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Abstract: The modern steer-by-wire (SBW) systems represent a revolutionary departure from tra-
ditional automotive designs, replacing mechanical linkages with electronic control mechanisms.
However, the integration of such cutting-edge technologies is not without its challenges, and one
critical aspect that demands thorough consideration is the presence of nonlinear dynamics and
communication network time delays. Therefore, to handle the tracking error caused by the challenge
of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast
finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the
SBW systems in the present article. By lumping the uncertainties, parameter variations, and exterior
disturbance with input and output time delays as the generalized state, a scaling finite-time extended
state observer (SFTESO) is constructed with a scaling gain for quickly estimating the unmeasured
velocity and the generalized disturbances within a finite time. With the aid of the SFTESO, the robust
FFTCC with the scaling gain is designed not only for ensuring finite-time convergence and strong
robustness against time delays and disturbances but also for improving the speed of the convergence
as a main novelty. Based on the Lyapunov theorem, the closed-loop stability of the overall SBW
system is proven as a global uniform finite-time. Through examination across three specific scenarios,
a comprehensive evaluation is aimed to assess the efficiency of the suggested controller strategy,
compared with active disturbance rejection control (ADRC) and scaling ADRC (SADRC) methods
across these three distinct driving scenarios. The simulated results have confirmed the merits of the
proposed control in terms of a fast-tracking rate, small tracking error, and strong system robustness.

Keywords: vehicle steer-by-wire (SBW); fast finite-time composite control (FFTCC); finite-time
extended state observer (FTESO); scale gain; robustness; time-varying delays; unpredictable exterior
road disturbance

1. Introduction

In recent decades, the automotive industry has experienced a profound transformation,
propelled by significant technological advancements [1,2]. The emergence of x-by-wire
technology (i.e., x-by-wire including steer/drive/brake-by-wire) has become a focal point in
current research, reflecting the industry’s dynamic evolution [3]. One such advancement is
the introduction of steer-by-wire (SBW) technology that replaces the traditional mechanical
steering mechanism with electronic signals. The concept of steering by wire represents a
departure from the traditional design of vehicles, where a mechanical link directly transmits
the input of the driver to the vehicle’s wheels. Instead, SBW systems rely on electronic
sensors, actuators, and control units to interpret and execute steering commands. This
technology promises several advantages, such as increased design flexibility by reducing
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weight, enhanced driving experience, and the potential for advanced driver assistance
systems and functionalities associated with automotive driving [4]. The SBW systems
can be integrated with intelligent collision avoidance algorithms that anticipate potential
hazards and automatically adjust the steering to avoid collisions, thereby reducing the
likelihood of road traffic accidents. As the automotive industry charts its course toward a
future characterized by connected and autonomous vehicles, SBW emerges as a pivotal
component in the pursuit of these transformative goals.

The domain of steer-by-wire systems has witnessed an extensive exploration of di-
verse control strategies aimed at enhancing the dynamic performance and safety of SBW
vehicles [5–9]. In [10], an adaptive sliding mode control (SMC) method was presented for
the vehicle SBW system to address the trajectory tracking problem and enhance robustness
against diverse road conditions. Similarly Wang et al. [11] presented an adaptive terminal
SMC (TSMC) scheme that operates in the existence of parameter uncertainties and changes
in driving conditions. Sun et al. [12] and Sun et al. [13] both proposed adaptive SMC
(ASMC) concepts for vehicle SBW systems. Sun et al. [13] emphasized a nested adaptive
super-twisting SMC (NASTSMC), while Sun et al. [12] focused on the ASMC. The shared
objective of both designs is to enhance tracking accuracy and robustness. Shi et al. [14]
investigated a strategy based on a fractional-order SMC (FOSMC) with an extended state
observer (ESO), specifically designed to handle challenges related to parameter perturba-
tion and external interference within the dynamical model. Liang et al. [15] implemented
an adaptive scheme for compensating friction torque within the SBW system of a vehicle.
Shukla et al. [16] specifically addressed the issue of state-dependent uncertainties in the
SBW systems, introducing an adaptive control framework designed to effectively manage
these uncertainties and external disturbances without requiring prior knowledge of their
structures or bounds.

Some studies have explored the implementation of advanced control strategies for
the SBW systems. For example, Ye and Wang [17] investigated robust adaptive integral
TSMC (AITSMC) strategies, incorporating an extreme learning machine (ELM) estimator
for handling lumped uncertainties. Similarly, Zhang et al. [18] constructed an active
front-steering control scheme that combines adaptive recursive integral TSMC in the top
controller and fast nonsingular TSMC (FNTSMC) with the ELM estimator in the bottom
controller to enhance steering control performance and ensure a faster convergence rate. In
a recent study, Zhao et al. [19] applied an observer-based discrete-time cascaded control
strategy designed to address the challenge of lateral stabilization in SBW vehicles amidst
uncertainties and disturbances. Wang et al. [20] developed a neural output feedback control
with predefined performance and composite learning, ensuring transient and steady-state
performance within specified boundaries. Li et al. [21] explored trajectory tracking control
for four-wheel independently actuated electric vehicles equipped with the SBW systems.
This control strategy employs a robust H∞ dynamic output feedback approach, integrating
the dynamics of SBW devices into a polyhedral linear parameter-varying trajectory tracking
error model. These control approaches enhanced tracking accuracy to a certain degree;
nevertheless, they overlooked the impact of time delays, leading to a reduction in the
robustness of SBW systems.

The technology behind (SBW) systems offers greater flexibility and control but is not
without its challenges, particularly in dealing with time delays within the system [22].
Time delays can occur at various stages, including signal processing, communication,
and actuation [23]. These delays, especially in communication, significantly impact the
performance of the SBW systems, leading to sluggish response times and compromising
the vehicle’s ability to navigate swiftly and precisely. Such compromises not only affect the
effectiveness of SBW systems but also raise safety concerns, particularly in critical situations
where delays pose inherent risks [22]. Therefore, it is imperative to comprehensively
address the challenges posed by time delays in SBW systems to ensure their smooth
integration into the automotive industry. While time delays are recognized as significant
contributors to instability and poor performance in various systems [24], their specific



World Electr. Veh. J. 2023, 15, 132 3 of 27

impact on SBW vehicles has received limited attention in the research. Recent efforts, such
as the work by Yang et al. [25], have focused on introducing adaptive fast super twisting
sliding mode control (SMC) based on time-delay estimation to mitigate the challenges
posed by inaccurate modeling and variable perturbations. To tackle challenges arising from
significant random delays in the steering systems, Zhang et al. [26] proposed a layered
time-delay robust control strategy. This strategy integrates a lower controller to minimize
the tracking error and ensure stability, along with an upper controller employing the
TSMC approach to enhance vehicle yaw stability. Nevertheless, the strategy does not
explicitly account for model uncertainties and parameter variations, which are crucial
factors for ensuring robust stability and performance. However, there is a significant
shortage of studies that address trajectory tracking control algorithms for the SBW systems
while taking into account the time delays in the transmission channel. Furthermore, the
methods mentioned above can only ensure the slow asymptotic convergence of the SBW
system states.

Therefore, proposing a fast finite-time composite controller (FFTCC) for the uncertain
SBWs that are subject to communication delays has motivated us to contribute to this field.
This controller strategy is designed to enable the front wheel angle of the SBW system to
rapidly and precisely follow the desired command input from the hand wheel within a
finite time, independent of time delays and other uncertainties. The main contributions of
the current paper can be summarized as follows:

1. A dynamical model for the SBW system is systematically formulated to incorporate
the inherent time delays in the transmission channel connecting the hand wheel and
the steering actuation module. Moreover, the model accommodates parametric system
uncertainties and external disturbances.

2. A new control strategy, denoted by the FFTCC, is devised to address the challenge of
rapid finite-time convergence of tracking errors in the time-delayed SBW systems. This
proposed fast finite-time convergent observer-based control is specifically designed to
accommodate the time delays inherent in the transmission channel, ensuring robust
performance in different communication scenarios.

3. A new fast-scaling finite-time ESO is constructed to estimate unmeasured velocity
variables and the unknown overall disturbances in rapid finite-time instances. By
integrating the unmeasured variable and the lumped perturbations into the proposed
FFTCC, the proposed composite control scheme is explicitly realized. The overall
closed-loop stability is proved as global finite time by the Lyapunov theory.

4. The effectiveness of our designed controller is rigorously evaluated under three
distinct scenarios, providing a comprehensive assessment of its performance. To
validate its efficacy, simulation results are compared against two benchmark control
methods—scaling ADRC (SADRC) and well-known ADRC. This comparative analysis
serves to underscore the advantages and advancements offered by the introduced fast
finite-time convergent observer-based control.

In this paper, the structure of the remaining sections is as follows: In Section 2, the
mathematical modeling of the SBW system is delved into. Section 3 navigates through the
design of a fast finite-time controller via error feedback and introduces the construction
of a fast finite-time convergent composite controller. Section 4 extends our discussion to
simulation results by offering a detailed presentation and analysis of simulation outcomes.
In the final section, the findings are summarized, and the conclusion is presented.

2. Description and Mathematical Modeling of the SBW Plant
2.1. Architecture of the SBW Plant

The mechanical architecture of the SBW system illustrated in Figure 1 is made up of
three separated parts: the lower part is the module of the steering actuator for producing
vehicle steering responses, the middle part is the electric control unit, and the top module
is the hand wheel interacted with by drivers. Unlike the traditional hydraulic or electrical
power steering, the mechanical linkage between the steering hand wheel and steering
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actuation has been replaced by a steering motor. In the working principle of the SBW
system, by means of bilateral signal wires, the feedback torque from tires and the command
of the steering action from the driver are both communicated and transmitted. The main
challenge in the SBW system lies in ensuring precise steering efficiency. This involves
accurately translating the input from the steering wheel into a corresponding tracking
response from the steering actuator system.

Output Delay 
𝝉𝒐(t)

Input Delay 
𝝉𝒊(t)

Transmission 
Channel

Measured Output

Control input 𝒖(𝒕)

𝒚(𝒕)

Road Feel Feedback

Steering Angle Input

Figure 1. Architecture of SBW system with time delays of the transmission channel.

2.2. Plant Modeling of the SBW System

By using a simplified steering vehicle system model given in [27], the motion differen-
tial equation of the SBW system is presented as follows:

Je θ̈s + Be θ̇s = κu − τc − τsel

κ = κ1 · κ2 · κ3 · κ4

τc = ξ f sign(θ̇s)

(1)

where θs, θ̇s, and θ̈s represent the steering position, velocity, and acceleration angle of the
front wheels, respectively; u stands for the output voltage torque of the steering actuation
unit; τsel denotes the self-aligning torque imposed on the steering system; and τc represents
the Coulomb friction torque. Table 1 lists the other system parameters along with their
descriptions, values, and units that correspond to those parameters. Moreover, the scaling
factors involved in κ are given in Table 1 with their descriptions and values. In addition,
sign (·) is the standard signum function.

Note that in this research, the value of κ is simply treated as a constant during the
dynamic control as such value does not fairly change over time in our research. However,
during the control design, the model nonlinearities and external disturbances can bring
uncertain system parameters [10]. Parameter variations will be caused due to many
resources, such as the system temperature variation, the small deformation in the steering
system arising from unpredictable external road load, and so forth. Accordingly, based
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on [10], the parametric uncertainties are bounded, which are considered and given with its
bounds as follows:

|∆Je | = |Je − Je0| ≤ ∆̄Je ; (∆̄Je = 0.1Je0)

|∆Be | = |Be − Be0| ≤ ∆̄Be ; (∆̄Be = 0.1Be0)

|∆ξ f | = |ξ f − ξ f 0| ≤ ∆̄ξ f ; (∆̄ξ f = 0.1ξ f 0)

(2)

where Je0, Be0, and ξ f 0 are the nominal parts of the parameters of the steering plant model;
∆Je , ∆Be , and ∆ξ f are the uncertain parametric parts; ∆̄Je , ∆̄Be , and ∆̄ξ f are the upper bounds
of the corresponding system parameters.

Table 1. Nominal parameters of SBW system.

Symbols Descriptions Values Units

Je Equivalent inertial moment of the SBW system 85.5 kg m2

Be Equivalent viscous damping friction of the SBW system 218.8 N ms/rad
ξ f Coulomb friction constant 4.2 N m
κ1 Scale factor to account for transmitting from the linear motion

of the rack to the steering angle of front wheels
6.0 -

κ2 Gear ratio between the pinion and rack system 3.0 -
κ3 Gear ratio of the gear head 8.5 -
κ4 Scale factor accounting for converting from the input voltage

of steering motor to the output torque of steering motor
1.8 -

Due to the practical limitation of the SBW system, the forward velocity for the front
wheels is usually not measured. Additionally, the lack of the distribution of the vehicle
weight on the front wheels leads to the deficiency of the angle of the front-wheel camber [28].
Thus, the tires are not exerted by exact self-aligning torques during the steering process.
However, the tire slip angles are taken to be small in our consideration, to imitate the self-
aligning torque, a hyperbolic tangent function [29,30] is utilized and can be expressed as

τsel = ρτtanh(θs) (3)

where ρτ represents a time-variant coefficient associated with different road situations,
which will be stated in the simulation cases, and the hyperbolic tangent function tanh(.) is
expressed by

tanh(z) =
e2z − 1
e2z + 1

. (4)

Considering the parametric uncertainties given in (2) and the external perturbation
denoted by d(t) acting on the steering model, the equation motion of the SBW in (1) is
formulated by

(Je0 + ∆Je)θ̈s + (Be0 + ∆Be)θ̇s = κu − (ξ f 0 + ∆ξ f )sign(θ̇s)− τsel + d(t). (5)

Rearranging the above dynamics (5), it can be obtained that

θ̈s = −Be0

Je0
θ̇s −

ξ f 0

Je0
sign(θ̇s) +

κ

Je0
u + D(θs, t) (6)

where
D(θs, t) =

1
Je0

[−∆Je θ̈s − ∆Be θ̇s − ∆ξ f sign(θ̇s)− τsel + d(t)].

When the system states are defined as x1 = θs and x2 = θ̇s, the SBW dynamics
in (6) can be written as in the following state–space form of the distributed nonlinear
second-order systems:
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
ẋ1 = x2

ẋ2 = b0u(t) + F0(x, t) + D(x, t)
y = x1

(7)

with

F0(x, t) =
Be0

Je0
θ̇s −

ξ f 0

Je0
sign(θ̇s); and b0 =

κ

Je0

where x = [x1, x2]
T ∈ R2, y ∈ R, and u ∈ R, represent, respectively, the system variable

vector, the output, and the controlled actuation input of the SBW system in (7). Additionally,
F0(x, t) ∈ R denotes the nominal part of the SBW dynamics, and D(x, t) ∈ R stands for the
lumped perturbation.

2.3. Dynamic Model of the Time-Delayed SBW System with Transmission Channel

As the control actuator motor unit in the lower and the steering module in the top
as depicted in Figure 1 are connected via the transmission channel, the input time delay
τi(t) and the output time delay τo(t) are induced by the transmission connection as shown
in Figure 1. Considering the time delays of the transmission channel, the perturbed SBW
system in (7) under those delays is modeled by

ẋ1(t) = x2(t)
ẋ2(t) = b0u(t − τi(t)) + F0(x, t) + D(x, t)
y = x1(t − τo(t))

(8)

Based on [31], since the total time-varying delay is the sum of both delays as computed by
τ(t) = τi(t) + τo(t), which is smaller than the sampling time Ts, the dynamical modeling
of the SBW system in (8) is reformulated as

ẋ1(t) = x2(t)
ẋ2(t) = b0u(t − τ(t)) + F0(x, t) + D(x, t)
y = x1(t)

(9)

To mitigate the time delay that affects the SBW system, the delay control input term
b0u(t − τ(t)) is lumped with all known system dynamics, parametric system uncertainties,
and the external disturbances by one variable of the lumped disturbance ζ(x, t). Thus, the
delayed system (9) can be presented by the following state–space model

ẋ1(t) = x2(t)
ẋ2(t) = b0u(t) + ζ(x, t)
y = x1(t)

(10)

where
ζ(x, t) = b0u(t − τ(t))− bu(t) + F0(x, t) + D(x, t).

The essential objective of the present research is to design a robust FFTCC scheme such
that the angle of the SBW system front wheels θs in (8) can follow the ideal command input
of the hand wheel in a fast finite time regardless of time delays and other uncertainties. The
difficulties of constructing control and analyzing stability are: (1) the SBW faces not only
uncertainties, parametric variation, and external perturbations but also time-varying delays
in communications; (2) only the SBW model output x1 can be observed from a position
sensor that is delayed by a certain time.
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For accomplishing the above-mentioned aims, the fractional powers are defined as
follows in the following relation

αi = 1 + (i − 1)α, i = 1, 2, 3, 4 (11)

where α = −peven/podd ∈ (−1/3, 0) is the proposed control exponent, and peven and podd,
are, respectively, the positive even and odd integers. For easing of the proposed control
design, some assumptions are given:

Assumption 1. It is presumed from the dynamics in (10) that there is a known bounds number
ρ > 0 such that ∣∣ζ(x, t)

∣∣ ≤ ρ
(
|x1|α3 + |x2|α3/α2

)
. (12)

Assumption 2. It is presumed from the dynamics in (10) that there are two known positive bounds
numbers, D1 and D2, such that ∣∣ζ(x, t)

∣∣ ≤ D1,
∣∣∣ζ̇(x, t)

∣∣∣ ≤ D2.

Assumption 3. The desired reference command of the steering wheel xr is time-varying and
assumed to be twice differentiable. In addition, the desired angular position xr and its first and
second derivatives, ẋr and ẍr, are assumed to be bounded.

Remark 1. If α2 = α3 = 1, Assumption 1 becomes the traditional linear growth condition, i.e.,
|ζ(x, t)| ≤ b(|x1|+ |x2|), where b > 0. When the SBW system states are bounded and the lumped
disturbance ζ(x, t) satisfies the linear growth condition, Assumption 1 holds as well. In addition,
some nonlinear terms can meet Assumption 1, for example, arctan(x), ln(1 + x2), and sin(x) have
the bounding function |x|α with any constant α ∈ (0, 1). In this paper, the SBW system with the
nonlinear function sign(ẋ) verifies the applicability of Assumption 1 by the proposed scheme.

Remark 2. The physical meaning of the lumped disturbance ζ(x, t) in Assumption 2 is evident in
examples such as the tire self-aligning torque and the resistance force on a wet gravel road in the
SBW system [11,12]. Assumption 2 shows that these physical forces are not unbounded, which is
applicable in practice according to the bounded-input bounded-output (BIBO) theory. The physical
interpretation of Assumption 3 lies in the driver’s action of steering the wheel based on traffic
conditions, such as the presence or absence of a red traffic light ahead. This assumption ensures safe,
consistent, and smooth driving of the vehicle, making it applicable in practice.

3. Control Design
3.1. Helpful Definitions and Lemmas

In the following, some helpful lemmas and definitions are described to analyze the
closed-loop stability under the proposed FFTCC.

Consider the nonlinear system:

η̇ = F(t, η), F(t, 0) = 0, η ∈ Rn, t ∈ R≥0 (13)

where F(·) : R≥0 × Rn → Rn is continuous, and G0 ∈ Rn stands for an opened neigh-
borhood of zero. The solution of the dynamics in (13) is assumed to start from η0 at the
time t0.

Definition 1. (Uniform Finite-Time Stability) [32]: The SBW system (10) is uniformly finite-time
stable (FTS) when this system meets the following two conditions: (i) it is a uniformly stable
Lyapunov; (ii) for ∀η0 ∈ Q0, it is finite-time convergent, meaning that there exists a convergence
time T(η0) for η(t, η0) ≡ 0, t ≥ T(η0). If Q0 = Rn, then the SBW plant in (10) is globally
uniformly FTS.
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Lemma 1. In [32,33], the SBW model (10) is taken into consideration. Assume that the positive-
definite function ψ(η) : Rn → R exists so that ψ̇(η) + mψβ(η) ≤ 0 where m > 0, β ∈ (0, 1).
Then, when the convergence time T(η0) ≤ ψ1−γ(η0)/[a(1 − β)], the dynamics in (10) are finite-
time uniformly stable. Then, the dynamical SBW plant (4) is globally uniformly FTS provided that
S0 = Rn is radially unbounded, i.e., ∥η∥ → +∞.

Definition 2. (Homogeneity) [34]: Given real numbers τi > 0, (i = 1, 2, . . . , n) with e > 0, a di-
lation weight Φe,τ = (eτ1 , eτ2 , . . . , eτn) ∈ IRn and the following fixed variables (η1, . . . , ηn) ∈ IRn,
one has the following two cases:

1. When there exists a real number p ∈ IR, then the continuous scalar function ψ(η) : IRn → IR
is called a homogeneous function of degree p, such that for ∀e > 0

ψ(eτ1 η1, . . . , eτn ηn) = ppψ(η) ∀η ∈ IRn/{0}.

2. When there exists a real number p ∈ IR, the continuous vector field Ψ(η) : IRn → IRn is
called a homogeneous vector of degree p, such that for ∀e > 0

Ψi(eτ1 η1, . . . , eτn ηn) = ep+τi Ψi(η) ∀η ∈ IRn/{0}.

Lemma 2. It is supposed from [34] that the function Φ(η) : IRn → IR is homogeneous, its
homogeneity degree is p, and ψe,τ = (eτ1 , eτ2 , . . . , ετn) ∈ IRn is the corresponding dilation weight.
Then, the two properties are presented as follows:

1. The homogeneous function and its homogeneity degree, are, respectively, ∂Φ(η)/∂ηi and
p − τi, where τi is the dilation weight of the corresponding variable xi.

2. A positive-definite and homogeneous function is W(η) : IRn → IR, which has a degree p1 and
the same dilation weight ψe,τ . Then, we conclude that: (a) there exists a constant a > 0 such
that Φ(η) ≤ aWp/p1(η); (b) also the homogeneous function and its homogeneous degree, are,
respectively, Φ(η)W(η) and p + p1 with respect to the dilation weight ψe,τ .

3.2. Change in the SBW Coordinates

In this part, fast finite-time convergent observer-based control for the time-delayed
SBW in (10) will be designed to accomplish the rapid finite-time convergence of the tracking
errors of the SBW toward zero. Define the tracking errors e as

e1 = xr − x1

e2 = ẋr − x2 (14)

where xr is the time-varying reference command of the steering wheel, which satisfies
Assumption (3). Accordingly, the SBW tracking error dynamics can be expressed by{

ė1(t) = e2(t)
ė2(t) = ẍr − b0u(t)− ζ(η, t).

(15)

To attain the goal of finite-time convergence, here, the change in coordinates [35] is
used as

η1 = e1, η2 =
e2

L
, v = b0

u
L2 , ζ =

ζ

L2 , ẍR =
ẍr

L2 (16)

where L ≥ 1 is the positive scaling gain, which is obtained later on.
By using the new coordinate change (16), the dynamical tracking error SBW system (15)

can be written as 
η̇1 = Lη2

η̇2 = LẍR−Lv−Lζ(η, t)
ye = η1.

(17)
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The assumptions in 1 and 2 can be restated here:

|ζ(η, t)| ≤ Lρ
(
|η1|α3 + |η2|α3/α2

)
(18)

and
|ζ(η, t)| ≤ D′

1 :=
D1

L2 ,
∣∣ζ̇(η, t)

∣∣ ≤ D′
2 :=

D2

L2 (19)

where z = [η1, η2]
T ∈ IR2 is the new system state vector, ye ∈ IR is the new system output,

and f v ∈ IR is the new control signal that will be constructed. The research mission is how
to design a robust finite-time composite control law to stabilize the SBW system (17).

In the following, the specific control design procedure is divided into two stages. It
is worth noting that the conclusions in the second stage are used to design the proposed
control scheme. This division is motivated by the fact that the conclusions obtained in
the first stage serve as a solid foundation for deriving the final conclusions of the second
stage. By dividing the design procedure into two stages, the derivation process becomes
more structured and transparent, facilitating a comprehensive understanding of the overall
control design.

Stage 1: On the basis of the feedback domination approach and the power integrator
addition concept, for the transformed SBW system (17) with the absence of the lumped
disturbance, to fulfill a global finite-time stabilization, a full error feedback control scheme
will be first proposed.

Stage 2: For the unavailable state η2 and the unknown lumped perturbation ζ(η, t)
of the SBW model in (17), a nominal dynamics-based SFTESO is first employed. Then, by
incorporating the estimation of the SBW system variables and the feed-forward disturbance
rejection part in the full error feedback finite-time control (FTC) law, a robust FFTCC will
be improved.

3.3. Design of FTC via State Error Feedback

Theorem 1. In the absence of the lumped disturbance, and with satisfying the condition (18), the
output control law of the FTC is designed via the state error feedback for system (17) as follows

v = vstate := ẍR(t) + k2

(
η1/α2

2 + k1/α2
1 η1

)α3
(20)

Then, there are appropriate positive constant gains, k1 and k2, to guarantee the closed-loop of the
SBW plant is uniformly FTS.

Proof of Theorem 1. By means of Lemma 1, the closed-loop stability is analyzed. Herein,
for satisfying the Lemma 1 condition, an appropriate candidate Lyapunov function
is selected.

Step 1: Define the following Lyapunov function

V0(η1) =
1
2

η2
1 . (21)

The time derivative of V0(η1) along the SBW system (17) is obtained as follows:

V̇0(η1) = Lη1η∗
2 + Lη1(η2 − η∗

2 ) (22)

where η∗
2 is the virtual error, which is constructed as

η∗
2 = −k1ηα2

1 and k1 = n > 0. (23)

Using condition (18) finds

V̇0(η1) ≤ −Lnη1+α2
1 + Lη1(η2 − η∗

2 ). (24)
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If the real error is equal to the virtual one, i.e., η2 = η∗
2 , it can be achieved that

V̇0(η1) ≤ −Lnη2+α
1 ≤ −Ln2

2+α
2 V

2+α
2

0 (η1). (25)

Under Lemma 1, one can conclude that the system’s angular position error η1 can
approach zero within a finite time. As a result, if the proposed fast finite-time tracking
control is attained, i.e., the virtual error η∗

2 can track the real error η2 in a finite time.

Remark 3. It is noteworthy that from Equations (15) and (16), it is deduced that η̇1 = Lη2.
Considering the virtual error defined by Equation (23), it can be inferred that η∗

2 = −nηα2
1 .

Consequently, if the real error η2 is equated to the virtual error η∗
2 , it results in η̇1 = −Lnηα2

1 .
This implies that the velocity state η̇1 is governed by its position signal state η1, as indicated by
the term −nηα2

1 . It is important to note that the assumption of equality between the virtual error
η∗

2 and the real error η2 is made in advance, rather than derived, as elucidated in reference [36].
This assumption facilitates the simplification of the derivation of V̇0 in Equations (24) and (25) by
enabling the cancellation of the last term in Equation (24).

Step 2: The tracking difference is defined as

ϱ = η1/α2
2 − η∗1/α2

2 . (26)

Accordingly, a positive-definite Lyapunov function along the tracking mistake in (26)
is chosen as

V(η) = V0(η1) +
1

(2 − α2)

∫ η2

η∗2

(
s1/α2 − η∗1/α2

2

)2−α2
ds. (27)

Obviously, the Lyapunov function V(η) can be also positive definite when∫ η2
η∗2
(s1/α2 − η∗1/α2

2 )2−α2ds is positive definite. By using Lemma 4 in [36], we easily con-
clude that ∣∣∣s1/α2 − η∗1/α2

2

∣∣∣ ≥ 21−1/α2 |s − η∗
2 |

1/α2 . (28)

Keeping the inequality in (28) in mind, one has∫ η2

η∗2

(
s1/α2 − η∗1/α2

2

)2−α2
ds ≥ 23−α2−2/α2 α2(η2 − η∗

2 )
2/α2 (29)

in which, when V(η) = 0, if and only if (η1, η2) = 0, the Lyapunov function V(η)
is accordingly indicated as the positive definite. Also, the definite Lyapunov function
V(η1, η2) → +∞, so V(η) is unbounded radially.

The derivative of V(η) along system (17) is obtained by

V̇(η) ≤− Lnη2+α
1 + Lη1(η2 − η∗

2 ) + ϱ2−α2 η̇2

+
d
(
−η∗1/α2

2

)
dt

∫ η2

η∗2

(
s1/α2 − η∗1/α2

2

)1−α2
ds. (30)

Now, an identical fractional power 2 + α will be obtained with the help of the estima-
tion of each term in (30). Using Lemmas 3 and 5 for the second term in (30) leads to

Lη1(η2 − η∗
2 ) ≤L|η1| ·

∣∣∣(η1/α2
2

)α2 −
(

η∗1/α2
2

)α2
∣∣∣

≤L
21−α2

2 + α
|η1|2+α + L

21−α2 α2

2 + α
|ϱ|2+α. (31)
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Based on condition (18), for the third term in (30), it can be obtained that

ϱ2−α2 η̇2 =ϱ2−α2

(
Lv +

ζ(η, t)
L

)
≤Lϱ2−α2 v + ϱ2−α2 ρ

(
|η1|α3 + |η2|α3/α2

)
. (32)

As |η2| = |ϱ + η∗1/α2
2 |α2 , for Lemma 3 in [36], the following expression can be obtained

|η2|α3/α2 =
∣∣∣ϱ + η∗1/α2

2

∣∣∣α3 ≤ |ϱ|α3 + kα3/α2
1 |η1|α3 . (33)

Keeping inequality (33) in mind, according to Lemma 5 in [36] [where
γ1 = (1 + kα3/α2

1 )−1 > 0 is the constant], from (32), one finds

|ϱ|2−α2 η̇2 ≤Lϱ2−α2 v+ρ
(

1+kα3/α2
1

)
|η1|α3 |ϱ|2−α2+ρ|ϱ|2+α

≤
(

ρ
(

1+kα3/α2
1

)
γ

−α3
2−α2
1

2−α2

2+p
+ρ

)
|ϱ|2+α + Lϱ2−α2 v+ρ

α3

2+α
|η1|2+p. (34)

Under condition (18), for the fourth term in (30), it can be obtained that

d
(
−η∗1/α2

2

)
dt

=k1/α2
1 η̇1 ≤ k1/α2

1 (Lη2)

≤Lk1/α2
1 |η2|. (35)

The inequality in (33) results in

d
(
−η∗1/α2

2

)
dt

≤ L
(

k1+1/α2
1

)
|η1|α2 + Lk1/α2

1 |ϱ|α2 . (36)

In addition, it follows from Lemma 3 in [36] that:∫ η2

η∗2

(
s1/α2 − η∗1/α2

2

)1−α2
ds ≤ |ϱ|1−α2 |η2 − η∗

2 | ≤ 21−α2 |ϱ|. (37)

Combining (36) with (37) and using Lemma 5 in [36] [where γ2 = (k1+1/α2
1 )−1 is a

positive constant], it can be inferred that

d
(
−η∗1/α2

2

)
dt

∫ η2

η∗2

(
s1/α2 − η∗1/α2

2

)1−α2
ds

≤ L
21−α2 α2

2 + α
|η1|2+α + L

((
k1+1/α2

1

)
γ−α2

2
21−α2

2 + α
+ 21−α2 k1/α2

1

)
|ϱ|2+α. (38)

Substituting (31), (34), and (38) into (30) results in

V̇(η) ≤ −L(k1 − c1)η
2+α
1 + Lc2ϱ2+α + Lϱ2−α2 v (39)
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where

c1 =+ 21−α2 + ρ
α3

2 + α

c2 =
21−α2 α2

2 + α
+ ρ

(
1 + kα3/α2

1

)
γ

−α3
2−α2
1

(2 − α2)

2 + α
+ ρ

+
(

k1+1/α2
1

)
γ−α2

2
21−α2

2 + α
+ 21−α2 k1/α2

1 . (40)

The FFTC (20) is formulated by

v = vstate := −k2ϱα3 (41)

and the feedback gains k1 and k2 can be tuned by the following

k1 ≥ c1 + c, k2 ≥ c2 + c (42)

where c > 0 is the arbitrary constant. Under the control law of the proposed finite-time
error controller (41), it is illustrated from (39) that

V̇(η) ≤ −cL
(

η2+α
1 + ϱ2+α

)
. (43)

Additionally, based on Lemma 3 in [36], one obtains∣∣∣∣∫ η2

η∗2

(
s1/α2 − η∗1/α2

2

)2−α2
ds
∣∣∣∣ ≤ |ϱ|2−α2 |η2 − η∗

2 | ≤ 21−α2 ϱ2. (44)

The defined Lyapunov function (27) is satisfied by

V(η) ≤ ε
(

η2
1 + ϱ2

)
(45)

where ε > 0 is the constant, which is formulated by ε = max{(1/2), ([21−α2 ]/[2 − α2])}.
Considering ĉ = cε−([2+α]/2) and integrating (43) with (45), it can be achieved that

V̇(η) + LĉV
2+α

2 (η) ≤ 0. (46)

Based on Lemma 1 and from the above inequality (46), we conclude that, in the absence
of the lumped disturbance, the nonlinear transformed system (17) under the suggested
state controller (20) is uniformly FTS.

3.4. Design of Fast Finite-Time Composite Controller (FFTCC)

Due to cost considerations or technology limitations in the practicability of the con-
trolled delayed SBW system, it is complicated to capture all states’ information. Naturally,
the output signal of the SBW system η1 is measurable, the FFTC law (20) cannot be imple-
mented because the information of the velocity state η2 is unavailable. To this end, the
FFTC scheme will be enhanced. From the dynamics in (17), since the unknown lumped
disturbance information ζ(η, t) is not available, we are not able to use the well-known
finite-time convergent observer-based control design scheme [37–40]; i.e., the observer and
controller are separately designed, and the corresponding stability is individually proved.
According to the non-separation principle in [41], to address the challenging problem above,
here, a novel FFTCC scheme is proposed. Based on the nominal dynamics of system (17),
the observer is designed to estimate the unknown lumped disturbance term ζ(η, t).

Theorem 2. Under conditions (18) and (19), if the control law of the FFTCC law is constructed by

v = voutput := ẍR(t) + k2

(
η̂1/α2

2 + k1/α2
1 η1

)α3 − ζ̂ (47)
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and 
˙̂η1 = Lη̂2 + Lh1(η1 − η̂1)

α2

˙̂η2 = LẍR(t)−Lζ̂ + Lh2(η1 − η̂1)
α3−Lvoutput

˙̂ζ = Lh3(η1 − η̂1)
α4

(48)

where η̂2 and ζ̂ are the the estimation of η2 and ζ. Then:

1. When the lumped disturbance is slow invariant, i.e., ζ̇(η, t) ≡ 0, the total closed-loop stability
is globally uniformly FTS;

2. The tracking error variables η(t) and estimation errors ẽ(t) will move in within an arbitrarily
small confined neighborhood in a finite-time

Ω =

{
(η, ẽ(t)) : U(η, ẽ(t)) ≤

(
α4µ2

(2 + α)µ̂L2

) 2
2+α

D
2

α4
2

}

when the SBW is subject to the time-varying lumped disturbance, i.e., ζ(t) ̸= 0, where
L ≥ 1, k1, k2, h1, h2, and h3 are positive gains; µ2 > 0 and µ̂ > 0 are constants found later;
and η̂1, η̂2, and ζ̂ are, respectively, the estimations of η1, η2, and ζ.

Proof of Theorem 2. The stability is proved by the following two steps.
Step 1: Stability Proof of the SFTESO Dynamics. Estimation errors are the difference

between true and estimated states, which is defined by
ẽ1 = η1 − η̂1

ẽ2 = η2 − η̂2

ẽ3 = ζ − ζ̂.

(49)

Differentiating the estimation errors with respect to time, one has
˙̃e1 = Lẽ2 − Lh1 ẽα2

1
˙̃e2 = Lẽ3 − Lh2 ẽα3

1
˙̃e3 = −Lh3 ẽα4

1 + ζ̇

(50)

The above observer estimation error dynamics can be reorganized ˙̃e1
˙̃e2
˙̃e3

 =

Lẽ2 − Lh1 ẽα2
1

Lẽ3 − Lh2 ẽα3
1

−Lh3 ẽα4
1

+

0
0
ζ̇

. (51)

Based on dilations (α1, α2, α3) as in [42], for degree of two, the positive-definite Lya-
punov function with homogeneity is selected as

W(ẽ) =
∫ ẽ1

ẽ1/α2
2

(
s − ẽ

1
α2
2

)
ds +

∫ ẽ2

ẽ
α2/α3
3

(
s

2−α2
α2 − ẽ

2−α2
α3

3

)
ds +

α3

2
|ẽ3|

2
α3 . (52)

First, the nominal dynamics of system (51) are chosen as

˙̃e =

 ˙̃e1
˙̃e2
˙̃e3

 = L

ẽ2 − h1 ẽα2
1

ẽ3 − h2 ẽα3
1

−h3 ẽα4
1

. (53)
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Along with system (53), W(ẽ) is differentiated with respect to time. From Th. 3.1
in [42], it can be concluded that

Ẇ(ẽ)|(53) =
dW(ẽ)

dẽ
dẽ
dt

≤ −Lµ1W
2+α

2 ( ˜̃e) (54)

where µ1 > 0 is the constant. Then, along with system (51), one obtains

Ẇ(ẽ)|(51) ≤− Lµ1W
2+α

2 (ẽ) +
∣∣∣∣∂W(ẽ)

∂ẽ2

∣∣∣∣ · ∣∣∣∣ ζ(·)L

∣∣∣∣+ ∣∣∣∣∂W(ẽ)
∂ẽ3

∣∣∣∣ · ∣∣∣ζ̇∣∣∣. (55)

According to Lemma 2, it can be obtained by∣∣∣∣∂W(ẽ)
∂ẽm

∣∣∣∣ ≤ µ2W
2−αm

2 (ẽ), for m = 1, 2, 3 (56)

where the positive constant is expressed as µ2. It can be concluded from the definition
of homogeneity that |η1| ≤ µ3V([α2]/2)(η) and |η2| ≤ µ4V([α2]/2)(η) with the two positive
constants µ3 and µ4. Furthermore, it follows from condition (18) that:

|ζ(t, η, v)| ≤ Lρ
(

µα3
3 + µα3/α2

4

)
V

α3
2 (η) (57)

which indicates ∣∣∣∣ ζ(·)L

∣∣∣∣ ≤ µ5V
α3
2 (η), for (58)

with a positive constant µ5 = max{0, ρ(µα3
3 + µα3/α2

4 )}.
From Lemma 5 in [36], combining (56) with (58) obtains∣∣∣∣∂W(ẽ)

∂ẽ2

∣∣∣∣ · ∣∣∣∣ ζ(·)L

∣∣∣∣ ≤µ2µ5

(
W

2−α2
2 (ẽ) · V

α3
2 (η)

)
≤2 − α

2 + α
µ2µ5W

2+α
2 (ẽ) +

2 + 3α

2 + α
µ2µ5V

2+α
2 (η). (59)

Based on Lemma 5 in [36] and condition (19), one has

∣∣∣∣∂W(ẽ)
∂ẽ3

∣∣∣∣ · ∣∣ζ̇∣∣ ≤µ2W
1−2α

2 (ẽ) ·
(

D2
L2

) α3+α
α4

≤ (1 − 2α)µ2

(2 + α)L2 W
2+α

2 (ẽ) +
α4µ2

(2 + α)L2 D
2+α
α4

2 . (60)

Substituting (59) and (60) into (55) leads to

Ẇ(ẽ)|(51) ≤−
(

Lµ1 −
2 − α

2 + α
µ2µ5 −

(1 − 2α)µ2

(2 + α)L2

)
W

2+α
2 (ẽ)

+
2 + 3α

2 + α
µ2µ5V

2+α
2 (η) +

α4µ2

(2 + α)L2 D
2+α
α4

2 . (61)

Due to the additional coupling system coordinate η caused by the uncertain nonlinear
plant, it can be concluded from (61) that it is not possible to solely ensure the convergence
property of the observer estimation error dynamics (51). To cope with these addition
coupling states, the output feedback domination method is utilized to ensure the global
stability of the entire closed-loop dynamics.
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Step 2: Global Uniform Stability Analysis of the Total Closed-Loop Stability. The
control strategy designed in (47) and (48) is substituted into system (17), and the overall
closed-loop dynamics can be found as follows:{

η̇1 = Lη2

η̇2 = LẍR−Lvoutput−Lζ
(62)

which is rearranged as(
η̇1
η̇2

)
=

(
Lη2

Lvstate

)
+ L

(
0

−voutput − vstate − ζ

)
(63)

where vstate and voutput , are, respectively, stated in (20) and (47). The nominal dynamics
part of system (63) is chosen as {

η̇1 = Lη2

η̇2 = Lvstate.
(64)

Based on Equation (46) in Theorem 1, the following can be concluded:

V̇(η)|(53) ≤ −LĉV
2+α

2 (η). (65)

Along system (63), the time derivative of V(η) is taken to have

V̇(η)|(63) ≤−LĉV
2+α

2 (η)+

∣∣∣∣∂V(η)

∂η2

∣∣∣∣ · L
∣∣−voutput−vstate+ζ

∣∣
≤−LĉV

2+α
2 (η)+

∣∣∣∣∂V(η)

∂η2

∣∣∣∣ · L
∣∣−voutput+ζ̂−vstate

∣∣
+

∣∣∣∣∂V(η)

∂η2

∣∣∣∣ · L
∣∣ζ−(ζ̂)

∣∣. (66)

Next, to obtain an identical exponent, each part in (66) will be estimated. Using
Lemma 2 finds ∣∣∣∣∂V(η)

∂η2

∣∣∣∣ ≤ µ6V
2−α2

2 (η) (67)

with the positive constant µ6. By using Lemmas 3 and 4 (where l = (21/α2−2 + 2)/α2 ), we
find that ∣∣voutput + ζ̂ − vstate

∣∣
=
∣∣∣k2

(
η̂1/α2

2 + k1/α2
1 η1

)α3 − k2

(
η1/α2

2 + k1/α2
1 η1

)α3
∣∣∣

≤ 21−α3 k2lα3
(
|ẽ2|1/α2 + |ẽ2| · |η2|1/α2−1

)α3

≤ 21−α3 k2lα3
(
|ẽ2|α3/α2 + |ẽ2|α3 · |η2|α3/α2−α3

)
≤ µ7W

α3
2 (ẽ) +

ĉ
8µ6

V
α3
2 (η) (68)
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where µ7 is the positive constant. Using Lemma 5 in [36] leads to∣∣∣∣∂V(η)

∂η2

∣∣∣∣ · L
∣∣voutput + ζ̂ − vstate

∣∣
≤ Lµ6µ7V

2−α2
2 (η) · W

α3
2 (ẽ) +

1
8

LĉV
2+α

2 (η)

≤ 1
4

LĉV
2+α

2 (η) + Lµ8W
2+α

2 (ẽ) (69)

where µ8 = µ6µ7(α3/[2 + α])[((2 + α)ĉ)/(8µ6µ7 (2 − α2))]
−(2−α2)/α3 . From the definition

of homogeneity, it can be inferred that |ẽ3| ≤ µ9W(α3/2)(ẽ) with the positive constant µ9.
Consequently, it can be obtained that∣∣∣∣∂V(η)

∂η2

∣∣∣∣ · L
∣∣ζ − ζ̂

∣∣ ≤Lµ6µ9

(
V

2−α2
2 (η) · W

α3
2 (ẽ)

)
≤1

4
LĉV

2+α
2 (η) + Lµ10W

2+α
2 (ẽ) (70)

where µ10 = µ6µ9(α3/[2 + α])[((2 + α)ĉ/(4µ6µ9 (2 − α2))]
−(2−α2)/α3 .

Substituting (69) and (70) into (66), one obtains

V̇(η)|(63) ≤ −1
2

LĉV
2+α

2 (η) + L(µ8 + µ10)W
2+α

2 (ẽ). (71)

The previous Lyapunov functions in (27) and (52) are combined to construct the
following overall Lyapunov function

U(η, ẽ) = W(ẽ) +
2
(
1 + 2+3α

2+α µ2µ5
)

Lĉ
V(η) (72)

which is differentiated with respect to time as follows:

U̇(η, ẽ) =Ẇ(ẽ) +
2
(
1 + 2+3α

2+α µ2µ5
)

Lĉ
V̇(η)

≤−
(

Lµ1 −
(1 − 2α)µ2

(2 + α)L2 − µ11

)
W

2+α
2 (ẽ)− V

2+α
2 (η) +

α4µ2

(2 + α)L2 D
2+α
α4

2 (73)

where µ11 = (2 − α/2 + α)µ2µ5 + 2(1 + ([2 + 3α]/[2 + α])µ2µ5) · ([µ8 + µ10]/ĉ) > 0 is the
constant. By appropriately tuning a scaling parameter L, one obtains

U̇(η, ẽ) ≤− µ̂
(

W
2+α

2 (ẽ) + V
2+α

2 (η)
)
+

α4µ2

(2 + α)L2 M∗ 2+α
α4

≤− µ̂

(
W(ẽ) +

2
(
1 + 2+3α

2+α µ2µ5
)

Lĉ
V(η)

) 2+α
2

+
α4µ2

(2 + α)L2 M∗ 2+α
α4

≤− µ̂U(η, e)
2+α

2 +
α4µ2

(2 + α)L2 D
2+α
α4

2 (74)

where µ̂ > 0 is the constant. There are two cases of the unknown lumped disturbance.
Case 1: The lumped disturbance ζ(η, t) is slow and constant. The time derivative of

the lumped disturbance is zero, i.e., ζ̇(η, t) = D2 = 0 in this case. Then, we conclude from
(74) that:

U̇(η, ẽ) ≤ −µ̂U(η, ẽ)
2+α

2 . (75)

From Lemma 1, we obviously can ensure that the closed-loop stability (17)–(48) is
globally uniformly FTS.
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Case 2: The system is subject to time-varying lumped disturbance ζ(η, t). In the
following, the invariant set is defined as:

Ω =

{
(η, ẽ) : U(η, ẽ) ≤

(
α4µ2

(2 + α)µ̂L2

) 2
2+α

D
2

α4
2

}
. (76)

Here, two situations for the initial conditions η(0) and ẽ(0) are considered. The
first situation is (η(0), ẽ(0)) ∈ Ω, and the second one is outer of the region of Ω. When
(η(0), ẽ(0)) /∈ Ω, by (74), then U̇(η, ẽ) < 0. The state trajectories of (η(t), ẽ(t)) shall move
in the neighborhood Ω in a finite time, and, once it enters this neighborhood, then it will
remain inside the neighborhood forever. Thus, by setting a proper fraction power α and
scale gain L, the system error coordinate η(t) and the estimation errors ẽ(t) will approach
a limited neighborhood in a finite time, which is an arbitrarily small range. The proof is
complete.

Remark 4. Under Assumptions 1 and 2 and taking system (10) and the new states in (16) into
consideration, if the FFTCC scheme in (47) and (48) can be reconstructed as, respectively,

u =
1
b0

[
ẍr(t) + L2k2

([
ê2

L

]1/α2

+ k1/α2
1 e1

)α3

− ζ̂

]
(77)

and 
˙̂x1 = x̂2 + Lh1(x1 − x̂1)

α2

˙̂x2 = ζ̂ + L2h2(x1 − x̂1)
α3 + b0u

˙̂
ζ = L3h3(x1 − x̂1)

α4

(78)

where L ≥ 1, k1, k2 and h1, h2, h3 are the positive control gains. Then:
(1) When the lumped disturbance is constant, i.e., ζ̇(η, t) ≡ 0, the global uniform finite-time

output stabilization is attained;
(2) When the lumped perturbation is time-variant, i.e., ζ̇(η, t) ̸= 0, by selecting a proper

scaling gain L, the trajectories of the estimation errors and the system states can approach an
arbitrarily small bounded neighborhood in a finite time.

Figure 2 shows the block diagram configuration of the proposed FFTCC for the SBW
with the time-delay communication. The control scheme mainly consists of two intuitive
components, the FFTCC and SFTESO. The FFTCC is proposed to guarantee the finite-time
convergence of the tracking errors and enhance the anti-disturbance ability of the SBW that
has undergone time delays in the communication channel as well as other disturbances.
Additionally, the SFTESO supplies the estimate of the unmeasured state and lumped
disturbance to ensure finite-time estimations. Furthermore, the corresponding flow chart
is shown in Figure 3, aiding in simplifying the process of implementing the proposed
control scheme.

Remark 5. Referring to Step 2 of Proof of Theorem 2, we now discuss the qualitative selection
guideline of controller gains related to the achievable tracking performance in this work. The smallest
fractional power α expedites the speed of the finite-time convergence of the estimation error ẽ1 and
tracking error e1 to zero in finite time with better accuracy but at the cost of an increased control
input amount or extra control chattering. However, the larger parameter of α brings a slower
convergence of those errors to zero. Similarly, the scaling gain L simultaneously speeds up the
convergence of the estimation and tracking errors to zero with high precision but at the cost of
increasing the amount of the control signal. For either parameter, there is a trade-off between the
convergence rate and the control signal amplitude. Thus, it is better to have a better balance between
the convergence speed and the input amplitude.
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Figure 2. Configuration of the proposed composite tracking controller for the SBW system.
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Figure 3. Flow chart of applying the proposed control method to the SBW system.
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Remark 6. When α2 = α3 = α4 = 1, the out feedback FFTCC law (77), (78) will be shrunk to the
linear compound controller as expressed by

u =
1
b0

[
ẍr(t) + L2k2k1e1 + Lk2 ê2 − ζ̂

]
(79)

and 
˙̂x1 = x̂2 + Lh1(x1 + x̂1)

˙̂x2 = ζ̂ + L2h2(x1 − x̂1) + u
˙̂
ζ = L3h3(x1 − x̂1).

(80)

Accordingly, the system state will asymptotically converge to zero instead of finite-time convergence.
This means that the proposed FFTCC exhibits a higher convergence speed than linear compound
control, which can be called scaling ADRC (SADRC) due to having the same structure and is
proved by conducting a comparison of the tracking responses in the simulated results as in the
subsequent section.

Remark 7. When α2 = α3 = α4 = 1 and the scale gain L = 1, the out feedback FFTCC law (77),
(78) can be reduced to the linear ADRC technique as designed as follows

u =
1
b0

[
ẍr(t) + k2k1e1 + k2 ê2 − ζ̂

]
(81)

and 
˙̂x1 = x̂2 + h1(x1 − x̂1)

˙̂x2 = ζ̂ + h2(x1 − x̂1) + u
˙̂
ζ = h3(x1 − x̂1).

(82)

where the control feedback gains k1 and k2 can be chosen such that the following second-order
polynomial

Pc(s) = s2 + k2s + k1k2 = (s + wc)
2 (83)

is Hurwitz stable, with
k2 = 2wc and k1 =

wc

2
where wc is the bandwidth of the full error feedback control (81). While, the parameters h1, h2, and
h3 of the ESO in (82) are selected to ensure the following third-order characteristic polynomial

Po(s) = s3 + h1s2 + h2s + h3 = (s + wo)
3 (84)

is Hurwitz stable, with
h1 = 3wo, h2 = 3w2

o , and h3 = w3
o .

Similar to (79), the SBW system tracking error trajectories slowly and asymptotically converge to
zero instead of finite-time convergence, as designed in (77), and fast asymptotic, as designed in the
SADRC (79). Due to having the same structure, this standard ADRC is employed for a comparison
purpose of the tracking responses in the simulated results as in the subsequent section.

Remark 8. The proposed control scheme is one of the nonlinear solutions owing to the presence of
fractional exponents. Thus, it is attempted to find a simple manner to tune the control parameters to
accomplish better control efficiency. On the contrary, the control gains can be tuned on the basis of
the following tuning guidelines:
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1. Choose an appropriate positive constant L ≥ 1 and a negative constant α ∈ ((1/3), 0). It
is illustrated from the proof of Theorem 2 that L and α should be larger to guarantee a much
quicker convergence rate and better anti-disturbance performance.

2. Select the control gains k1 > 0 and k2 > 0 of the three controllers in (77), (79), and (81),
which are the same as the coefficients of the characteristics equation used in the full state
feedback control scheme, as was completed in (83).

3. Selection of the positive gains h1, h2, and h3 for the three observers in (78), (80), and (82) is
based on the pole-assignment approach, as was completed in (84).

4. For the above, L, k1, k2, h1, h2, h3, and α are tuned by adopting a trial-and-error manner until
a better control performance is achieved.

4. Simulation Results

To validate the designed controllers, simulation tests are performed within the MAT-
LAB/SIMULINK environment. The SBW model parameters in (1) are specified in Table 1.
In addition, the flow chart presented in Figure 3 is followed in this section to apply the
proposed method in the SBW system. Furthermore, to demonstrate the benefit of the
control method introduced in this paper, the simulation results of both the ADRC and
SADRC methods are compared with the proposed one and presented in this section. For the
proposed controller and the comparative ADRC and SADRC methods [43], the sampling
time in all three methods is identical and set to Ts = 4 × 10−3 sec. Moreover, the controller
gains of the proposed method, the ADRC method, and the SADRC method are selected
and presented in Table 2. As listed in Table 2, to accomplish the aim of the finite-time con-
vergence of estimation and tracking errors of the SBW, as stated in the Proof of Theorem 2
and Remark 5, we set the observer and control parameters to α = 0.14 and L = 1.2.

Table 2. Value of control parameters.

Control Proposed SADRC ADRC
Parameters (77)–(78) (79)–(80) (81)–(82)

α2 0.96 - -
α3 0.92 - -
α4 0.88 - -
ωc 20 20 20
ωo 100 100 100
L 1.2 1.2 -

Then, the simulation results and corresponding analyses are presented in three differ-
ent scenarios. Please note that to compare the robustness with various controllers in the
SBW system, the controller gains remain constant across all three cases. Furthermore, in
these three cases, both the Coulomb friction torque τc, as presented in Equation (1), and the
self-aligning torque τsel , as shown in Equation (3), are taken into account. To represent the
changing road conditions during the simulation, ρτ is given to determine τsel as follows

ρτ =


155, 0 < t ≤ 20 sec, Snowy road
585, 20 < t ≤ 40 sec, Wet asphalt road
960, 40 < t ≤ 60 sec, Dry asphalt road.

(85)

4.1. Case 1: Nominal Steering for a Sinusoidal Reference Following the Input and Output
Time Delay

In this case, the tracking performance of the SBW system is examined under the
nominal dynamics with time delays. For the purpose of conducting this case study, both
the parametric uncertainties defined in (2) and the external disturbance d(t) specified in (5)
have been set to zero. In addition, the input and output time lags illustrated in Figure 1 have
been allotted values of τi = 1 × 10−3 sec and τo = 2 × 10−3 sec, correspondingly. Moreover,
the aggregate of τi and τo is ensured to be smaller than the sampling time Ts. Furthermore,
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as illustrated in Figure 5a, the reference angle of the front wheels has a sinusoidal pattern.
In Figure 4a–d, the estimation errors for x1, x2, x3, and u(t − τ) are illustrated, showcasing
the exceptional estimation capability demonstrated by the proposed approach when it is
contrasted with the methods of ADRC and SADRC. It can be observed that the estimation
error of the proposed approach is narrower than that of the two alternative comparison
techniques, whereas the rate of convergence for estimation in the proposed approach is
higher. Furthermore, it is noteworthy that small peaking phenomenon arises within the
estimated errors, primarily stemming from the high observer gains. Nevertheless, the
observer gains cannot be set too low since it is also necessary to ensure a rapid tracking
rate, minimal tracking error, and robust system performance. In Figure 5a–c, the graphs
present the curves of the steering angle θs, the tracking error of θs, and the control input
u(t) under the proposed control approach as well as the competing methods. In Figure 5a,b,
it is apparent that the rate of convergence achieved through the proposed control technique
surpasses that of ADRC and SADRC, while the tracking error in the proposed approach is
diminished, as the effect of time lags is efficiently reduced in the proposed control strategy.
Furthermore, Figure 5c demonstrates that the proposed control method exhibits a faster
response in the control input compared to the other two comparison methods, whereas the
maximum values of the control input among all three methods remain similar.
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Figure 4. Estimation error responses under (Case 1). (a) Position estimation error. (b) Velocity
estimation error. (c) Overall disturbance estimation error x3 = ζ̂. (d) Delayed input estimation error.
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Figure 5. Tracking responses for the nominal system under the input time delay τi = 1 × 10−3 s and
the output time delay τo = 2× 10−3 s (Case 1). (a) Steering angle. (b) Tracking error. (c) Control input.

4.2. Case 2: Uncertain Steering for a Sinusoidal Reference Following the Input and Output
Time Delay

Compared with Case 1, the parameter uncertainties stated in (2) are newly taken
into account in Case 2. The transmission time delays are set to τi = 2 × 10−3 s and
τo = 2 × 10−3 s, respectively. Hence, the combination of τi and τo is equal to the sampling
time Ts. In Figure 6a–d, the corresponding estimation errors of x1, x2, x3, and u(t − τ) are
presented. We can observe that the proposed control strategy continues to demonstrate
superior estimation performance compared to those of the two comparison methods,
exhibiting a swifter estimation convergence rate and smaller estimation errors. Furthermore,
it is evident from Figure 7a–c that the tracking error of θs within the proposed control
framework maintains a lower magnitude than that observed in the ADRC and SADRC
methods, while the convergence speed of the tracking error and the responsiveness of the
control input in the proposed control technique are enhanced.

Time (sec)

(a)

0 10 20 30 40 50 60

E
s
ti

m
a
ti

o
n

 e
rr

o
r 

o
f 

x
1
 (

ra
d

)

×10-4

-2

-1

0

1

2
Proposed

SADRC

ADRC

0 10 20 30 40 50 60

×10-6

-5

0

5

0 0.05 0.1 0.15

×10-4

-2

-1

0

1

Figure 6. Cont.



World Electr. Veh. J. 2023, 15, 132 23 of 27

Time (sec)

(b)

0 10 20 30 40 50 60
E

s
ti

m
a
ti

o
n

 e
rr

o
r 

o
f 

x
2
 (

ra
d

/s
e
c
)

-0.1

-0.05

0

0.05

0.1
Proposed

SADRC

ADRC

0 0.1 0.2 0.3

-0.04

0

0 10 20 30 40 50 60

×10-3

-1

0

1

39 39.1 39.2 39.3 39.4 39.5 39.6 39.7 39.8

×10-3

-1

0

1

Time (sec)

(c)

0 10 20 30 40 50 60E
s
ti

m
a
ti

o
n

 e
rr

o
r 

o
f 

x
3
 (

ra
d

/s
e
c

2
)

-6

-4

-2

0

2

4

6
Proposed

SADRC

ADRC

0 10 20 30 40 50 60

-0.1

0

0.1

0 0.5 1 1.5 2 2.5

-0.1

0

0.1

Time (sec)

(d)

0 10 20 30 40 50 60

E
s
ti

m
a
ti

o
n

 e
rr

o
r 

o
f 

u
(t

-τ
) 

(V
)

-5

0

5

Proposed

SADRC

ADRC

0 10 20 30 40 50 60
-0.05

0

0.05

0 0.2 0.4 0.6 0.8 1
-0.04

0

0.04

Figure 6. Estimation error responses under (Case 2). (a) Position estimation error. (b) Velocity
estimation error. (c) Overall disturbance estimation error x3 = ζ̂. (d) Delayed input estimation error.
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Figure 7. Tracking responses for the uncertain system under the input time delay τi = 2× 10−3 s and
the output time delay τo = 2× 10−3 s (Case 2). (a) Steering angle. (b) Tracking error. (c) Control input.
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4.3. Case 3: Uncertain Steering for a Sinusoidal Reference Following the Time-Varying Delays and
External Disturbances

Compared with Case 2, not only the parameter uncertainties given in Equation (2)
are taken into account but also the time-varying delays τi = (0.001 + 0.001sint) s and
τo = (0.001 + 0.001sint) s and the external disturbance d(t) = sint Nm. The simulation
results of the steering angle θs, the tracking error of θs, and the control input for Case 3 are
presented in Figure 8a–c. A comparison of Figure 8a–c reveals that the proposed control
method continues to outperform the other two comparison methods. This indicates that the
proposed control method effectively compensates for parameter uncertainties and external
disturbance amidst time-varying input and output delays. In practical applications, if the
front wheels track their reference slowly or with large tracking errors, it can lead to delayed
or inaccurate path changes in the vehicle, particularly in dangerous traffic conditions. This
situation poses a significant safety risk. As shown in Figures 5b, 7b, and 8b, and their
corresponding Case 1, Case 2, and Case 3 analyses, the proposed control scheme offers
improved driving safety in the SBW system compared with two existing control algorithms.
This is achieved through swifter convergence rates and diminished tracking errors of the
front wheels.

Time (sec)

(a)

0 10 20 30 40 50 60

S
te

e
ri

n
g

 a
n

g
le

 θ
s
 (

ra
d

)

-0.5

0

0.5

1
Reference

Proposed

LADRC

ADRC

0.16 0.165 0.17 0.175 0.18

0.065

0.07

Snowy road Wet asphalt road Dry asphalt road

Time (sec)

(b)

0 10 20 30 40 50 60

T
ra

c
k
in

g
 e

rr
o

r 
(r

a
d

)

×10-3

-2

0

2

4

6

8

10
Proposed

SADRC

ADRC

0 0.1 0.2 0.3 0.4 0.5

×10-3

0

2

4

6

8

0 10 20 30 40 50 60

×10-4

-2

-1

0

1

2

Time (sec)

(c)

0 10 20 30 40 50 60

C
o

n
tr

o
l 
in

p
u

t 
(V

)

-2

0

2

4

6

8

10
Proposed

SADRC

ADRC

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

39.95 40 40.05 40.1 40.15 40.2 40.25
0.6

0.8

1

1.2

Figure 8. Tracking responses for the uncertain system under the time-varying input delay
τi = (0.001 + 0.001sint) s, the time-varying output delay τo = (0.001 + 0.001sint) s, and the external
disturbance d(t) = sint Nm (Case 3). (a) Steering angle. (b) Tracking error. (c) Control input.

5. Conclusions

In an effort to enhance the performance of the steering-by-wire (SBW) system, this
paper proposes a novel robust fast finite-time composite control algorithm. This algorithm
is designed to precisely track the front wheel angles in response to the desired command
from the hand wheel within a fast finite time, overcoming challenges posed by time delays
and uncertainties. The proposed controller was examined across three distinct scenarios:
nominal steering involving input and output time delays; uncertain steering entailing both
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uncertainties and transmission time delay; and the final scenario encompassing uncertain-
ties, transmission time delay, and external disturbances. To verify the outperformance of
our proposed method, simulations are conducted, and the results are compared with two
benchmark control methods, namely, ADRC and SADRC. The simulation results indicate
the superiority of the proposed controller over the two comparative methods. Lastly, the
findings emphasize the effectiveness of the proposed control method in entirely addressing
parameter uncertainties and external disturbances, even in challenging conditions char-
acterized by time-varying input and output delays. Moreover, the discerned accelerated
convergence rate of the front wheels’ tracking errors, coupled with the reduction in the
tracking errors, provides compelling evidence that the proposed method enhances driving
safety in the SBW system, even when facing various uncertainties. While we acknowledge
the importance of experimental validation, we view this work as a foundational step. Fu-
ture research will undoubtedly include experimental studies to bridge the gap between
simulation and reality, ensuring the robustness and effectiveness of the proposed controller
in actual automotive scenarios. Furthermore, to reduce noise measurement caused by the
sensitivity of sensors, the noise-free FFTCC scheme will be studied.
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