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Abstract: A position estimation method for unmanned tracked vehicles based on a steering dynam‑
ics model was developed during this study. This method can be used to estimate the position of
a tracked vehicle in real time without relying on a high‑precision positioning system. First, the re‑
lationship between the shear displacement of the track relative to the ground and the speed and
yaw rate of the tracked vehicle during the steering process was analyzed. Next, the steering force
of the tracked vehicle was calculated by using the shear force–displacement theory, and a steering
dynamics model considering the acceleration of the vehicle was established. The experimental re‑
sults show that this steering dynamics model produced more accurate position estimations for an
unmanned tracked vehicle than did the kinematics model. This method can serve as a reference
for the positioning of unmanned tracked vehicles working in special environments that cannot use
precise positioning systems.

Keywords: unmanned tracked vehicles; steering dynamics model; position estimation

1. Introduction
Unmanned tracked vehicles have broad development prospects in the agriculture [1]

and fire protection [2] fields due to their good trafficability and mobility characteristics.
Real‑time and accurate positioning is important for ensuring the normal operation of un‑
manned tracked vehicles. Currently, most of the accurate position information obtained
for unmanned tracked vehicles is dependent on high‑precision positioning systems, such
as inertial navigation components anddifferential positioningdevices [3,4]. For unmanned
tracked vehicles working in special environments, such as woodland, mountain, or un‑
derground environments, the reliability of high‑precision positioning systems is difficult
to guarantee. Some unmanned tracked vehicles use the positioning method of matching
radar point cloud and point cloud map. This method reduces the dependence of un‑
manned tracked vehicles on their high‑precision positioning systems to a certain extent
when they already have point cloud maps [5–7]. For unmanned tracked vehicles working
in unknown or open environments, it is difficult to obtain the required positioning accu‑
racy when using the point cloud matching method. Therefore, improving the positioning
accuracy in special working environments without relying on high‑precision positioning
systems is very important to the further development of unmanned tracked vehicles.

Many scholars around the world have conducted research regarding position estima‑
tion methods for unmanned tracked vehicles that do not rely on high‑precision position‑
ing systems. The most traditional of these methods involves using the speed data of the
active wheel of an unmanned tracked vehicle to estimate the real‑time position of the ve‑
hicle from the steering kinematics model [8]. Because the kinematics model ignores the
relative sliding between the tracks and the ground, this method produces large position‑
ing errors [9]. Martinez [10] established an equivalent‑steering approximate kinematics
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model, processed the original trajectory data of a vehicle using the genetic algorithm, and
estimated the vehicle position in real time using a reliable positioning system. Xiong [11]
established a vehicle kinematics model that considered the sliding parameters. During
a vehicle turning process, by comparing the position estimated by the kinematics model
with the position measured by a high‑precision positioning system, the Leven–Marquardt
algorithm was used to estimate the real‑time sliding parameters. Rogers [12] established
a three‑dimensional kinematics model of a vehicle and used the Kalman filter algorithm
to estimate the sliding parameters in real time using a high‑precision positioning sensor.
Moosavian [13] carried out a large number of real vehicle experiments. The sliding param‑
eters in the experimental data were linearly fitted with the corresponding steering radius,
and the vehicle position was corrected in real time by feedforward compensation. Using
a kinematics model to estimate the position of an unmanned tracked vehicle reduces the
dependence on a high‑precision positioning system to some extent. However, to improve
the position estimation accuracy, it is still necessary to correct the results obtained from the
kinematics model in real time [14]. This paper proposes a position estimation method for
unmanned tracked vehicles that is based on a steering dynamicsmodel and then compares
the results with those of a position estimation method based on a kinematics model.

Research regarding the steering force model for tracked vehicles is becoming increas‑
ingly mature. Purdy [15] used Coulomb’s law to calculate the steering force of tracked ve‑
hicles under the assumption that the ground pressure generated by the tracked vehicle is
uniform. However, when a tracked vehicle turns while traveling at a high speed, the track
force calculated by this model does not change as the steering radius changes. Thus, the
calculated force does not conform to the actual track force during the turning process [16].
Under the assumption that the track is subjected to uniform force, Wong [17] analyzed
the steady‑state steering of tracked vehicles by using the shear force–displacement model.
Tang [18] assumed that the tracked ground pressurewas trapezoidal distributionwhen the
tracked vehicle turned, and based on this assumption, the steady‑state steering process of
the tracked vehicle was analyzed. Under the assumption that the ground pressure of the
track is rectangular and concentrated in each load wheel, Wang [19] calculated the rela‑
tionship between the force of the track on both sides and the shear displacement under the
steady steering condition of the tracked vehicle by using the numerical iteration method.
For the study of steady‑state steering of tracked vehicles, only themotion parameters in the
steering process of tracked vehicles can be analyzed. It is necessary to study the dynamic
steering process of tracked vehicles for position estimation and motion control of tracked
vehicles. Özdemir [20] improved the steering dynamics model established by Wong and
realized the analysis of the dynamic steering process of tracked vehicles.

During this study, the relationship between shear displacement and the speed and
yaw rate during the steering process of tracked vehicles was systematically analyzed. The
shear force–displacement model was used to calculate the track force, and a steering dy‑
namics model suitable for real‑time positioning of tracked vehicles was established. The
proposed position estimation method for unmanned tracked vehicles was verified by sim‑
ulations and experiments with actual vehicles. The experimental results showed that the
position estimationmethodproposed in this paper, which does not rely on a high‑precision
positioning system, exhibited a better position estimation accuracy than a position estima‑
tion method based on the kinematics model.

2. Steering Dynamics Model for Tracked Vehicles
In order to analyze the force of the track during the steering process of the tracked

vehicle, three main assumptions are made:
(1) The tracked vehicle does not deform during the turning process, and the position of

the center of mass is always located at the geometric center.
(2) In the steering process of the tracked vehicle, the stretching and bulldozing effects of

the track are ignored.
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(3) The changes in the track force can be obtained from the shear force–displacement
model, which can be expressed by Equation (1):

τ = (c + σ tan ϕ)
(

1 − e−
j
K

)
, (1)

2.1. The Calculation of Shear Displacement in the Steering Process of a Tracked Vehicle
Taking a right turn made by the tracked vehicle as an example, the relationships be‑

tween the motion parameters are shown in Figure 1.
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The position coordinates in XOY can be obtained by integrating the velocity of the
center of mass according to Equation (2):{

X =
∫ t

0 v cos(θ − β)dt
Y =

∫ t
0 v sin(θ − β)dt

. (2)

The components and ay, can be expressed by Equation (3):{
ax =

.
vx + vy

.
θ

ay =
.
vy − vx

.
θ

. (3)

Two points,
(

xp, yp
)
and (xp,−yp), on the left and right tracks about x‑axis symme‑

try were taken, respectively. By calculating the shear displacement of the two points, the
relationship between the shear displacement of the track and the vehicle speed and yaw
rate during the turning process was analyzed. The shear velocities, xsxl , vsxr, vsyl , and
vsyr, of both tracks in the x‑ and y‑directions at

(
xp, yp

)
and

(
xp,−yp

)
can be expressed by

Equation (4): 
vsxl = vx +

B
2

.
θ − ul

vsxr = vx − B
2

.
θ − ur

vsyl = vsyr = vy − xp
.
θ

. (4)
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The expression for the angles between the direction of velocity and the x‑axis for the
points

(
xp, yp

)
and

(
xp,−yp

)
is:

ψl = arccos

(
vsxl√

v2
sxl+v2

syl

)

ψr = arccos

(
vsxr√

v2
sxl+v2

syl

) . (5)

The slip rate expression of the track on both sides, δl and δr, can be obtained as:{
δl =

vsxl
max(ul+vsxl ,ul)

δr =
vsxr

max(ur+vsxr ,ur)

. (6)

The shear displacements of two points are obtained by integrating the shear velocity
of
(

xp, yp
)
and

(
xp,−yp

)
according to Equations (7)–(9): jxl =

∫ t
0 vsxldt =

(
vsxl
ul

)(
L
2 − xp

)
jxr =

∫ t
0 vsxrdt =

(
vsxr
ur

)(
L
2 − xp

) , (7)

 jyl =
1
ul

(
vy − L

2

.
θ
)(

L
2 − xp

)
+ 1

2ul

.
θ
(

L
2 − xp

)2

jyr =
1
ur

(
vy − L

2

.
θ
)(

L
2 − xp

)
+ 1

2ur

.
θ
(

L
2 − xp

)2 , (8)

 jl =
√

j2xl + j2yl

jr =
√

j2xr + j2yr
. (9)

2.2. Tracked Vehicle Steering Force Analysis
The ground pressure distributions of both tracks directly impact the steering force of

the tracked vehicle. The ground pressures, pls and prs, of the unit ground areas of the sth

load‑bearing wheels of both tracks can be expressed by Equation (10):{
pls = pls + p′tls
prs = prs + p′trs

. (10)

In Equation (10), pls and prs represent the ground pressures of the unit ground areas
of the load‑bearing wheels on the left and right tracks, respectively, which are generated
by the inertial and gravitational forces; p′tls and p′trs are the pressure changes of the unit
ground areas of the sth load‑bearing wheels on the both tracks, respectively.

Figure 2 shows the changes in the ground pressures of the load‑bearingwheels, which
are caused by the track tension. In this figure, M1 − M2 is the auxiliary line used for solving
for the steering force balance of the vehicle, which is at a distance of L/(n + 1) from the
front edge of the track ground plane.

During a right turn, the left track moves at a greater speed than the right track. The
relationship between the tension and shear force of the tracks on both sides can be obtained
by Equation (11): {

Tf l = Fxl , Trl = 0
Trr = Fxr, Tf r = 0

(11)
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The tension of the track has an effect on the first load wheel on the tension side in the
vertical direction. For example, the expression of the ground pressure tls of the sth load
wheel of the left track is (Equation (12)):{

tl1 = Tf l sin γ f
tl2 = tl3 = · · · tln−1 = tln = 0

(12)

The pressure variation, αls, of the sth load‑bearing wheel of the left track is linearly
related to L and has a slope of k. Thus, αls can be expressed by Equation (13):

αls = k
sL

(n − 1)lb
+ ∆l (13)

where ∆l represents the value of αls at M1 − M2 as it changes according to Equation (13).
The p′tls of the sth load‑bearing wheel of the left track can be obtained by combining

Equations (11)–(13) into Equation (14):
p′tls = αls, s ̸= 1, s ̸= n

p′tl1 = αl1 − tl1/bl
p′tln = αln − tln/bl

. (14)

Themoments of the forces of each load‑bearingwheel on the left and right tracks with
respect to the auxiliary line, M1 − M2, which are denoted as Ml and Mr, respectively, can
be expressed by Equation (15):{

Ml = ∑n
s=1(αls + pls)· sLlb

n−1 − tl1· L
n−1 − tln· nL

n−1
Mr = ∑n

s=1(αrs + prs)· sLlb
n−1 − tr1· L

n−1 − trn· nL
n−1

. (15)
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A system of equations to describe the torque balance of the ground pressure of each
load‑bearing wheel on both tracks with respect to the auxiliary line was established and is
presented as Equation (16):

Ml + Mr = mg
(

L
2 + L

n−1

)
∑n

s=1 (αls + pls)lb − tl1 − tln = ∑n
s=1 (αrs + prs)lb − tr1 − trn = mg

2
∑n

s=1 αls = tl1 + tln
∑n

s=1 αrs = tr1 + trn

. (16)

Expressions for p′tls and p′trs were obtained by combining Equations (11)–(16), and
these expressions are presented in Equation (17):p′tls =

3tr1−3trn−5tl1−tln
2nlb + 3(trn+tln−tr1−tl1)s

n(n+1)bl − tls/bl

p′trs =
5tr1−trn−3tl1−3tln

2nlb + 3(trn+tln−tr1−tl1)s
n(n+1)bl − trs/bl

(17)

The inertial force of the center of gravity affects the ground pressure distributions of
both tracks during a tracked vehicle turning process. The inertial force affects the distribu‑
tion of the ground pressure of each load wheel on both tracks, as shown in Figure 3.
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Expressions for Nl and Nr are given in Equation (18):{
Nl =

mg
2 − mayh

B
Nr =

mg
2 +

mayh
B

, (18)

The pls and prs of the sth load‑bearing wheels on both sides of the track can be ex‑
pressed by Equation (19):pls = Nl −

3(2s−n−1)maxh
n(n+1)blL , s = 1 · · · n,

prs = Nr − 3(2s−n−1)maxh
n(n+1)blL , s = 1 · · · n,

, (19)

The steering force of the tracked vehicle is illustrated in Figure 4. Equations (17)–(19)
were combined to obtain expressions for the x‑ and y‑components of the shear forces be‑
tween the groundandboth tracks,which areprovided inEquations (20) and (21), respectively:

Fxl = ∑n
s=1
∫ (3−s)L

4 + l
2

(3−s)L
4 − l

2

b·(c + pls tan ϕ)

(
1 − e−

jxl
K

)
cos(ψl + π)dx

Fxr = ∑n
s=1
∫ (3−s)L

4 + l
2

(3−s)L
4 − l

2

b·(c + prs tan ϕ)
(

1 − e−
jxr
K

)
cos(ψr + π)dx

, (20)


Fyl = ∑n

s=1
∫ (3−s)L

4 + l
2

(3−s)L
4 − l

2

b·(c + pls tan ϕ)

(
1 − e−

jxl
K

)
sin(ψl + π)dx

Fyr = ∑n
s=1
∫ (3−s)L

4 + l
2

(3−s)L
4 − l

2

b·(c + prs tan ϕ)
(

1 − e−
jxr
K

)
sin(ψr + π)dx
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The rolling resistances of both tracks can be expressed by Equation (22):{
FRl = ∑n

s=1 pls f bl
FRr = ∑n

s=1 prs f bl
, (22)

The steering resistance torques of both tracks can be expressed by Equation (23):
MRl = ∑n

s=1
∫ (3−s)L

4 + l
2

(3−s)L
4 − l

2

b·(c + pls tan ϕ)

(
1 − e−

jxl
K

)
sin (ψl + π)xdx

MRr = ∑n
s=1
∫ (3−s)L

4 + l
2

(3−s)L
4 − l

2

b·(c + prs tan ϕ)
(

1 − e−
jxr
K

)
sin(ψr + π)xdx

. (23)

A system of equations, provided in Equation (24), can describe the force relationship
of the tracked vehicle during steering:

max = Fxr + Fxl − FRl − FRr
may = Fyr + Fyl

Iz
..
θ = B

2 (Fxl − Fxr)− B
2 (FRl − FRr)− MRr − MRl

. (24)

The expressions for the x‑ and y‑components of the trackedvehicle acceleration, which
are denoted by

.
vx and

.
vy, respectively, and the yaw angular acceleration,

..
θ, were obtained

(Equation (25)):
.
vx = (Fxr + Fxl − FRr − FRl)/m − vy

.
θ

.
vy =

(
Fyr + Fyl

)
/m + vx

.
θ

..
θ =

(
B
2 (Fxl − Fxr)− B

2 (FRl − FRr)− MR1 − MR2

)
/Iz

. (25)

3. Experimental Verification
To verify the unmanned tracked vehicle position estimation accuracy of the dynamics

model proposed in this paper, an experiment with an actual vehicle was designed. The
tracked vehicle structural parameters and the road surface parameters are provided in
Table 1. The experimental vehicle data acquisition system included a wheel speed sensor,
a combined inertial navigation module, and a driving data recorder. The wheel speed
sensor was installed at the sprockets to measure the circumferential velocities of both the
left and right sprockets. The sprocket speed data of the tracked vehicle were used as the
model input, and the vehicle position was estimated by using the steering dynamics and
the kinematics model, respectively. The position estimation process is shown in Figure 5.

Table 1. Vehicle structural parameters and road surface parameters.

Road Surface Parameters Vehicle Structural Parameters

c (Pa) ϕ (◦) m (kg) Iz (kg·m2) L (m) B (m) b (m)

1.3 31.1 13,000 4500 2.78 1.64 0.28
K (cm) f l (m) r (m) h (m) n
1.2 0.065 0.12 0.183 1.059 4

The positioning error of the combined inertial navigationmodule after the differential
(GPS + RTK) is less than 2 cm, and the heading angle measurement error is less than 0.05◦.
The experimental vehicle is shown in Figure 6. The measurement information gathered
from the combined inertial navigation module was assumed to be the actual position; this
information was compared with the vehicle trajectories calculated by the tracked vehicle
dynamics and kinematics models.
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3.1. The Tracked Vehicle Performed Uniform Circular Motion on a Sand Road
The tracked vehicle performs uniform circular motion at different vth. The vth of the

tracked vehicle is the average of the circumferential velocities of both sprockets:
vth = (ul + ur)/2. Figure 7 depicts the changes in the tracked vehicle state when it turned
with a constant speed and a radius of 11.78 m on the sand road for one week. Figure 7a
presents the velocity changes of the left and right sprockets. The average theoretical cen‑
troid velocity was 2.6 m/s during the entire turning process. Figure 7b shows the changes
in the tracked vehicle steering trajectories. The tracked vehicle steered at a constant speed
for one week, and the vehicle position estimated by the kinematics model had a large error
compared with the actual position of the vehicle. The vehicle position estimated by the dy‑
namicsmodel was highly consistent with the actual position. Figure 7c depicts the changes
in the heading angle during the tracked vehicle turning process. As the vehicle turned, the
error in the heading angle calculated by the kinematics model gradually increased, reach‑
ing a maximum value of 72.35◦ at the end of the calculations. Figure 7d illustrates the
changes in the yaw rate during the tracked vehicle turning process. Since sliding between
the track and the ground during vehicle turning was not considered, the vehicle yaw rate
calculated by the kinematics model was always greater than the actual yaw rate.

Figure 8 presents the trajectory and yaw rate errors for the tracked vehicle calcu‑
lated by both the dynamics and kinematics models during the vehicle turning process.
Figure 8a depicts the changes in the driving trajectory errors. The driving trajectory er‑
ror calculated by the kinematics model exhibited a cumulative increasing trend with time,
and the maximum error reached 12.24 m. The driving trajectory error calculated by the
dynamics model was maintained at a low level and did not have a cumulative increasing
trend. Themaximum error for this case was 0.56 m. After the tracked vehicle continuously
turned right for one week, the average trajectory error calculated by the kinematics model
was perror_m = 6.34 m. The average trajectory error calculated by the dynamics model,
perror_m = 0.263m,was 95.85% less than that calculated by the kinematicsmodel. Figure 8b
shows the changes in the yaw rate errors. The average yaw rate error calculated by the kine‑
matics model was

.
θerror_m = 2.44◦/s, and the fluctuations were stable. This result occurred

because the tracked vehicle turnedwith a constant speed and a constant radius on a consis‑
tent road surface; thus, the slippage between the track and the ground changed little. The
average yaw rate error calculated by the dynamics model was

.
θerror_m = 0.866◦/s, which

is a 64.5% decrease from the value calculated by the kinematics model.
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The tracked vehicle performed uniform circular steering with different vth and R val‑
ues on the sand road. The driving trajectory and yaw rate errors for these conditions are
listed in Table 2, which demonstrates that the vehicle trajectory and yaw rate errors calcu‑
lated by the dynamics model were significantly lower than those calculated by the kine‑
matics model. The tracked vehicle performed 10 turning experiments on the sand road.
The average yaw rate and trajectory tracking errors calculated by the kinematics model
were

.
θerror_m = 2.14◦/s and perror_m = 11.08 m, respectively. The average yaw rate and

trajectory tracking errors calculated by the dynamics model were
.
θerror_m = 0.325◦/s and

perror_m = 1.71 m, respectively, which represent 84.8% and 84.57% decreases, respectively,
from the values calculated by the kinematics model.
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Table 2.
.
θerror_m and perror_m calculation results when the tracked vehicle performed uniform circular

steering experiments with different vth and R values.

Experiment Number –
vth (m/s) R (m)

Kinematics Model Dynamics Model
.
θerror_m (◦/s) perror_m (m)

.
θerror_m (◦/s) perror_m (m)

1 2.3 12.28 2.036 5.793 0.278 1.172
2 2.6 11.24 2.44 6.34 0.866 0.263
3 2.6 16.35 1.86 17.46 0.07 2.97
4 2.6 18.12 1.78 16.69 0.103 1.52
5 2.6 18.5 1.68 11.56 0.21 1.68
6 2.6 19.64 1.46 12.33 0.213 1.94
7 3.3 12.6 2.66 6.04 0.53 1.55
8 3.5 19.5 2.11 13 0.34 2.12
9 3.6 12.8 3.21 7.65 0.57 1.61
10 3.7 20.3 2.18 13.9 0.07 2.28

3.2. The Tracked Vehicle Performed General Turning Motion on a Sand Road
A driver drove the tracked vehicle on the sand road according to a predetermined

trajectory, controlling the vehicle so that it performed acceleration, deceleration, and turn‑
ing tasks that were based on the premise of ensuring driving safety. Figure 9 depicts the
changes in the vehicle driving state during the whole driving process. Figure 9a presents
the speed changes of the left and right sprockets. The driver adjusted both sprocket speeds
in real time based on the predetermined trajectory to control the vehicle turning opera‑
tions. The vth of vehicle during the entire driving process was 4.62 m/s. Figure 9b depicts
the changes of the position of the tracked vehicle. The total length of the trajectory was
491 m. The position estimated by the kinematics model was quite different from the actual
trajectory of the vehicle, and it had a maximum error of 181.82 m. The dynamics model
estimated that the vehicle position was in good agreement with the actual position, and
the maximum error is only 9.41 m. Figure 9c illustrates the changes in the heading angle
during the tracked vehicle turning process. The estimated heading angle of the kinematics
model had a large error with the actual heading angle of the vehicle, and the maximum
error is 74◦. Figure 9d illustrates the changes in the yaw rate during the tracked vehicle
turning process. The kinematics model did not consider the slippage between the track
and the ground; thus, the yaw rate calculated by the kinematics model was always greater
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than the actual yaw rate. At t = 68.6 s, when the steering radius of the tracked vehicle was
small, the yaw rate error reached 10.77 ◦/s.
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Figure 9. Changes in the state parameters of the tracked vehicle: (a) circumferential velocities of the
left and right sprockets, (b) driving trajectory, (c) heading angle, and (d) yaw rate.

Figure 10 presents the changes in the trajectory and yaw rate errors during the entire
tracked vehicle driving process. Figure 10a depicts the changes in the driving trajectory
error. The average position error estimated by the kinematics model was 85.31 m. The
average position error estimated by the dynamicsmodelwas 4.27m, which is 95% less than
the position error estimated by the kinematics model. Figure 10b illustrates the changes in
the estimation error of yaw rate during the tracked vehicle turning process. The average
errors of yaw rate estimated by the kinematics model and the dynamics model are 0.66◦/s
and 0.044◦/s, respectively. The trajectory and yaw rate errors estimated by the dynamics
model were reduced by 95% and 93.3%, respectively.
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3.3. The Tracked Vehicle Performed Continuous Steering Motion on a Cement Pavement
The tracked vehicle performed continuous steering operation on the cement pave‑

ment. Because of the limitations of the experimental site, it was difficult to find a region of
cement pavement that was wide enough for the tracked vehicle to perform turning opera‑
tions with certain radii. The vehicle experiment was carried out on a long, straight cement
runway. The tracked vehicle performed low‑speed and small‑radius continuous turning
operations on the cement road. Figure 11 presents the changes in the vehicle parameters
throughout the driving process. Figure 11a depicts the changes in the speeds of the left and
right sprockets. An in situ driving mode, which featured braking by a single track in some
sections, was adopted for the tracked vehicle. The duration of the entire driving process
was 244 s, during which the average theoretical centroid speed was 0.68 m/s. Figure 11b
shows the estimated position of the tracked vehicle. The driving position error estimated
by the kinematics model gradually increased, reaching a maximum of 71.57 m by the end
of the driving process. Figure 11c depicts the changes in the heading angle. For these cases
of low‑speed and small‑radius turning, the heading angle error calculated by the kinemat‑
ics model was large, with a maximum heading angle error of 57◦. The heading angle error
directly led to increases in the trajectory error. Figure 11d shows the changes in the yaw
rate. When the in situ driving mode was employed, the slippage between the tracks and
the ground was large even at low driving speeds, and the yaw rate error calculated by the
kinematics model was large.

Figure 12 depicts the changes in the trajectory and yaw rate errors of the tracked ve‑
hicle when it performed continuous low‑speed and small‑radius turning operations on
cement pavement. The average position errors estimated by the kinematics model and the
dynamics model were 29.09 m and 2.31 m, respectively. The average errors of yaw rate
estimated by the kinematics model and the dynamics model are 0.274◦/s and 0.051◦/s,
respectively. The trajectory and yaw rate errors estimated by the dynamics model were
reduced by 92.6% and 81.39%, respectively.
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4. Conclusions
In the research process, a dynamics model that could be used for track position esti‑

mation was established. Three primary conclusions were drawn from the actual vehicle
experiments performed during this study:
(1) Using this steering dynamics model to estimate the position of a tracked vehicle pro‑

duced a higher accuracy than utilizing the kinematics model. This method can pro‑
vide a reference for unmanned tracked vehicles working in special environments that
cannot use precise positioning systems.

(2) The experimental results indicate that large errors are still produced when the dy‑
namics model is used for tracked vehicle position estimations because the dynamics
model ignores the effects of some factors, such as the road slope. Fully considering
the effects of pavement parameters and improving the calculation accuracy of the
dynamics model will be focal points of future research endeavors.

(3) With the development of vehicle sensors, it is possible to measure some motion pa‑
rameters of trackedvehicles, such as yawangle, centroid velocity, and centroid sideslip
angle. Therefore, it is also theoretically feasible to apply the dynamics model pro‑
posed in this paper to the trajectory tracking control of tracked vehicles for model
prediction.
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Abbreviations

Notation
τ the shear stress
σ the ground pressure of the tracks
c the soil cohesion parameter
ϕ the soil internal friction angle
j the shear displacement
K the soil deformation parameter
xoy a body coordinate system
XOY the geodetic coordinate system
v the centroid velocity
vx the velocity component of v in the x‑axis direction
vy the velocity component of v in the y‑axis direction
β the sideslip angle of the tracked vehicle
θ the yaw angle
φ the complementary angle of the angle between v and the x‑axis
L the plane length of contact between track and ground
b the plane width of contact between track and ground
B the center line distance of the two sides of the track ground plane
ψ the angle between the direction of velocity of a point on the track and the x‑direction
Ol , Or the instantaneous steering center of the tracks on both sides
Oc the turning center
d the offset of Oc relative to o in the x‑direction
n the number of load‑bearing wheels on one track

tls, trs
the vertical track tension components of the sth load‑bearing wheels of the tracks
on both sides
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Tf l , Tf r the front track tensions of the tracks on both sides
Trl , Trr the rear track tensions of the tracks on both sides
γ f the approaching angle
γr the departure angle
l the length of the ground pressure area of a single load‑bearing wheel
Nl , Nr the normal force exerted by the ground on both tracks
h the height of center of gravity
Fxl , Fxr the component of the shear force in the x‑direction
Fyl , Fyr the component of the shear force in the y‑direction
MRl , MRr the steering resistance torques of the left and right tracks
FRl , FRr the rolling resistances of the tracks on both sides
f the ground rolling resistance coefficient
Iz the moment of inertia of the tracked vehicle
m the mass of the tracked vehicle
r the radius of the driving wheel
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