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Abstract: The digitalization of the automotive industry presents significant potential for technical
advantages, such as the online collection of customer driving data. These data can be used for
customer-oriented development to improve the durability of components or systems. However,
due to current limitations in data transfer, the sampling frequency is typically lower than that of
classic dataloggers. This paper examines the importance of low-frequency data in the development
of drivetrain durability and investigates the extent to which these data can be utilized for a drivetrain
durability analysis. Real driving data were utilized as a database to demonstrate the impact of
downsampling on data significance, with the deviation in damage serving as the criteria. The
findings suggest that low-frequency data, when available in sufficient quantities, can provide valuable
information for predicting durability in rollover and time at level classification. The deviation in the
damage prediction is less than 2% for distances exceeding 5000 km. However, low-frequency data
are not suitable for rainflow analysis. Finally, the database size was adjusted to assess the statistical
stability of the durability prediction. A larger dataset typically reduces variance. The paper presents
evidence for the quality and usability of cloud data in drivetrain durability design. Cloud data from
a significant number of customer vehicles can be used for certain analyses of representative customer
load collectives, which can reduce development time and costs.

Keywords: battery electric vehicle drivetrain; durability; low-frequency data; data significance;
data stability

1. Introduction

Battery electric vehicles (BEVs) are becoming increasingly popular worldwide, espe-
cially in Europe, the USA, and China. The majority of mainstream BEVs on the market use
a drivetrain with one electric machine (EM) and a single-speed gearbox, which is suitable
for most applications. Recent BEV development has focused on battery and energy manage-
ment strategies [1,2]. The development of drivetrain durability faces new challenges due to
the increased number of electrical components and complexity in the powertrain. Studies
have been conducted on the durability of traction batteries [3,4], EM [5], and the electric
system [6]. The mechanical components also face more challenging working conditions
due to the properties of the EM, such as high-frequency current, as discussed in [7], a
wider speed range, and recuperation. During the design process, it is important to take
into account that the recuperation with negative torque can result in an additional load on
torque transfer components, such as gears.

Insufficient customer data can limit knowledge of actual BEV usage and the loads
that customers place on drivetrain systems and components. Durability measurement
campaigns are typically conducted with a limited number of customer vehicles due to high
costs, which can restrict the representativeness of the results. Dataloggers are commonly
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used to collect customer data for a durability analysis, as demonstrated in references [8–10].
However, the number of vehicles is limited by the chosen sample. To optimize requirements
for chassis and body durability with large samples, ref. [11] suggests using service data
for a statistical stress analysis. Similar research on onboard classification is presented
in [12–14]. A more comprehensive study [15] obtained customer load collectives through
onboard classification in customer vehicles to optimize durability testing. This method has
great potential for collecting data from a large number of customer vehicles. However, the
information depth is limited due to the classification process, resulting in a loss of time
series data. Nowadays, customer-oriented design and data-driven development can benefit
from digitalization and the increasing number of connected vehicles. The collection of
customer data through wireless means, in compliance with the General Data Protection
Regulation (GDPR), enables the economical design of electrical and mechanical components
in the drivetrain by acquiring knowledge of powertrain loads from driving operations. A
study by [16] analyzed the potential of using customer vehicle data as input in automotive
development through various use cases. The decision on which data quality to transfer
depends primarily on the problem to be solved. The analysis of drivetrain durability using
measured data on the cloud has not been thoroughly investigated, especially with regards
to data quality and size.

The data must possess the necessary qualities to meet specific requirements. This paper
examines the use of driving data from four BEV vehicles in different scenarios to determine
the conditions under which low-frequency data can still provide significant conclusions in
drivetrain durability development. Each participant collected over 50,000 km of driving
data using a datalogger at its original frequency. The database used for this analysis is
based on high-quality real driving data. Section 3.1 discusses the signal and classification
properties, which explain the unique characteristics of the durability analysis. This section
also demonstrates the impact of information loss and the potential use of low-frequency
data. The signals or calculated signals (EM torque, EM speed, and EM power at 100 Hz,
as well as pulse inverter temperature at 2 Hz) used in durability investigations were
chosen for typical classifications, including rollover classification (Section 3.2), time at level
classification (Section 3.3), and rainflow classification (Section 3.4). Additionally, damages,
a crucial aspect of durability analysis, are calculated using the corresponding Wöhler
line. The data were processed and analyzed for the same cases after downsampling. A
criterion was defined as the deviation between the damage with original data and damage
with downsampled data. An error tolerance of 2% deviation in damage is considered an
acceptable bound. This approach highlights the significance of low-frequency data in a
durability analysis. In the last section, we modified the database size to investigate the
statistical stability of durability predictions with additional data from measurements and
the data cloud. The results of this study clearly indicate the usability of low-frequency data
of different types on the cloud for a drivetrain durability analysis. They also indicate the
required quantity of data for stability.

2. Durability Theory and Statistical Assumption

To guarantee the accurate dimensioning and efficient testing of drivetrain components,
it is essential to have a comprehensive comprehension of customer requirements. This
involves highlighting customer stress on these components, such as load collectives. This
section introduces durability theory, providing an overview of fundamental information
for this investigation, including the damage calculation and the most commonly used clas-
sification methods for load collectives. The section below presents online data acquisition
technology, which serves as the basis for data collection and problem description regarding
the usability of data for the durability analysis. Due to the limited data transferred from
each customer vehicle to a central backend, the sampling frequency is typically lower than
that of classical dataloggers. Therefore, the basic statistical assumption is introduced as the
theoretical basis of the investigation in this paper.
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2.1. Drivetrain Durability Development

In drivetrain durability development, the theory is based on the research of Wöh-
ler [17], Haibach [18], and Miner [19] regarding structural durability. Durability represents
the ability of a structure or component to withstand various mechanical loads, such as
cyclic or sudden loads, to ensure the intended lifetime. To estimate the lifetime, the Wöhler
line and the number of load cycles, usually in the form of load collectives, are used.

Figure 1 displays a logarithmic Wöhler line and a load collective as an example. The
figure illustrates torque as the load, with the x-axis representing the load number and the
y-axis representing the load. In practical applications, torque is divided into fixed levels or
classes, and intermediate values are classified accordingly. For instance, torques ranging
from 10–20 Nm are classified as the 15 Nm class. The classification may vary depending
on guidelines or requirements. The load class and count of the load or load cycles on the
Wöhler line of fatigue strength are represented by LD and ND, respectively. Li denotes
the load of one load class, while Ni and ni represent the corresponding load counts that
occurred on the Wöhler line and in operation. The exponent k determines the inclination of
the Wöhler line, which can be described by the following equation:

Ni = ND·
(

Li
LD

)−k
(1)

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 3 of 17 
 

In drivetrain durability development, the theory is based on the research of Wöhler 

[17], Haibach [18], and Miner [19] regarding structural durability. Durability represents 

the ability of a structure or component to withstand various mechanical loads, such as 

cyclic or sudden loads, to ensure the intended lifetime. To estimate the lifetime, the Wöh-

ler line and the number of load cycles, usually in the form of load collectives, are used. 

Figure 1 displays a logarithmic Wöhler line and a load collective as an example. The 

figure illustrates torque as the load, with the x-axis representing the load number and the 

y-axis representing the load. In practical applications, torque is divided into fixed levels 

or classes, and intermediate values are classified accordingly. For instance, torques rang-

ing from 10–20 Nm are classified as the 15 Nm class. The classification may vary depend-

ing on guidelines or requirements. The load class and count of the load or load cycles on 

the Wöhler line of fatigue strength are represented by 𝐿𝐷 and 𝑁𝐷 , respectively. 𝐿𝑖 de-

notes the load of one load class, while 𝑁𝑖 and 𝑛𝑖 represent the corresponding load counts 

that occurred on the Wöhler line and in operation. The exponent 𝑘 determines the incli-

nation of the Wöhler line, which can be described by the following equation: 

𝑁𝑖 = 𝑁𝐷 ∙ (
𝐿𝑖

𝐿𝐷
)

−𝑘

 (1) 

 

Figure 1. Wöhler line for the lifetime calculation with torque as the load. 

The cumulative damage 𝐷 can be calculated with the following equation according 

to linear damage accumulation [19,20]: 

𝐷 =  ∑
𝑛𝑖

𝑁𝑖
=  ∑

𝑛𝑖

𝑁𝐷
𝑖

 ∙  (
𝐿𝐷

𝐿𝑖
)

−𝑘

 

𝑖

 (2) 

The system is considered to have failed when 𝐷 reaches a value of 1. Thermal loads are 

a common cause of damage to electric components. To estimate the aging process caused by 

thermal loads, Arrhenius’ equation is used due to its representation of temperature depend-

ence [21]. The calculation is similar to that of the Wöhler line and linear damage accumulation. 

The mechanical, electrical, and thermal loads resulting from the vehicle’s operation are essen-

tial for designing and sizing the drivetrain and its components. Commonly used classification 

methods include rollover, time at level, and rainflow classifications. 

The rollover classification requires a load signal, such as torque (originally in Nm), 

in certain classes, and, additionally, a revolution signal, such as rotational speed. It is uti-

lized for analyzing damage to rotating components, such as gears, shafts, and bearings. 

The classification describes the number of rotations a component undergoes due to torque 

L
o
a

d
 [
N

m
]

log(N)

Wöhler line

Figure 1. Wöhler line for the lifetime calculation with torque as the load.

The cumulative damage D can be calculated with the following equation according to
linear damage accumulation [19,20]:

D = ∑
i

ni
Ni

= ∑
i

ni
ND

·
(

LD
Li

)−k
(2)

The system is considered to have failed when D reaches a value of 1. Thermal loads are
a common cause of damage to electric components. To estimate the aging process caused
by thermal loads, Arrhenius’ equation is used due to its representation of temperature
dependence [21]. The calculation is similar to that of the Wöhler line and linear damage
accumulation. The mechanical, electrical, and thermal loads resulting from the vehicle’s op-
eration are essential for designing and sizing the drivetrain and its components. Commonly
used classification methods include rollover, time at level, and rainflow classifications.

The rollover classification requires a load signal, such as torque (originally in Nm),
in certain classes, and, additionally, a revolution signal, such as rotational speed. It is
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utilized for analyzing damage to rotating components, such as gears, shafts, and bearings.
The classification describes the number of rotations a component undergoes due to torque
within a defined time interval ∆t. The rollover number for a certain torque class i can be
calculated using the following equation for all speeds to this load class:

ni = ∑
Speedi

60
·∆t (3)

Figure 2 provides a schematic example of this classification. To determine the number
of rotations per measured speed, divide the speed by the corresponding class’s sampling
time. It is recommended that the sampling time be equal to or less than the speed frequency.
Note that the accuracy of the count decreases as the interval size increases [22].
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Figure 2. Rollover classification with defined torque classes from 1 to 6 and the time interval ∆t.

The duration of time at a defined load class is counted using the load signal (time
series), as shown in Figure 3. The time at level classification method uses the sum of the
occurred sample time of the respective class with digital signals [22]. This is a count of how
often a load class occurs over a specific period of time. For example, in this figure, the total
number of loads for load class 6 is 2∆t and for load class 4 it is 5∆t. This method can be
applied to different loads, including power, current, speed, and temperature.
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Figure 3. Time at level classification with defined load classes from 1 to 6 and the time interval ∆t.

The rainflow classification was first introduced by [23]. An introduction by the research
association for drive technology is shown in [24]. This non-sequential classification focuses
on the change in load from a starting class to a target class. Only the load extremes in
the load time series are used to count the closed hysteresis, as shown in Figure 4. The
x-axis displays the inflection points of the load, labeled with letters from A to L. The
hysteresis loop with examples B-C, D-E, and H-I can be used to quantify the amount
of energy absorbed by the component during operation, providing an insight into the
damage process. Hysteresis loops that do not close, such as A-B in Figure 4, with two
consecutive extrema, are deposited as a residual. The number of hysteresis loops with start
and end classes are entered into a matrix or triangular matrix. To estimate the lifetime, the
rainflow matrix is often transformed into a range pair collective. A range pair is comprised
of a positive and a negative load change with the same amplitude and mean load [24].
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This paper does not discuss the influence of the mean load on the damage. The rainflow
classification can be used for torque and temperature load changes.
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Figure 4. Rainflow classification with defined torque classes from 1 to 7 and load extremes from A
to L.

2.2. Statistical Assumption

Figure 5 depicts the online data collection process in the vehicle. The central control
unit communicates with multiple Electronic Control Units (ECUs) and receives signals
through the Controller Area Network (CAN-Bus) or other Bus-systems. The configuration
enables the definition of vehicles, signals, signal types, and frequencies. The raw signals
or signals after simple preprocessing can be uploaded to a data lake via telemetry. The
signals can be collected as time series with a timestamp for each sample. The background
management can modify the configuration and evaluate data using the anonymized data
in the data lake.
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Figure 5. Online data collection in a vehicle.

Table 1 presents a comparison between online and classic data collection methods
using dataloggers, based on the introduction and investigations in [10,15]. Dataloggers
can be installed in development or test vehicles to record continuous signals with high
frequency. Online data collection offers several advantages, including larger sample sizes,
greater online configurability, easier online processing, and reduced effort. Online data
collection and transfer are possible for mass-produced customer cars, providing a large
sample size. However, due to the technical and economic limitations of modern telematics
services, the transferred data frequency is usually lower than the original frequency. For
example, the EM torque with a frequency of 100 Hz on CAN-Bus can only be collected with
a reduced frequency of 1 Hz.

Table 1. Comparison between datalogger and cloud data collection.

Property Datalogger Online Data Collection

Sample size − +
Data frequency + −

Online—Configurable − +
Online—Preprocessing (−) +

Effort − +
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Low-frequency data can be used for various purposes. For example, [25] demonstrates
the potential use of power battery data with frequencies of 0.03 Hz and 1 Hz from large-
scale electric vehicles for a comprehensive data-driven battery assessment scheme. In
addition, [26] proposes an intelligent framework for estimating the state of health based on
the low-frequency data of BEVs collected by the big data platform. The authors of [27,28]
conducted an analysis and prediction of energy consumption in electric vehicles based on
real-world driving data. Studies in [29,30] demonstrate the potential use of low-frequency
data to create a driving cycle for estimating emissions and energy consumption. The
investigation in [31] also provides a method for pattern analysis using drive data for typical
representative customer driving cycles. A method that utilizes driving patterns and cluster
algorithms was introduced in [32]. These studies aim to derive driving cycles for further
investigation. To improve data quality, investigations such as [33] have focused on imputing
missing values using the inverse distance weighted interpolation method. Furthermore,
applying machine learning techniques to the dataset can provide better accuracy than
that of the incomplete dataset. The methods used to determine and improve data quality
depend on the research field. For instance, research on data quality improvement or time
series repair is presented in [34–36]. An overview of possible interpolations in time series
and criteria for estimating the efficiency of different methods is provided in [37]. The
process of data mining for extracting customer needs and consumer-relevant information
using recorded customer data in the form of internal vehicle Bus signals is discussed in [38].
The authors discuss the use of virtual sensors to improve data quality, as mentioned in [39].
However, they have not yet investigated the significance of low-frequency data for a special
durability analysis.

When data are collected at a low frequency or downsampled, information may be
lost, including special events or details such as high torque that are more frequently
captured in the original high-frequency time series. This loss of information can reduce
rationality, particularly in small data sizes with a high randomness of special events or
details. However, if the data size is large enough and the special events or details are
highly repeatable, the impact of information loss on certain analyses can be mitigated. The
low-frequency data can provide important information through statistical inference that is
nearly equivalent to the original data. It is crucial to confirm the impact of downsampling
or reducing data frequency on the information content and find a balance between data
quality and size, which depends on specific analysis characteristics. This paper analyzes the
significance of low-frequency data for a durability analysis based on statistical assumptions.

3. Data Significance in a Durability Analysis

This section presents the analysis results, starting with an examination of the signal
and classification properties. These properties, in combination with statistical assumptions,
allow for the use of low-frequency data. Next, the comparison between the damage with
original data and downsampled data is shown using 50,000 km of data from four vehicles to
demonstrate the significance of the three classifications separately. These vehicles are all of
the same BEV type, but they are used in different scenarios. The first vehicle is a company
car, while the others are taxis. These four vehicles were selected for analysis because they
are more widely used, which results in lower repeatability compared to ordinary family
cars. Therefore, the quality of data has a greater impact. Each vehicle has collected over
50,000 km of driving data, which were measured with a datalogger at the original frequency.
These high-quality real driving data were chosen as the database.

3.1. Signal and Classification Properties

The ECUs collect raw signals on the CAN-Bus, including direct measurement values
from sensors such as a temperature sensor with a PTC thermistor or speed sensor with
a Hall element, as well as values calculated by the ECU. These signals are collected after
ignition by a datalogger or central control unit. Preliminary signal processing is necessary
to clean the data due to initial values or fluctuations often present in the signals. This
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investigation analyzes the converted signals of four vehicles when the ignition is on. Before
discussing the significance of low-frequency data, it is important to examine the effects of
reducing the signal frequency on signal properties and potential improvements. Signals can
be classified as either dynamic (e.g., torque, speed, current, voltage, acceleration, etc.) or
non-dynamic (e.g., temperature) based on their original frequency and volatility. Dynamic
signals describe quasi-transient situations and are typically sampled at a frequency of 50 Hz
or higher. Non-dynamic signals, on the other hand, describe quasi-static states and cannot
change rapidly. As a result, they are sampled at a lower frequency, such as temperature
at 2 Hz. For the purposes of this paper, the frequency of dynamic signals—torque, speed,
and power—has been downsampled to 10 Hz and 1 Hz to investigate their impacts on
classification results. The frequency of the temperature has been reduced to 1 Hz. Data
snippets have been selected for this declaration.

In Figure 6a, the torque from the selected data for 3 s is shown with the original
sampling rate of 100 Hz and the reduced frequency as an example. The red 10 Hz line still
matches well with the original line, and the fluctuations are smoothed by the line between
two data points. However, during the 0.1 s between two data points, the reduction misses
nine samples with information. One possible assumption is that the information from the
first point within the original 0.01 s represents the entire 0.1 s period, which is used for
further investigation. Future data collection will also allow for online signal preprocessing.
The signals can be processed using an algorithm to obtain random, mean, or median values
within a 0.1 s duration, providing effective information for the entire 0.1 s period. When
analyzing low-frequency data, it is common to use interpolation to reduce information loss
and improve significance. However, reducing the frequency to 1 Hz results in a significant
loss of data points and information. Another reason to exclude interpolation is the priority
of classification. In classification, the raw signal is initially ordered by classes, such as the
torque class with a 10 Nm step shown in Figure 6b. This approach adjusts minor changes
within 10 Nm, similar to applying a filter function. Consequently, the classification is less
impacted by the decrease in frequency.
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Figure 6. EM torque for 3 s from the selected data. (a) The original torque and the torque after
downsampling; (b) classified EM torques at different frequencies with 10 Nm as the class width.

A durability analysis involves the interpolation of EM speed, which is limited by
the vehicle’s acceleration and deceleration ability. There is a discussion regarding the
correlation between EM speed and the vehicle speed signal. The driven distance, calculated
by either EM speed or the vehicle speed signal, is used for extrapolation to the defined
lifetime mileage and examination of plausibility. It is important to note that the speed
signal may not always be available. The speed calculated using electromagnetic (EM) speed
may differ slightly from the vehicle speed signal due to factors such as tire slip and slope.
However, in this investigation, the deviation was always less than 0.1% for 10,000 km,
which is negligible. As the data size increases, the deviation can be further reduced. To
calculate the number of rollovers for the rollover classification, use the EM speed and
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sample time, as shown in Figure 7. When reducing the sampling rate, the first speed value
represents the signal value for the entire time interval. This means that during acceleration
and deceleration, the speed is lower and reversed, respectively, compared to the rest of the
time. When the speed is constant, there is no significant difference. The rate of rollovers at
10 Hz has a deviation of 0.006% from the original when using the 50,000 km data, while at
1 Hz the deviation is 0.03%.
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Figure 7. EM speed for 3 s from the selected data.

3.2. Significance of Low-Frequency Data for the Rollover Classification

This section investigates the significance of low-frequency data for the rollover clas-
sification. To estimate the damage, the collectives are extrapolated to 300,000 km as the
standard. During vehicle use, driving behavior and environments often exhibit repeata-
bility. For example, a driver may frequently operate the vehicle in the same basic usage
scenario over a long period of time. As a result, similar drivetrain operation situations can
be repeated in large datasets. The impact of high torque segments on the signal decreases
as the data size increases.

Load collectives for different frequencies with data of 10,000 km and 50,000 km are
displayed in Figure 8. Increasing the data size and reducing the contingency can improve
the significance. The 10 Hz lines consistently match the 100 Hz lines. The deviation in
damage decreases from 0.13% in Figure 8a to 0.02% in Figure 8b with more data. The
normalized mean squared error (NMSE) decreases from 34.16 to 5.67. The occurrence of
1 Hz lines also increases with more data. The deviation in damage decreases from 0.23%
in Figure 8a to 0.20% in Figure 8b, while the NMSE is reduced from 1202.80 to 160.56.
Furthermore, with an increase in data size, there is a change in the collectives, which will
be discussed in Section 4.
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Figure 8. Exemplary results of the rollover classification. (a) Rollover classification for the data of
10,000 km; (b) rollover classification for the data of 50,000 km.
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The deviation in damage between the downsampled data and the original damage
at 100 Hz is used as a comparison criterion. Figure 9a shows the deviation results with
the 10 Hz data from the analyzed vehicles, depending on the mileage. The driving data
used to derive the collectives were selected based on the original frequency of different
driven mileages ranging from 1000 km to 50,000 km. An extrapolation was then made to
300,000 km. The damages were calculated using the corresponding Wöhler parameters.
The data were then downsampled to a lower frequency. Subsequently, the damage caused
by the data was calculated and compared to the damage caused by the original frequency
to determine the deviation. Reducing the torque and speed frequency to 10 Hz does not
significantly affect damage prediction. The deviation is consistently less than 0.5%, even in
different driving scenarios, with more than 5000 km of driving data. After 30,000 km, the
deviation in damage remains constant and can be disregarded. Reducing the torque and
speed frequency to 1 Hz results in a higher deviation in the damage prediction, as shown
in Figure 9b. As the data size increases to 15,000 km, the deviation decreases. However,
for vehicle 2, the deviation can fluctuate between −1% and +1%. Therefore, a potential
1% deviation should be taken into account when investigating typical customer loads. In
comparison to Figure 9a, the fluctuation is more pronounced.
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Figure 9. Damage deviation of the rollover classification. (a) Damage deviation of the rollover
classification with 10 Hz data; (b) damage deviation of the rollover classification with 1 Hz data.

In the future, data collection will allow for online signal preprocessing. The signals
can be processed through an algorithm to obtain random, mean, or median values within
the selected sample time. Figure 10 shows the deviation in damage using preprocessed
data for each of the four vehicles. The deviations are calculated for the 10 Hz data. The
dashed, dotted, and dash-dotted lines represent the deviation with mean, median, and
random values, respectively. The colors of the lines differentiate the four vehicles. The
analysis suggests that signal preprocessing does not enhance the level of significance.
During vehicle acceleration or deceleration, the median or mean value is either above or
below the initial value, which increases the variance from the original signal. The use
of random values enables damage prediction with less information loss, but this process
lacks certainty.

Figure 11 demonstrates the impact of the Wöhler line on deviation, which depends on
material characteristics and component geometry. The inclination of the line also plays a
significant role, as shown by the lower inclination of component B compared to component
A in the figure. It is not immediately apparent how changing the fatigue strength limit or
calculation rules would affect the lines, as they are nearly in the same position on the chart
and are therefore not shown in the figure. In general, frequency conversion is the more
crucial factor.
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Figure 10. Damage deviation of the rollover classification after signal preprocessing. (a) Vehicle 1;
(b) vehicle 2; (c) vehicle 3; (d) vehicle 4.
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Figure 11. Impact of the Wöhler line on the damage deviation of the rollover classification.

This section examines the usability of low-frequency data for the rollover classification.
The findings suggest that both 10 Hz and 1 Hz data can provide a reliable assessment
of component damage, especially when the dataset is large. The deviation in damage is
less than 2%. Although simple preprocessing of the low-frequency data was introduced,
it did not enhance the significance level of the low-frequency data. When analyzing
durability using low-frequency data, it is important to consider the component-specific
Wöhler parameter.

3.3. Significance of Low-Frequency Data for the Time at Level Classification

The investigation of the significance of low-frequency data for the time at level classifi-
cation involves scaling the collectives to a duration of 8000 h. In this section, we evaluate
the electromagnetic power with the original frequency of 100 Hz and the pulse inverter
temperature originally at 2 Hz to obtain the collectives. The damage is calculated using
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fictitious Wöhler parameters. Figure 12 displays the damage deviations of the time at level
classification. The data can be used for this analysis with a reduced frequency. The damage
deviation curve follows a similar trend to the rollover classification. The deviations of the
10 Hz data are presented with solid lines and remain consistently smaller than 0.2% after
100 operating hours in Figure 12a. Figure 12b represents the deviations in damage of 1 Hz
data, which are higher but still at an acceptable level, smaller than 1%.
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Figure 12. Damage deviation of the time at level classification for EM power. (a) Damage deviation
of the time at level classification for EM power with 10 Hz data; (b) damage deviation of the time at
level classification for EM power with 1 Hz data.

Referring to Figure 12, the level of significance is higher for this non-dynamic signal,
as demonstrated in Figure 13. The low-frequency data can support the same conclusion as
the original data. In general, low-frequency data can be used directly in the analysis with
the time at level classification, contributing to efficient design.
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3.4. Significance of Low-Frequency Data for the Rainflow Classification

The rainflow classification is highly sensitive to information loss caused by down-
sampling, especially with the loss of load extremes. Figure 14 shows the collective from
10,000 km data, where the damage with 10 Hz is already approximately 5% lower than
with 100 Hz. It is important to note that signal preprocessing can also miss the extremes.

Figure 15 displays the results for damage deviation with torque as the load in low
frequency. The loss of the load hysteresis leads to significant damage deviations even with
more data, particularly when the vehicle is driven by different people and in different
driving environments with less repeatability. Therefore, reducing the frequency can result
in a higher loss of information and deviation. The statement is no longer accurate. The
torque data with low frequency cannot be used directly for rainflow classification.
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Figure 14. Rainflow classification for torque with 10,000 km data in the range pair format.
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Figure 15. Damage deviation of the EM torque rainflow classification. (a) Damage deviation of the
EM torque rainflow classification with 10 Hz data; (b) damage deviation of the EM torque rainflow
classification with 1 Hz data.

Mildly reducing the frequency can result in smaller deviations. For example, in
Figure 16, the damage caused by the rainflow classification for temperature at 1 Hz is
approximately 2% lower than the damage caused by the original frequency of 2 Hz. How-
ever, deviations of over 6% can also occur, even when the data size is not small. The
temperature readings are also influenced by the season and location, which impact the
driving conditions. Driving in different regions leads to greater deviations due to varying
environmental temperatures. Therefore, the use of low-frequency non-dynamic data in
the rainflow analysis is restricted. The rainflow classification can be conducted using the
online classification function in a vehicle, as explained in [15,40]. However, this method
does not offer time series data to replicate the driving situation.
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4. Statistical Stability of Data for Representative Damage

Another topic for discussion is the necessary data size for making statistically stable
statements about component damage when important information, such as the number of
drivers operating the vehicle in different driving environments, is unavailable. Generally,
a larger amount of driving data, which provides more information about actual usage,
leads to a more precise estimate of the component’s lifetime damage. Figure 17 shows
the variability of relative component damage in relation to the damage incurred after
50,000 km of data with different data sizes. The data were divided into segments ranging
from 1000 km to 25,000 km, and the damage was calculated for each segment to determine
the dispersion. The box chart displays the interquartile range, which represents the middle
50% of the data. Vehicle 1 was driven by multiple drivers, resulting in a wider range of
driving behaviors and environments, leading to more outliers. Each single result of vehicle
1 is shown with one square. However, with more data, the variance is reduced, which in
turn reduces the influences of the driver and driving environment. Vehicles 2, 3, and 4 were
driven by fewer drivers and in a more constrained environment, resulting in less variance
compared to vehicle 1.
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Figure 17. Damage variability of the data with different data sizes.

Figure 18 shows the normalized damages of seventeen vehicles, including one com-
pany car, three taxi cars, ten ridepooling cars, one private car, and two test cars. With the
exception of ridepooling cars, all other vehicles are of the same type. This analysis focuses
on these vehicles due to the variations in driver behavior and driven areas, which have
significant impacts on the resulting damage. The influence of these factors can be observed
by the position of the damage lines of the same type in Figure 17. Company cars are used
by a diverse group of drivers in various areas, while taxi cars are driven by multiple drivers
in different areas, but with a tendency towards sporty driving. The test cars are exclusively
used on the testing ground by various drivers with different sporty driving styles. The
10 ridepooling cars are very similar to normal customer cars used for private family use, as
they are driven by several drivers with limitations on driving style and areas. The private
car was measured with a datalogger in the customer vehicle. This figure also illustrates the
relationship between the data size and damage trend by displaying the calculated damages
with different data sizes. The 10 ridepooling cars were evaluated directly with 10 Hz data
on the cloud, while the other cars were driven by drivers with varying driving behaviors.
As the data volume increases, the component’s variation exhibits a lower rate of change,
indicating reduced volatility. Typically, a valid damage prediction can be achieved with
20,000 km of driving data for ridepooling cars, due to varying driver behaviors and driving
environments, reaching a stable level. In contrast, taxi cars and the company car require
more data to achieve a reasonable lifetime estimation. The dataset for the private passenger
car displays the most significant regression. Data for vehicles with a driven distance of
less than 5000 km may contain more contingencies due to drivers getting accustomed
to the vehicle. However, other factors, such as the season and driver changes, can still
influence the damage caused by usage. Therefore, data stability is also dependent on the
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scenarios. Durability research typically considers the stability of damage statements as a
supplementary precondition.
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The results of the paper indicate that low-frequency data can still provide reasonable
statements when combined with signal classification to describe a certain repeatable com-
ponent state, particularly when the data size is large enough. However, due to information
loss, low-frequency data are generally unsuitable for describing state changes. The required
data size to achieve a relatively stable level is significantly affected by the amount of repeti-
tion, which is influenced by the diver style and drive situations. Table 2 shows the general
results of the significance analyses of the low-frequency data and the minimum number
of data required to achieve acceptable significance in the present study, as analyzed in
Sections 3 and 4.

Table 2. The analysis results of the significance of low-frequency data and the minimum amount of
data required for acceptable significance.

Classification Signal 10 Hz 1 Hz

Rollover EM Torque and Speed 5000 km 5000 km
Time at level EM Power 100 h 100 h
Time at level Pulse Inverter Temperature - 100 h

Rainflow EM Torque Not possible Not possible
Rainflow Pulse Inverter Temperature - Limited

5. Conclusions

This paper examines the importance of low-frequency data in the development of
durability. The study uses a database from four vehicles, each with over 50,000 km of
real driving measurement data. Load collectives with different signal classifications were
derived for the damage calculation, along with the corresponding Wöhler lines. To de-
termine the significance of the deviation between the original high-frequency data and
the downsampled data, a comparison was conducted. To be considered significant, the
deviation must be less than 2%. The study also took into account the influence of prepro-
cessing and the Wöhler line. The results suggest that reducing the data frequency to 1 Hz
is sufficient for the rollover classification in the durability analysis. Preprocessing does
not seem to have a significant impact on the results. The inclination of the Wöhler line
has a notable effect on the significance. The statements for the time at level classification
are similar. When using the rainflow classification, reducing the frequency results in a
decrease in the level of significance. Therefore, it cannot provide a plausible conclusion
for the durability analysis. To record the load extremes, an online classification function
is required for rainflow classification, such as the onboard classification [15] or Porsche
driving reflection module [40]. The statistical stability of representative damage prediction
was analyzed using rollover results as an example. The size of the data has a direct impact
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on the accuracy of the damage prediction. The amount of data required is dependent on
the usage of the vehicle.

Additional investigations are required for further development in durability regarding
data significance and customer load collectives. For example, the database can be extended
with more customer cars in different markets. To obtain clearer statements regarding the
representative driver, it is recommended to increase the sample size. Additionally, low-
frequency cloud data can be used to derive the typical testing circle directly. To enhance
the depth of information, artificial intelligence methods such as deep learning can be
considered, which are increasingly utilized in powertrain development [41]. Additionally,
data quality can be improved through data fusion. By combining driving data with aided
simulation, the driving situation can be reconstructed, resulting in higher quality data.

Author Contributions: Investigation, M.L.; writing—original draft preparation, M.L.; writing—
review and editing, F.K.-D.N., Y.Ö. and M.A.; supervision, Y.Ö. and R.H.; project administration, M.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets presented in this article are not readily available because
of company data security limitations.

Conflicts of Interest: The authors declare no conflicts of interest. Mingfei Li, Fabian Kai-Dietrich
Noering, Yekta Öngün and Michael Appelt are employees of Volkswagen AG. The paper reflects the
views of the scientists, and not the company.

References
1. Sanguesa, J.A.; Torres-Sanz, V.; Garrido, P.; Martinez, F.J.; Marquez-Barja, J.M. A review on electric vehicles: Technologies and

challenges. Smart Cities 2021, 4, 372–404. [CrossRef]
2. Wahid, M.R.; Budiman, B.A.; Joelianto, E.; Aziz, M. A review on drive train technologies for passenger electric vehicles. Energies

2021, 14, 6742. [CrossRef]
3. Shu, X.; Yang, W.; Guo, Y.; Wei, K.; Qin, B.; Zhu, G. A reliability study of electric vehicle battery from the perspective of power

supply system. J. Power Sources 2020, 451, 227805. [CrossRef]
4. Liu, Z.; Tan, C.; Leng, F. A reliability-based design concept for lithium-ion battery pack in electric vehicles. Reliab. Eng. Syst. Saf.

2015, 134, 169–177. [CrossRef]
5. Shu, X.; Guo, Y.; Yang, W.; Wei, K.; Zhu, Y.; Zou, H. A detailed reliability study of the motor System in pure electric vans by the

approach of fault tree analysis. IEEE Access 2019, 8, 5295–5307. [CrossRef]
6. Tang, Q.; Shu, X.; Zhu, G.; Wang, J.; Yang, H. Reliability study of BEV powertrain system and its components—A case study.

Processes 2021, 9, 762. [CrossRef]
7. Tischmacher, H. Systematische Systemanalysen zur Elektrischen Belastung von Wältlagern bei Umrichtergespeisten Elektromo-

toren. Ph.D. Thesis, Universität Hannover, Hannover, Germany, 2017.
8. Horst, M.; Schäfer, U.; Schmidt, R. Ermittlung von statistisch abgesicherten Kunden-Lastkollektiven für Personenkraftwagen. In

DVM-Bericht Nr. 129; Fahrwerke und Betriebsfestigkeit: Osnabrück, Germany, 2002.
9. Schimanski, S.; Barta, M.; Schröder, T.-F. Entwicklung eines autonomen Datenloggers zur Erfassung von Bewegungsdaten bei

Elektro-Pkws für die Ableitung von nutzungszentrierten Dienstleistungsinnovationen. In Innovative Produkte und Dienstleistungen
in der Mobilität; Springer Gabler: Wiesbaden, Germany, 2017.

10. Wagner, M. Dataloggerbasierte Kundenkollektivermittlung für die Fahrzeugerprobung. Ph.D. Thesis, Technische Universität
Braunschweig, Braunschweig, Germany, 2017.

11. Pötter, K.; Till, R.; Horst, M. Kundenrelevante Betriebslasten—Neue Werkzeuge zur Ermittlung von Fahrzeuglasten im Kun-
denbetrieb. In DVM-Bericht Nr. 137; Auslegungs-und Absicherungskonzepte der Betriebsfestigkeit—Potenziale und Risiken:
München, Germany, 2010.

12. Grünitz, K.; Manz, H.; Meyer, S. Ermittlung der Betriebsbelastungen elektromechanischer Lenkgetriebe mittels belastungser-
fassender Software. In DVM-Bericht Nr. 134; Lastannahmen und Betriebsfestigkeit: Wolfsburg, Germany, 2007.

13. Karspeck, T.; Klaiss, T.; Zellbeck, H. Reconstruction of Customer-Oriented Driving States by Efficient Data Storage on the Control
Unit. In 9. Internationales Stuttgarter Symposium; Automobil-und Motorentechnik: Stuttgart, Germany, 2009.

14. Grober, F.; Janssen, A.; Küçükay, F. Bedarfsgerechte Lastannahme für Fahrzeugbauteile auf Basis von Kunden-Felddaten.
In DVM-Bericht Nr. 146; Lastannahmen und Anforderungsmanagement in der Betriebsfestigkeit—neue Trends: Wolfsburg,
Germany, 2019.

15. Grober, F. Optimierte Fahrzeugerprobung auf Basis von Kunden-Felddaten. Ph.D. Thesis, Technische Universität Braunschweig,
Braunschweig, Germany, 2022.

https://doi.org/10.3390/smartcities4010022
https://doi.org/10.3390/en14206742
https://doi.org/10.1016/j.jpowsour.2020.227805
https://doi.org/10.1016/j.ress.2014.10.010
https://doi.org/10.1109/ACCESS.2019.2963197
https://doi.org/10.3390/pr9050762


World Electr. Veh. J. 2024, 15, 88 16 of 16

16. Ehrich, F. Big Data as Enabler for Customer-Oriented Automotive Development. Master’s Thesis, Technische Universität Wien,
Vienna, Austria, 2018.

17. Wöhler, A. Über Versuche zur Ermittlung der Festigkeit von Achsen. In Zeitschrift für Bauwesen; 1863; Volume 13, pp. 583–616.
18. Haibach, E. Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung; VDI Verlag: Düsseldorf, Germany, 1989.
19. Miner, M.A.A. Cumulative damage in fatigue. Trans. J. Appl. Mech. 1945, 12, A159–A164. [CrossRef]
20. Palmgren, A. Die Lebensdauer von Kugellagern. In VDI-Zeitschrift, Nr. 68; 1924.
21. Hanisch, L.; Henke, M. Lifetime modelling of electrical machines using the methodology of design of experiments. Simul. Notes

Eur. 2021, 31, 95–100. [CrossRef]
22. Köhler, M.; Jenne, S.; Pötter, K.; Zenner, H. Load Assumption for Fatigue Design of Structures and Components; Springer-Verlag GmbH:

Berlin/Heidelberg, Germany, 2017.
23. Matsuishi, M.; Endo, T. Fatigue of metals subjected to varying stress. Jap. Soc. Mech. Engin. Fukuoka/Jpn. 1968, 68, 37–40.
24. Forschungsvereinigung Antriebstechnik, e.V. Zählverfahren zur Bildung von Kollektiven und Matrizen aus Zeitfunktionen; FVA-

Richtlinie: Frankfurt, Germany, 2018.
25. Wang, Y.; Han, X.; Xu, X.; Pan, Y.; Dai, F.; Zou, D.; Lu, L.; Ouyang, M. A comprehensive data-driven assessment scheme for power

battery of large-scale electric vehicles in cloud platform. J. Energy Storage 2023, 64, 107210. [CrossRef]
26. Song, L.; Zhang, K.; Liang, T.; Han, X.; Zhang, Y. Intelligent state of health estimation for lithium-ion battery pack based on big

data analysis. J. Energy Storage 2020, 32, 101836. [CrossRef]
27. Zhang, J.; Wang, Z.; Liu, P.; Zhang, Z. Energy consumption analysis and prediction of electric vehicles based on real-world

driving data. Appl. Energy 2020, 275, 115408. [CrossRef]
28. Corti, A.; Manzoni, V.; Savaresi, S.M. Vehicle’s energy estimation using low frequency speed signal. In Proceedings of the 15th

International IEEE Conference on Intelligent Transportation Systems, Anchorage, AK, USA, 16–19 September 2012; pp. 626–631.
29. Shi, S.; Zhang, M.; Lin, N.; Yue, B. Low-cost reconstruction of typical driving cycles based on empirical information and

low-frequency speed data. IEEE Trans. Veh. Technol. 2020, 69, 8221–8231. [CrossRef]
30. Zhang, J.; Wang, Z.; Liu, P.; Zhang, Z.; Li, X.; Qu, C. Driving cycles construction for electric vehicles considering road environment:

A case study in Beijing. Appl. Energy 2019, 253, 113514. [CrossRef]
31. Noering, F. Unsupervised Pattern Discovery in Automotive Time Series. Ph.D. Thesis, Technische Universität Braunschweig,

Braunschweig, Germany, 2021.
32. Heidenreich, N.; Opalinski, A.; Poll, G. Methode zur Analyse von Kundenkollektivmessungen mittels Einzelfahrtsegmen-

tierung und Clusteralgorithmen. In Commercial Vehicle Technology 2020/2021; Springer Fachmedien Wiesbaden: Wiesbaden,
Germany, 2021.

33. Sree Dhevi, A.T. Imputing missing values using Inverse Distance Weighted Interpolation for time series data. In Proceedings of
the 2014 Sixth International Conference on Advanced Computing (ICoAC), Chennai, India, 17–19 December 2014; pp. 255–259.

34. Sidi, Y.; Harel, O. The treatment of incomplete data: Reporting, analysis, reproducibility, and replicability. Soc. Sci. Med. 2018, 209,
169–173. [CrossRef] [PubMed]

35. Ma, Q.; Gu, Y.; Lee, W.-C.; Yu, G. Order-sensitive imputation for clustered missing values. IEEE Trans. Knowl. Data Eng. 2019, 31,
166–180. [CrossRef]

36. Zhao, M.; Li, Y.; Chen, S.; Li, B. Missing value recovery for encoder signals using improved low-rank approximation. Mech. Syst.
Signal Process. 2020, 139, 106595. [CrossRef]

37. Lepot, M.; Aubin, J.-B.; Clemens, F.H.L.R. Interpolation in Time Series: An Introductive Overview of Existing Methods, Their
Performance Criteria and Uncertainty Assessment. Water 2017, 9, 796. [CrossRef]

38. Wegener, J.; van Putten, S.; Neubeck, J.; Wagner, A. Data Mining as an Enabler for Customer Data Driven Vehicle Develop-
ment. In Proceedings of the Shanghai-Stuttgart-Symposium, Automotive and Powertrain Technology, Shanghai, China, 21–22
October 2021.

39. Anagnostopoulos, G.; Stavropoulos, G.; Violos, J.; Leivadeas, A.; Varlamis, I. Enhancing Virtual Sensors to deal with Missing
Values and Low Sampling Rates. In Proceedings of the 2023 11th IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering (MobileCloud), Athens, Greece, 17–20 July 2023; pp. 39–44.

40. Porsche: Digitalisation of Vehicle Development. Available online: https://newsroom.porsche.com/en/2019/digital/porsche-
digitalisation-vehicle-development-examples-16982.html (accessed on 21 January 2024).

41. Mirfendreski, A. Powertrain Development with Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1115/1.4009458
https://doi.org/10.11128/sne.31.tn.10568
https://doi.org/10.1016/j.est.2023.107210
https://doi.org/10.1016/j.est.2020.101836
https://doi.org/10.1016/j.apenergy.2020.115408
https://doi.org/10.1109/TVT.2020.2997914
https://doi.org/10.1016/j.apenergy.2019.113514
https://doi.org/10.1016/j.socscimed.2018.05.037
https://www.ncbi.nlm.nih.gov/pubmed/29807627
https://doi.org/10.1109/TKDE.2018.2822662
https://doi.org/10.1016/j.ymssp.2019.106595
https://doi.org/10.3390/w9100796
https://newsroom.porsche.com/en/2019/digital/porsche-digitalisation-vehicle-development-examples-16982.html
https://newsroom.porsche.com/en/2019/digital/porsche-digitalisation-vehicle-development-examples-16982.html

	Introduction 
	Durability Theory and Statistical Assumption 
	Drivetrain Durability Development 
	Statistical Assumption 

	Data Significance in a Durability Analysis 
	Signal and Classification Properties 
	Significance of Low-Frequency Data for the Rollover Classification 
	Significance of Low-Frequency Data for the Time at Level Classification 
	Significance of Low-Frequency Data for the Rainflow Classification 

	Statistical Stability of Data for Representative Damage 
	Conclusions 
	References

