOC 0.2
Socmax The maximum requirement on SOC 0.8

η The charging efficiency [24] 0.9
Pmax The maximum wireless charging power (kw) 100

For the random variable, we set the following parameters: σv = 5, σts = 0.0001,
soc0 = 0.5, and soc0 = 1. We then use MCSM with 10,000 samples and 20 bins to discretize
the probability distribution of △v, △Ts and Sock

0. An example of the discretization results
are shown in Figure 5.

Figure 5. The examples of the probability distribution discretization of △v, △Ts, and Sock
0.

Then, we use CPLEX as the solver to solve (27) and obtain the results of power
transmitter placement, as shown in Table 5.

Table 5. Optimal installation of power transmitters in the DWC-EV bus system.

Battery Capacity 3 kwh

No. of power transmitters 6

1st transmitter 330–700 m
2nd transmitter 930–1000 m
3rd transmitter 1400–1500 m
4th transmitter 1850–2000 m
5th transmitter 2380–2500 m

total length of power cable 810 m
total cost USD 79,600

The results indicate that five power transmitters are needed to meet the requirements
and the total cable length is 835 m, which covers almost 30% of the total route. Furthermore,
we can see that all the segments with regular stations are installed with power transmitters,
which is an efficient way to install the cables. Because at the regular stations, the buses
will be charged with more energy. Compared with the result in [14], the results show
that more transmitters including a longer cable are installed to improve the robustness of
the system. In Figure 6, we show the expected value of the SOC under different velocity
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settings. With the improvement of the velocity, the charging energy decreases and the
energy consumption increases, which brings risk to the system. We can see that, even with
the largest velocity, the SOC requirement is always fulfilled.

Figure 6. Mean values of SOC dynamics under different speed profiles.

From Figure 7, we can observe the trend of system cost and cable length as the number
of buses changes. With an increase in the number of buses, the system cost shows an
upward trend, while the cable length remains relatively constant. This is because the
amount of electricity required for each bus operation is relatively stable, and this portion of
electricity needs to be replenished directly through DWC infrastructures. The total amount
of wireless charging energy is only related to the length of the charging cable. Therefore,
with a predefined path, the optimal cable length required remains constant. On the other
hand, when the number of buses decreases, the total cost spent on EV batteries reduces,
allowing for the installation of larger capacity batteries in each bus. Large batteries can
reduce the frequency of charging throughout the trip, which means fewer inverters need to
be installed. This is the fundamental reason why system costs decrease as the number of
buses decreases.
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Figure 7. Total cost and cable cost under different k.

6. Conclusions

This study proposes a stochastic optimization framework for the EB-DWC system
within urban environments, aiming to tackle inherent stochastic elements such as fluctua-
tions in vehicle speed, initial charging state, and dwell time at bus stops. We formulated a
stochastic planning problem for the EB-DWC system by merging these uncertainties. We
employed Monte Carlo sampling techniques to efficiently solve the problem. The method
we propose demonstrates that a bit more spend on the charging cables brings a significant
enhancement in the robustness of the system. Based on our experimental results, we can
also conclude that there is a tradeoff between the system’s battery capacity and cable
configuration: an increase in battery capacity does not directly reduce the costs associated
with the cable length, but instead, has a direct impact on the number of inverters required.

Based on the findings of this paper, we plan to explore the stochastic optimization
problem of the DWC-EB system in a multi-route environment as our future research
direction. Furthermore, the impact of battery degradation and the influence of battery
weight on energy consumption and the optimization of DWC infrastructure allocation will
also be considered in our future work.
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