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Abstract: The development of autonomous driving technology has made simulation testing one of
the most important tools for evaluating system performance. However, there is a lack of systematic
methods for analyzing and assessing naturalistic driving trajectory datasets. Specifically, there is a
lack of comprehensive analyses on data diversity and balance in machine learning-oriented research.
This study presents a comprehensive assessment of existing highway scenario datasets in the context
of traffic modeling in autonomous driving simulation tests. In order to clarify the level of traffic
risk, we design a systematic risk index and propose an index describing the degree of data scatter
based on the principle of Euclidean distance quantization. By comparing several datasets, including
NGSIM, highD, INTERACTION, CitySim, and our self-collected Highway dataset, we find that the
proposed metrics can effectively quantify the risk level of the dataset while helping to gain insight
into the diversity and balance differences of the dataset.

Keywords: naturalistic driving trajectory datasets; simulation tests; traffic modeling; risk

1. Introduction

The virtual simulation testing on autonomous driving using digital twin technology
to simulate the driving environment can effectively avoid the risk of collisions and injuries
that may occur in the real world. With the increasing demand for fidelity in virtual driving
environments, data-driven approaches are widely and rapidly adopted in traffic modeling
and simulation. As a result, the acquisition and processing of traffic data becomes one of
the most critical issues in data-driven traffic modeling.

With the advancement of sensing technology, especially image recognition technology,
naturalistic driving data have been greatly improved in terms of quantity, variety, and
quality by acquiring image or trajectory data from videos. Such progress serves as a
robust foundation for capturing driving behavior characteristics, comprehending distinct
traffic phenomena, and propelling the evolution of digital twin and autonomous driving
technologies within the domains of traffic flow theory and autonomous driving.

Studies in traffic and driver behavior modeling rely on datasets of vehicle trajectory.
The Next Generation Simulation (NGSIM) [1] dataset is one of the first open-source trajec-
tory datasets collected and released in 2005 and is primarily used for traffic simulation. In
recent years, this dataset has been widely used in a variety of different traffic studies at
both macro and micro levels, supporting in-depth studies of traffic phenomena, including
but not limited to the discovery or validation of macro and micro level phenomena such as
traffic hysteresis, capacity degradation, asymmetric driving behavior [2], delayed effects of
driving behavior [3], and relaxation phenomena of lane-changing behavior [4].
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Naturalistic driving trajectory data plays a crucial role in the development and testing
of autonomous driving technology, in helping autonomous driving systems better compre-
hend and navigate complex driving environments. Consequently, it is imperative that the
dataset has attributes such as fine granularity, high accuracy, and diversity. In the quest for
improved data accuracy and richness, a number of high-precision trajectory datasets have
been introduced. The highD [5] dataset addresses the limitations of the NGSIM dataset,
particularly in terms of trajectory accuracy, speed range, and sample duration. In particu-
lar, the use of drone-mounted cameras for data acquisition in highD, represents a novel
approach to flexible data collection. Based on the same collection method, the highway
merge-in and merge-out dataset exiD [6], the roundabout intersection dataset rounD [7],
and the trajectory datasets in various scenarios with vulnerable road user dataset inD [8]
have been successively launched to further enrich the trajectory data.

Furthermore, to fulfill the requirements for human-like behavior learning and critical
scenario handling in autonomous driving, a number of road user interaction datasets,
consisting of INTERACTION [9], OpenACC [10], OpenDD [11], AUTOMATUM [12],
CitySim [13], pNEUMA [14], ZEN [15] and MAGIC [16] have been sequentially introduced.

Existing studies have summarized and analyzed the above datasets from different
perspectives based on different research objectives. As these datasets are all formed with
trajectory as time series in positions, errors in these data can cause shifts in kinematic
variables (speed and acceleration, etc.) obtained from differentiation, thus resulting in
disturbances of the vehicle dynamics and kinematics. NGSIM suffers from accuracy
problems, such that there are more studies on the accuracy of NGSIM, including the study
of the error analysis [17], the study of the distortion phenomenon of the trajectory [18], the
data reconstruction techniques [19], and the smooth algorithm [20] to extract more realistic
velocity and acceleration information from the positional data. Furthermore, the objective
of characterizing the data is a key part of the process of understanding and applying the
data. The viewpoints encompass the macro level (speed-density-flow relationship, etc.), the
micro-level (speed and acceleration, etc.), the level of driving behavior [21] (following and
changing lanes, etc.), and the scenario level [22]. Autonomous driving-related research has
focused more on the interaction and risk characteristics of data. With respect to evaluating
the degree of data interaction, existing studies have mainly focused on lane-changing
behavior, where the description of risk or conflict is mainly based on the Time to Collision
(TTC) [6,23–25]. The use of driving simulator-enhanced datasets to supplement specific
interaction data [26] has also become one of the approaches to dataset construction.

However, the above datasets and analyses are not sufficient for virtual simulation
testing. The driving environment in virtual simulation testing needs to reflect the diversity
and riskiness of driving behaviors. Specifically, autonomous driving systems must be able
to handle the diverse, complex, and risky driving behaviors that occur in the real world.
If the behaviors of traffic vehicles in the virtual driving environment are highly homoge-
neous or low-risk, it will not be conducive to verifying the generalization performance
of autonomous driving algorithms and evaluating the performance limits of autonomous
driving systems. In data-driven approaches, the effectiveness of the traffic model is strongly
influenced by the training data. The large size but high homogeneity of the data implies
inefficiencies in data processing and model training and poor generalization performance
of the models. In addition, there has been limited consideration of the differences between
different datasets, resulting in poor model performance due to ignoring data differences
and reuse of modeling methods.

To address the lack of evaluation methods for the quality of naturalistic driving
trajectory datasets in existing studies, and based on the needs of traffic modeling with
respect to the quality of naturalistic driving trajectory datasets, this paper proposes a
method to evaluate the diversity and balance of the data based on systematic risk indices.
To quantify the traffic system risk in the data rather than the risk of individual behaviors, we
define and quantify the systematic risk indices of traffic segments. Based on systematic risk
indices, a dispersion index is proposed, which adopts the Euclidean distance to quantify
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the similarity of the systematic risk vectors of each traffic segment, indirectly reflecting the
diversity and balance of data through the dispersion of the risk vectors in Euclidean space.
In the analysis stage, we compare and analyze the dataset quality of highway scenarios
in NGSIM, highD, INTERACTION, CitySim, and a self-selected dataset, Highway, by
adopting the above method. The results show that the risk and dispersion indices can
effectively quantify the risk level of the datasets and distinguish the differences between
datasets in terms of diversity and balance.

The rest of the paper is organized as follows: Section 2 presents the data requirements
for virtual simulation test traffic modeling and an overview of existing natural driving
trajectory datasets and preprocesses all the datasets; Section 3 describes micro-feature
extraction of the trajectory datasets as well as extraction and quantification of the system
risk metrics; Section 4 proposes metrics describing the data diversity and balance, and
provides a comprehensive evaluation of NGSIM, highD, INTERACTION, CitySim, and
Highway, and Section 5 presents the conclusions and outlook.

2. Traffic Modeling Datasets for Simulation Tests
2.1. Requirements

Before selecting or collecting a data set, one should first identify the requirements that
must be met by a data set applicable to traffic modeling for simulation tests. Combined
with the fidelity and complexity of the traffic model required for simulation tests, the data
set requirements can be summarized as follows:

• To ensure that the traffic model accurately simulates real traffic behavior, the dataset
should be collected without observational interference. That is, the road users are
unaware of the observation in order to show the most natural and realistic movement
and interaction state.

• To enable the traffic model to accurately understand the spatiotemporal interactions
between road users, the dataset should be collected to ensure the completeness of the
information. That is, the movement trajectories of all road users under the lane restriction
should be completely recorded to ensure the completeness of the interaction information.

• To achieve a broader applicability and robustness of the traffic model, the data collec-
tion should be as diverse as possible, i.e., the data set should cover a wide range of
densities, speeds, and risk levels.

2.2. Datasets

Based on the first two points of the above requirements, four highway subsets from nat-
ural driving trajectory datasets collected with a bird’s eye view, which are from NGSIM [1],
highD [5], INTERACTION [9], and CitySim [13], were selected for further analysis for the
subsequent study. It is important to note that the subset from NGSIM and the subset from
INTERACTION have almost no free-flow data due to significant traffic congestion and
traffic fluctuation. The highD dataset and CitySim have been found to be less congested,
with highD consisting mostly of free-flow data. Furthermore, we collected traffic trajectory
data using LIDAR mounted on buildings throughout the day and meticulously organized
it into Highway datasets. Table 1 shows the collection details for each of the datasets
mentioned above, and Figure 1 shows the collection area of the subsets discussed in this
paper. The accuracy and completeness in Table 1 are summarized from the findings of
existing studies and the problems we found in processing the data.

Table 2 presents detailed information on the collection range, collection duration, and
data volume of the highway part of the above dataset. Considering that highway driving
involves both car-following and lane-changing (including merge-in and merge-out), Table 2
also provides the percentage of lane-changing vehicles in each dataset. The information in
Table 2 is further explained below.
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Table 1. Comparison of bird’s eye view naturalistic driving trajectory datasets.

Dataset Country Road Type Collection Frequency Unit Accuracy and Completeness

NGSIM USA Highway,
Intersection,

Camera mounted
on building, 10 fps ft

False positive trajectory
collisions and physically

illogical vehicle speeds and
accelerations [5,20].

highD Germany Highway Drone 25 fps m Acceleration anomalies exist.

INTERACTON International
Highway,

Intersection,
Roundabouts

Drone,
Camera mounted

on building
10 fps–30 fps m Acceleration anomalies exist.

CitySim International
Highway,

Intersection,
Roundabouts

Drone 30 fps ft Acceleration anomalies exist.

Highway China Highway LIDAR mounted
on building 10 Hz m

A few trajectories have
missing location points. due to
obscuration between vehicles.
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Table 2. Comparison of highway datasets.

Dataset Tracks Lanes Range
(Meters)

Duration
(Hours)

Lane-Changing/
Merge in/out

Tracks

Ratio of
Lane-Changing/

Merge in/out
(%)

NGSIM 9207 6 602 1.35 2678 28.24
highD 10,9769 3 × 2 404 82.81 11,717 10.19

INTERACTON 4104 2 130 1.48 243 5.90
CitySim 6542 3 × 2 680 3.40 1562 23.88

Highway 21,191 3 × 2 110 6.49 3838 21.89

2.2.1. NGSIM

The highway sub-datasets in NGSIM are I-80 and US-101, both collected by cameras
mounted on the tops of tall buildings. The collected road for the I-80 dataset is shown in
Figure 1a. The roadway is a section of highway with a length of approximately 500 m and
contains six one-way lanes, and the total collection time is 45 min. The US-101 trajectory
dataset was collected from a section of highway with a length of approximately 640 m
and contains six lanes (Figure 1b), and the data was collected for a total of 45 min. The
above two datasets contain a total of 9207 vehicle trajectories, of which the number of lane-
changing vehicles is 2678, representing 28.24% of the total number of vehicles. It is worth
noting that both I-80 and US-101 have significant traffic congestion and traffic fluctuation.

2.2.2. highD

The highD dataset was released in 2018 and covered the trajectories of approximately
110,000 vehicles on German highways. The dataset records vehicle trajectories with a
drone-mounted camera, which allows for much more flexible data collection compared
to the NGSIM. The whole dataset contains 60 sub-datasets from different road sections,
each covering a road section of about 420 m with 3 lanes in both directions (Figure 1c), and
the collection time is up to 82 h. However, the speeds in the highD dataset are generally
high, the driver behavior is simple, and the congestion level is low. The percentage of
lane-changing vehicles is relatively low at 10.19%.

2.2.3. INTERACTION

The INTERACTION dataset is a comprehensive, multi-country, multi-scenario dataset
that focuses on describing the interaction behavior of road participants. The dataset
includes data from scenarios such as signalized and unsignalized intersections, round-
abouts, and highways. One of the sub-sets, DR_CHN_Merging_ZS, was obtained from
a highway in China with a section length of about 130 m. The data on two lanes in the
DR_CHN_Merging_ZS scenario were selected for the following study, and there were
noticeably low-speed vehicles in the selected portion of the dataset. The data selected
included 4104 vehicles, of which about 5.90% had lane-changing behavior. The duration of
data collection was 1.48 h.

2.2.4. CitySim

The CitySim dataset is aimed at supporting traffic safety research and applications.
The dataset collects aggressive and high-density vehicle interaction data in a wider range of
scenarios, such as intersections and highways, by integrating images captured by multiple
drones. For a more accurate record of the microscopic risk behavior of vehicles, the CitySim
dataset provides more fine-grained vehicle boundary information. For this research, we
choose the Freeway B sub-set of the CitySim dataset. It has vehicle trajectories from a
section of the freeway that is approximately 680 m in length, a collection time of 3.40 h, and
a total of 6542 vehicles, of which 23.88% have observed lane-changing behavior.
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2.2.5. Highway

The Highway is a self-collected dataset using LiDAR on a section of a highway in
Beijing with a length of about 100 m. The LiDAR was attached to a building during collec-
tion, and the data collection equipment and collection scenario are shown in Figure 2. The
collected Highway dataset includes both peak and off-peak hours, with a total observation
time of 6.5 h, and contains a total of 21,191 trajectories, of which 21.89% are identified as
lane-changing trajectories. The high frequency of lane-changing is due to the fact that the
observed road section contains both merge-in and merge-out intersections, and during
peak hours, there are more vehicles merging in or out, resulting in a higher frequency
of lane-changing. The Highway dataset is in the process of applying for its open-source
license and will be released in the near future.
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2.3. Preprocessing

Before analyzing the data, we first process the data in a unified manner. This included
denoising, coordinate conversion, and unifying the units and sampling frequency of all
datasets. The purpose of this is to avoid the influence of noise, road curvature, and differing
units and sampling frequencies on the fairness of the evaluation results.

2.3.1. Denoising

In the process of vehicle trajectory data extraction, due to the measurement error
of video or point cloud image, abnormal fluctuations of speed can easily occur, which
in turn leads to local amplification when calculating acceleration. We adopt the wavelet
denoising [27] method to solve the above problems. The method is based on the character-
istics that the wavelet decomposition coefficients of the noise and the signal in different
frequency bands have different intensities, the wavelet coefficients corresponding to the
noise in each frequency band are removed, the wavelet decomposition coefficients of the
original signal are retained, and then the wavelet reconstruction of the processed coefficients
is performed to obtain the pure signal. In this paper, we apply the noise reduction to the
speed, and after obtaining the smooth speed profile, the trajectory and acceleration profiles
are obtained by integral and differential operations of the speed profile, respectively.

2.3.2. Frenet Coordinate

Due to road curvature, the Cartesian coordinate system is unable to represent the
distance traveled by a vehicle and its offset relative to the lane centerline. To accurately
determine the position of the vehicle relative to the lane centerline, the Frenet coordinate
system (also known as the SL coordinate system) is introduced. The Frenet coordinate
system is usually used in trajectory tracking [28], path following, trajectory planning,
and prediction [29], and its basic principle is based on a series of reference points on the
reference curve to find the nearest reference point for all the trajectory points of the vehicle
and to calculate the relative position of the trajectory points with respect to the reference
point. In this paper, by analyzing the principle of Frenet coordinate system transformation,
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it is considered that the method is also applicable to solving the problem of road type
unification. Specifically, the depicted roads with curvature in Figure 1d,e are transformed
into roads without curvature using the Frenet coordinate system. This results in vehicle
motion being separated into longitudinal and lateral motion, facilitating the handling of
vehicle-lane and vehicle-vehicle relative relationships and simplifying subsequent analysis
and application.

The sampling frequency of the data was standardized to 10 Hz, which means the
sampling interval was 0.1 s after denoising and coordinate conversion.

3. Risk

In this section, three risk indices based on trajectory datasets are introduced in detail.
We first summarize the microscopic features utilized for analysis and define subsequent
risk characteristics, including position, speed, and distance. The physical meaning and
calculation of the microscopic features are shown in Table 3. It is worth noting that the
trajectory of the vehicle is decoupled into longitudinal and lateral motions by the Frenet
coordinate system transformation so that both velocity and distance in the microscopic
features are decomposed into longitudinal and lateral directions.

Table 3. Microscopic features.

Symbol Meaning Calculation

li Length of vehicle i /
xi Longitudinal position of vehicle i /
yi Lateral position of vehicle i /

vx,i Longitudinal speed of vehicle i vx,i =
dxi
dt

vy,i Lateral speed of vehicle i vy,i =
dyi
dt

a Acceleration of vehicle ai =
dvx,i

dt

di
Headway between vehicle i and the

preceding vehicle i − 1 di = xi−1 − xi

thi
Time headway between vehicle i and

the preceding vehicle i − 1 (TH) thi =
di

vx,i

ttci
Time to collision between vehicle i

and the preceding vehicle i − 1 (TTC) ttci =
di−li−1

vx,i−vx,i−1

To comprehensively evaluate the risk level of vehicle movements in the dataset, several
risk indices are defined and quantified in this subsection. While TH and TTC and their
variations have been widely used in risk assessment studies, TH and TTC are mostly
used for transient evaluation of individual vehicle movements and are not sufficient for
understanding the risk level of traffic. Therefore, this study expands on the development
of indices for assessing traffic risk using TTC, Integrated Time to Collision (TIT) [30], and
Deceleration rate to avoid crash (DRAC) [31], which now includes the Modified Integrated
Time to Collision (MTIT), Modified Crash Potential Index (MCPI), and Modified Minimum
Difference of Time-to-Conflict (MMDT). The indices above quantify collision risk in traffic,
the intensity of actions taken to avoid collision risk, and the conflict intensity of lane-
changing behavior.

3.1. Modified Integrated Time to Collision

The TTC is used to indicate the probability of a collision. Specifically, at the moment
t when the speed of the vehicle i is greater than the speed of the preceding vehicle i − 1
and the speed difference is fixed, the value of TTC represents the time before the collision
between the two vehicles occurs. The smaller the value of TTC, the greater the risk of
collision. TIT considers the length of the risk, defined as the integral of the difference
between the TTC and the threshold value over the period when the TTC is less than the
threshold value. A larger value of MTIT indicates a higher risk of collision; that is, both a
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short period of high risk and a long period of low risk must be considered. TIT is specified
in this paper by the calculation method as follows:

tit∗i =
Ti
∑

t=0
(ttc∗ − ttci(t)) · δi(t)

δi(t) =

{
1, 0 < ttci(t) < ttc∗

0, else

(1)

where tit∗i denotes the TIT of the vehicle i under the threshold ttc∗. In this paper, ttc∗ = 20 s.
Ti is the duration of the vehicle i. The unit of TIT is s.

Considering that the interactions between vehicles that lead to risk occur over a certain
duration and road, the transient metrics that consider only two vehicle interactions have
limitations in evaluating complex traffic scenarios. Therefore, in this paper, we divide each
processed dataset into traffic segments of duration T and consider the traffic segments as a
system to extend the concept of transient risk and thus realize the risk assessment of the
traffic segments.

On the basis of the definition of TIT, crash risk for a traffic segment Θ is in the following
normalized form:

MTITΘ =

nveh
∑

i=1
titi

Llane · T · nlane
(2)

where MTITΘ is the collision risk of traffic segment Θ that can be considered as the sum of
the collision risks generated by all vehicles in the traffic segment over the duration T. In
this paper T = 10 s. nveh denotes the number of vehicles. Due to the different lane lengths
and number of lanes in each dataset, m is adopted in the normalized form to avoid the
different roads affecting the subsequent comparisons between different datasets, Llane is
the length of the lanes and nlane is the number of the lanes. The unit of MTITΘ is s.

3.2. Modified Crash Potential Index

In addition to the risk of collision, the potential risk of traffic is also related to risk
avoidance. On the one hand, the intensity of risk avoidance maneuvers reflects the severity
of the conflict. On the other hand, risk avoidance maneuvers affect traffic stability and
are one of the sources of traffic fluctuations. DRAC quantifies the minimum deceleration
required by a vehicle to avoid a collision with the preceding vehicle, defined as,

draci(t) =

 (vx,i(t)−vx,i−1(t))
2

2(di(t)−ln)
, vx,i(t) > vx,i−1(t)

0, else
(3)

The unit of DRAC is m/s2. When the DRAC value exceeds the dynamic limits of
the vehicle, it means there is a greater likelihood of a collision. Except for the different
physical meanings, DRAC is highly correlated with TTC, which is also a transient risk index.
Therefore, inspired by the Crash Potential Index (CPI) [32], a crash avoidance index MCPI
is proposed by combining the actual acceleration and DRAC of the vehicle. Specifically, the
MCPI denotes the integral in time of the difference between the actual deceleration and the
minimum deceleration required to avoid a collision, is calculated as,

mcpii =
Ti
∑

t=0
(di(t)− draci(t)) · ηi(t)

ηi(t) =

{
1, vx,i(t) > vx,i−1(t)

0, else

(4)

where di(t) denotes the actual deceleration of vehicle i at time t. From the Equation (4), if
the deceleration di(t) < 0, means that the vehicle i is accelerating, therefore, the smaller the
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value of the MCPI, the more drastic the braking action required by the vehicle to avoid a
collision. The unit of MCPI is m/s2. The total avoidance risk of the traffic segment Θ is
defined as:

MCPIΘ =

nveh
∑

i=1
mcpii

Llane · T · nlane
(5)

The unit of MCPIΘ is m/s2.

3.3. Modified Minimum Difference of Time-to-Conflict

MMDT is a risk index defined for lane-changing behavior, which is a variant of the
Minimum Difference of Time to Conflict Point (MDTTC) [23] between the lane-changing
vehicle and the rear vehicle in the target lane. The smaller the MDTTC value, the higher
the probability of a collision. The MDTTC is calculated as follows,

mdttci = min|ttcpi(t)− ttcptr(t)| (6)

where ttcpi denotes the TTC to conflict point of the lane-changing vehicle i at time t, ttcptr
is the TTC to conflict point of the rear vehicle tr on target lane, mdttci is the minimum
difference of TTC of vehicle i. The unit of MDTTC is s. As a variant of MDTTC, the MMDT
is calculated as follows,

mmdti =
1

(mdttci)
1/α

(7)

where α is an adjustment parameter, and α = 4 in this paper.
Since the trajectories in the dataset are irregular, the conflict point in this paper is

defined as the intersection of the trajectory of the lane-changing vehicle and the trajectory
of the rear vehicle in the target lane or the point with the closest distance between the
trajectories. Specifically, the conflict point is defined directly as the position point at t∗ on
the trajectory of vehicle tr, and the conflict point is pc = (xtr(t∗), ytr(t∗)). t∗ is determined
as follows,

t∗ = arg min
q

√
(xi(t)− xtr(q))

2 + (yi(t)− ytr(q))
2 (8)

In order to be a more intuitive way to show the correspondence between vehicle lane-
changing trajectories and MMDT values, four representative high-speed and low-speed
lane-changing scenarios from the four open-source datasets mentioned in the above section
are selected as examples in Figure 3. Two high-speed lane-change scenarios from highD and
CitySim are shown in Figure 3a,b, and two low-speed lane-change scenarios from NGSIM
and INTERACTION are shown in Figure 3c,d. The longitudinal range of the figure is 200 m,
and the lateral range is 7 m. The two points connected by solid lines indicate the positions
of the lane-changing vehicle and the rear vehicle of the target lane at the same moment, and
the red point is the conflict point. By observing the connection relationship of the solid lines,
it can be seen that the lane-changing vehicle from highD maintains a larger longitudinal
distance from the rear vehicle of the target lane at the later stage of the lane-changing
process and has a larger time difference for the conflict, corresponding to an MMDT value
of 0.7503. In the lane-change scenario from CitySim, with the lateral distance between the
two vehicles reduced, the distance in the longitudinal direction is not increased, resulting in
a greater possibility of collision, and the MMDT value is 5.6962. In the low-speed scenario,
the change in MMDT value also follows the above trend. In the low-speed scenario, when
the longitudinal distance between the two vehicles near the conflict point is approximated
to that in the high-speed scenario (Figure 3b,d), the corresponding MMDT decreases, which
means that the collision risk for lane-changing vehicles is generally lower in low-speed
conditions, which is in the same way as the real-world law.
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Figure 3. Lane-changing Scenarios (a) highD, MMDT = 0.7503; (b) CitySim, MMDT = 5.6962;
(c) NGSIM, MMDT = 0.7909; (d) INTERACTION, MMDT = 2.9790.

Based on the definition of MMDT, the risk to the traffic segment Θ due to lane-changing
behavior is,

MMDTΘ =

nlc
∑

i=1
mmdti

Llane · T · nlane
(9)

where nlc denotes the number of lane-changing vehicles.

4. Comprehensive Assessment of Trajectory Data from Multiple Perspective

To address the third requirement of traffic modeling data for simulation testing men-
tioned in Section 2.1, we further analyzed the diversity and balance of risk levels in the
data sets.

Since traffic has time-varying attributes and each dataset is collected at different
lengths, a fixed duration is used to segment the dataset in this paper in order to impartially
represent the heterogeneity of traffic risk levels. Specifically, a single dataset is divided into
10-s segments by using a sliding window. At the same time, in order to avoid the effect of
the difference in data volume of different datasets on the distribution of risk indices, we
perform a uniform random sampling for each dataset and select 370 traffic segments for
further analysis.

Figure 4 shows the correlation and distribution plots of the risk indices of the traffic
segments. The three sub-plots on the diagonal shows the distribution of MTITΘ, MCPIΘ
and MMDTΘ from top left to bottom right, while the scatter plot below the diagonal show
the correlation of MTITΘ with MCPIΘ, MTITΘ with MMDTΘ and MCPIΘ with MMDTΘ
from top to bottom and left to right, respectively. From the distribution plots, it can be seen
that almost all risk indices are distributed around 0. HighD and Highway are relatively
obvious, with distributions showing high and narrow peaks. The correlation plot also
shows the unbalanced distribution of the individual data sets with respect to the risk
indices, i.e., most of the risk points are concentrated in a certain range. In addition, the
correlation plot shows that MTITΘ is linearly correlated with MCPIΘ, but the correlation
level varies among the datasets. And there is no correlation between MMDTΘ and the
other two indices.
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For diversity, we use basic statistics such as Mean (MA), Standard Deviation (SD), and
Range (RNG) to statistically analyze individual risk indices. These statistics help synthesize
the overall distribution and variation of individual risk indices in datasets. RNG describes
the extended range of the variable, which is obtained by subtracting the minimum value
from the maximum value of the variable:

rng = max(I)− min(I) (10)

where I denotes one of the risk indices. Then, the Average Minimum Euclidean Distance
(AMED) is introduced to quantify the risk level differences in the whole data set. The
definition of AMED is based on the quantification of vector dissimilarity by Euclidean
distance. The risk vectors consisting of MTITΘ, MCPIΘ and MMDTΘ are considered as
points in a three-dimensional space, and as the risk level similarity between two points
increases, the two points become closer. The specific quantification method of AMED is to
find another traffic segment with the most similar risk level for each traffic segment in the
data set and calculate their Euclidean distances as the Minimum Euclidean Distances (MED)
of that traffic segment, and the AMED is the average value of the minimum Euclidean
distances of all traffic segments. In the specific calculation, the risk indices should be first
normalized before calculating the AMED because the range differences of the three risk
indices are different:

Inorm =
I − min(I)

max(I)− min(I)
(11)

After normalization, AMED is calculated as follows,

AMED =

N
∑

i=1
argmin

j

(
Euclidean

(
RΘi , RΘj

))
N

, j ∈ [1, N], j ̸= i (12)
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where N is the number of traffic segments, RΘi =
[
MTITΘi , MCPIΘi , MMDTΘi

]
is the risk

vector of traffic segment Θi, Euclidean(a, b) is the Euclidean distance calculation of vector
a and vector b. The result and comparison of risk diversity is shown in Table 4. In Table 4,
bold numbers are maximum values and underlined numbers are minimum values.

Table 4. Compare risk diversity.

Dataset Index MA STD RNG AMED

NGSIM
MTITΘ 8.7503 4.1605 18.8991

0.0347MCPIΘ −0.3738 0.3113 1.9687
MMDTΘ 0.0033 0.0026 0.0113

highD
MTITΘ 0.5761 0.8493 7.4554

0.0077MCPIΘ −0.0129 0.1586 2.1176
MMDTΘ 0.0006 0.0008 0.0042

INTERACTON
MTITΘ 9.2416 5.2374 24.9199

0.0329MCPIΘ −0.7030 0.5525 2.6264
MMDTΘ 0.0014 0.0024 0.0122

CitySim
MTITΘ 3.5680 2.7132 15.0046

0.0262MCPIΘ −0.2043 0.2478 1.7290
MMDTΘ 0.0028 0.0017 0.0106

Highway
MTITΘ 0.8225 1.1902 8.7480

0.0123MCPIΘ −0.0157 0.1258 2.0478
MMDTΘ 0.0014 0.0022 0.0107

Through the MA, STD, and RNG in Table 4, we find that all traffic segments in the
INTERACTION dataset are generally characterized by a high level of risk and a wide range
of risk, followed by NGSIM. This indicates that when congestion is present in the traffic
scenario, the corresponding dataset tends to contain more higher-interaction and higher-
risk driving behaviors and also outperforms the other datasets in terms of diversity. In
contrast, the risk level of all the traffic segments in the highD dataset is much lower, which
may be related to it collected from high-speed and low-density scenarios. The AMED
values in Table 4 further confirm the aforementioned viewpoint, which indicates that
NGSIM and INTERACTION have an advantage in terms of diversity from the perspective
of the similarity of risk vectors between traffic segments. NGSIM has an AMED value of
0.0347, while INTERACTION is slightly lower at 0.0329. Among all datasets, highD has the
lowest level of diversity, at 0.0077.

We analyze the balance of the data using MED values. The MED of all traffic segments
in a given data set is sorted from low to high to obtain the curve shown in Figure 5.
From the definition of MED, if the curve is far from the horizontal axis and tends to be
horizontal, it indicates that all traffic segments are widely and evenly distributed in space.
On the contrary, when the curve is closer to the horizontal axis, and the slope increases
rapidly, it means that most of the traffic segments in the dataset are clustered together to
form a category with a higher degree of similarity, while there are traffic segments with a
greater difference in similarity wandering away from the category. The dataset exhibits
an imbalance. From Figure 5, it can be seen that the MED curves of NGSIM, CitySim,
and INTERACTION have similar trends, with NGSIM having the best data balance. In
contrast, the highD and Highway datasets are unbalanced. In addition, AMED is flawed
as an average form, and when there is a very large MED, AMED deviates from the actual
diversity. However, from what we see in Figure 5, none of the curves have abnormally large
MED values, so we believe that AMED is consistent with the actual diversity in this paper.
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5. Conclusions

This paper provides a detailed analysis of natural driving trajectory datasets from high-
ways for traffic simulation in autonomous driving tests. We quantify the traffic risk levels of
highway scenarios in NGSIM, highD, INTERACTION, CitySim, and a self-collected dataset
named Highway by introducing systematic risk indices and comprehensively assessing
the diversity and balance of the datasets using scatter indices. Through the above indices,
we comprehensively evaluated and recognized the differences in risk level, diversity, and
balance of highway scenarios among different datasets, which to some extent provided
a powerful preliminary study for the construction of high-risk traffic scenarios and the
establishment of traffic models with strong generalization ability in the virtual simulation
test of autonomous driving.

Based on the evaluation results, we have summarized some of the ideas and flaws
of this paper. Further verification can be conducted in future research. Firstly, we believe
that for virtual testing of autonomous driving, when the proportion of congested flows
in the data set is higher, the traffic has a higher level of risk and diversity and may be
more suitable to be used for testing the upper limit of the capability of the autonomous
driving system. Secondly, when collecting and using data, it is important to consider not
only the total amount of data but also the potential for homogenization. In this paper, we
have discovered that a high percentage of free flow may be a contributing factor to data
homogenization. Future studies should aim to develop more efficient methods for data
collection and analysis. Finally, this paper only considers highway scenarios. In future
studies, we will explore data assessment methods for urban road scenarios.
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