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Abstract: Solid-state batteries are currently developing into one of the most promising battery types
for both the electrification of transport and for energy storage applications due to their high energy
density and safe operating behaviour. The performance of solid-state batteries is largely determined
by the manufacturing process, particularly in the production of electrodes. However, efficiently
analysing the effects of key manufacturing features and predicting the mass loading of electrodes in
the early stages of battery manufacturing remain a major challenge. In this study, a machine-learning-
based approach is proposed to effectively analyse the importance of manufacturing features and
accurately predict the mass loading of electrodes. Specifically, the importance of four key features
during the manufacturing process of solid-state batteries is first quantified and analysed using a
machine-learning-based method to analyse the importance of features. Then, four effective machine-
learning-based regression methods, including decision tree, boosted decision tree, support vector
regression and Gaussian process regression, are used to predict the mass loading of the electrodes in
the mixing and coating stages. The comparative results show that the developed machine-learning-
based approach is able to provide a satisfactory prediction of the electrode mass loading of a solid-state
battery with 0.995 R2 while successfully quantifying the importance of four key features in the early
manufacturing stages. Due to the advantages of its data-driven nature, the developed machine-
learning-based approach can efficiently assist engineers in monitoring/predicting the electrode mass
loading of solid-state batteries and analysing/quantifying the importance of manufacturing features
of interest. This could benefit the production of solid-state batteries for further energy storage
applications.

Keywords: battery manufacturing; feature importance analysis; electrode mass loading prediction;
machine learning; regression model

1. Introduction

Solid-state batteries are becoming a promising next-generation battery type in energy
storage applications due to their higher energy density and safer operation behaviour
when compared with lithium-ion batteries [1,2]. In addition, solid-state batteries are able to
charge faster, making them more suitable for electric vehicles and other applications, where
sustainable development goals are important [3]. The manufacturing process, especially
for the electrode production stage, plays an important role in determining the solid-state
battery performance [4]. In this context, to ensure high-performance solid-state batteries
and widen their applications, it is vital to analyse/quantify the effects of manufacturing
feature terms and monitor/forecast electrode key properties such as mass loading during
the early manufacturing stages.
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However, solid-state batteries have complicated energy storage resources, containing
many electrochemical dynamics, during their production [5]. To date, the trial-and-error
strategy is the main solution, which has been widely utilized to analyse the effects of
key manufacturing feature terms on the mass loading of produced electrodes, which is
can easily lead to high costs and can take a long time to complete [6,7]. In light of this,
developing an efficient solution to analyse the importance of manufacturing feature terms
of interest and predict the electrode mass loading of solid-state batteries is a challenging
but essential target when attempting to widen the applications of solid-state batteries.

With the rapid development of artificial intelligence, machine learning and computa-
tional platforms [8], machine-learning-based methods have become a powerful solution to
management issues in batteries [9,10]. Numerous machine-learning-based solutions have
been developed to estimate batteries’ internal states [11–14], forecast batteries’ future ageing
dynamics [15–17] and remaining useful life (RUL) [18,19], diagnose battery faults [20–22]
and optimize battery charging [23–26] and energy management [27–30]. In summary, based
on a well-developed machine learning method, an effective management solution can be
obtained to improve the operational performance of batteries. However, these methods
mainly focus on exploring the macrodynamics rather than microdynamics of batteries,
such as their manufacturing feature terms. To date, there are still limited studies focusing
on analyses of battery electrode manufacturing feature terms through the development
of related machine-learning-based solutions. For instance, a machine learning method
using random forest is proposed in [31] to capture the interdependency among key feature
terms of battery manufacturing and the electrical behaviours of the associated battery cells.
Based on the typical cross-industrial standard process, a machine learning approach using
neural networks is developed to quantify the dependency among key battery components.
In [32], a neural-network-based machine learning approach is designed to capture battery
products’ capacity for highly efficient battery manufacturing. To solve the imbalance that
usually occurs in the battery manufacturing process, an RUBoost-based machine learn-
ing method is developed to predict battery capacity and quantify the formulation terms
in [33]. For solid-state batteries, it should be noted that the corresponding manufacturing
process, especially for electrode production, plays a key role in the solid-state battery
properties. To ensure high-performance solid-state battery production, it is necessary to
design an effective machine-learning-based approach to predict the produced electrode
properties and analyse how feature terms at the early manufacturing stages will affect the
electrode properties.

Based on the above discussion, to benefit high-performance solid-state battery pro-
duction, this study develops a machine-learning-based approach to accurately forecast
the electrode mass loading of solid-state batteries and quantify the importance of related
manufacturing feature terms in determining electrode mass loading. This study makes
the following contributions to the field: (1) three effective machine-learning-based feature
analysis methods, including minimum redundancy–maximum relevance (MRMR), the
F-test and RreliefF, are developed to quantify and analyse the importance and effects of
four key manufacturing feature terms on determining electrode mass loading; (2) after
analysing feature importance, four efficient machine-learning-based regression methods,
including decision tree (DT), boosted decision tree (BDT), support vector regression (SVR)
and Gaussian process regression (GPR), are developed to predict the electrode mass load-
ing a of a solid-state battery during the early manufacturing stage. Due to its data-driven
characteristics, the designed machine-learning-based approach could accurately forecast
battery electrode mass loading at the mixing and coating stages and successfully quantify
the importance of manufacturing feature terms, paving the way to monitoring electrode
mass loading and analysing the effects of early-stage manufacturing feature terms, further
benefitting the production of high-performance solid-state batteries.

The rest of this paper is organized as follows: Section 2 introduces four key manu-
facturing feature terms from mixing and coating stages to produce an electrode for the
solid-state battery. Section 3 describes the machine-learning-based feature importance
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analysis methods, the machine-learning-based regression methods and the related pre-
diction performance indicators. Then, the feature importance analysis results of four key
manufacturing feature terms and the electrode mass loading prediction results are provided
and discussed in Section 4. The conclusion of this study is given in Section 5.

2. Key Manufacturing Feature Terms

Electrode manufacturing is a key and complex process within the production line for
solid-state batteries, involving numerous disciplines, including material, mechanical and
electrical engineering [34]. Furthermore, the produced electrode properties such as mass
loading significantly affect final the performance of solid-state batteries, which must be
well monitored and controlled to produce a high-performance solid-state battery.

Figure 1 illustrates the main stages to manufacture an electrode of solid-state batteries.
During electrode manufacturing, after preparing suitable materials, the first main stage
is mixing to generate slurries that contain active material, conductive additive material
and solvent. After that, the mixed slurry needs to be coated on the surface of the metal foil
through a coating machine. Generally, anode coating will use copper foil, while cathode
coating will adopt aluminium foil. During the coating stage, the ratio of the coating machine
will be fixed, while CG will be adjusted to determine the thickness of the coating product.
Then, the coating product will be dried by using ovens at a predefined temperature,
followed by a calendaring stage to evaporate the residual solvent. After cutting the coating
product to a suitable size, the electrode of the solid-state battery can be obtained. It should
be noted that lots of manufacturing terms are involved within the electrode production
line. Some feature terms, specifically for those from mixing and coating stages (the early
manufacturing stages), play a key role in affecting electrode mass loading, which must be
well analysed and monitored to ensure good electrode performance.
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In this study, three key feature terms, including active material–mass content (AM-
MC), solid-to-liquid ratio (S-LR), viscosity from the mixing stage and a key feature term
named comma-gap (CG), from the coating stage are utilized as the explored feature terms of
interest. All of these feature terms come from the early manufacturing stages, which brings
challenges for electrode mass loading prediction. Theoretically, CG stands for a gap value
between comma and coating rolls, affecting both the weight and thickness of the coating.
S-LR stands for the mass ratio between a solid component (i.e., active material, conductive
additive material and binder) and slurry mass (i.e., solvent and solid component). A well-
proven dataset [35] from the Franco Laboratoire de Reactivite Chimie-des-Solides (LRCS)
is adopted here to ensure that the machine-learning-based models used can be trained well.
More information on the design of experiments and the introduction of the data can be
obtained in [35] for readers’ interest. Based on this dataset, the feature importance of the
above-mentioned four feature terms can be quantified, while suitable machine-learning-
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based regression models can be built to predict the electrode mass loading of the solid-state
battery in the early manufacturing stages.

3. Machine Learning Methodology

In this section, three typical machine learning methods are first introduced to analyse
the importance of feature terms of interest. Then, four regression methods are derived
to predict the electrode mass loading of solid-state batteries. Afterwards, three perfor-
mance indicators are used to quantify and compare the electrode mass loading prediction
performance via the developed regression models.

3.1. Feature Importance Analysis Method

To quantify the importance and analyse the effects of these feature terms of interest on
the determination of electrode mass loading of solid-state batteries, three effective feature
selection methods, including minimum redundancy–maximum relevance (MRMR), F-test
and RReliefF, are utilized in this study, respectively.

3.1.1. Minimum Redundancy–Maximum Relevance

Minimum redundancy–maximum relevance (MRMR) is an efficient feature selection
method as it selects feature terms with high correlations with the output of interest and
low correlations with each other [36]. If the interested feature terms are continuous, the
correlation with relevance in MRMR can be calculated by using the F-statistic, while the
correlation with redundancy will be obtained by using the Pearson correlation coefficient.
In this context, the importance of the feature terms could be determined one by one through
adopting the greedy search to maximize target functions corresponding to both relevance
and redundancy.

In this study, two classical target functions, including the Mutual Information Dif-
ference (MID) and the Mutual Information Quotient (MIQ), are adopted to represent the
difference and the quotient between relevance and redundancy. Through using MID and
MIQ, MRMR is capable of ensuring that the quantified feature importance not only refers to
the one that gives the minimum correlation among inputted feature terms but also provides
the large correlations with the target output.

3.1.2. F-Test

The F-test is one of the classic statistical tests providing an F-score through computing
variance ratios [37]. In this study, the F-test in a one-way analysis of variance (ANOVA) is
adopted to calculate variance’s ratio among groups and a group’s variance for a feature. A
larger value of the F-score represents that the distance within the group is smaller, while
the distance between the groups is larger.

The ANOVA could determine each feature term’s value to the target output by adopt-
ing the F-test to quantify the mean of various groups. Then, each feature term can be scored
and ranked to reflect which term plays the most important role in determining the target
output. For the ANOVA, the number of feature terms and the F-ration will be obtained.
The F-score of each feature term can be obtained by:

F2 =
∑
(
xj − x

)2·Nj

n − 1
(1)

where Nj stands for the number of group j within the set; xJ and x represent the mean
values of the group and feature term, respectively. n denotes the number of groups. Finally,
the feature importance value under the F-test can be obtained through dividing distances
among groups by the distance within the group. The larger the result, the more important
that feature’s contribution to the target output.
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3.1.3. RReliefF

RReliefF is an efficient machine-learning-based approach to quantify feature impor-
tance by penalizing the feature term that provides various values to neighbours with similar
target outputs while rewarding the feature term that gives different values to neighbours
with different target outputs [38]. Supposing Wdo represents the weight of providing vari-
ous values for the target output, Wdi stands for the weight of providing various values for
the feature term, and Wdo∧di denotes the weight of providing various target outputs and
various values for the feature term, thus giving two nearest neighbours. All weights in
RReliefF can be calculated by:

Wi
do = Wi−1

do + ∆o(xl , xr)·dlr
Wi

di = Wi−1
di + ∆i(xl , xr)·dlr

Wi
do∧di = Wi−1

do∧di + ∆o(xl , xr)·∆i(xl , xr)·dlr

(2)

Afterwards, RReliefF can calculate the importance weight W f t of feature terms through
updating all intermediate weights as:

W f t =
Wdo∧di

Wdo
− Wdi − Wdo∧di

m − Wdo
(3)

3.2. Regression Method

After developing a feature importance analysis method to quantify the importance of
different feature terms, the prediction method needs to be adopted to forecast the electrode
mass loading based on the feature terms of interest. In this study, four classical and effective
prediction methods named decision tree, boosted decision tree, support vector machine
and Gaussian process regression are utilized.

3.2.1. Decision Tree

Decision tree (DT) is an algorithm that uses a tree model to solve regression problems.
Each leaf in the tree model represents a predicted value, which is the mean value of the
outputs of all training set factors contained in this leaf. The DT is a binary tree, which means
that except for leaf nodes, all other nodes have only two child nodes. In addition, all inputs
that fall on the same leaf have the same output [39]. Figure 2 describes a simple structure
example of DT. Specifically, when using DT to solve regression tasks, a certain feature of
the samples is tested from the root nodes, and then the samples are assigned to the child
nodes according to the testing results. It is ensured that each child node corresponds to
a value of this feature. By analogy, all samples are tested and distributed in a recursive
manner until they reach the leaf nodes.
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3.2.2. Boosted Decision Tree

The working mechanism of the boosting algorithm is to first train the training set
through a weak learner A with a set of initial weights. Then, the weights of the training
samples are updated according to the performance of the error rates of this weak learner A,
so that the weights of the training samples with higher learning error rates will become
greater. Then, a weak learner B is used to train the training set based on the adjusted
weights, and these samples with greater weights will receive more attention. This process
is repeated until the number of weak learners reaches the pre-specified number T (T = 30
in this study). Finally, these T weak learners are integrated through the predefined strategy
to obtain a final strong learner. In this study, the medium decision trees are employed as
the weak learners, and the AdaBoost algorithm is utilized as the integration strategy. When
dealing with practical problems, the boosted decision tree (BDT) model can handle different
types of predictors and allows for missing values. This method can fit complex nonlinear
relationships and can automatically manage the mutual influence between predictors. Thus,
the BDT model usually has stronger predictive ability than most traditional tree methods.

3.2.3. Support Vector Regression

Support vector machine (SVM) is a machine learning classification model, and its
principle is to seek the optimal solution in data mining through establishing an optimal
hyperplane, so that the support vectors of the two (or more) classification sets are the
farthest away from this classification plane [40]. The traditional methods usually simplify
problems by reducing the dimensionality of the sample, while the SVM increases the
dimensionality of the sample point. Then, it maps the sample points to a high-dimensional
or even infinite-dimensional space through a kernel function to deal with linear and
nonlinear problems. As an application of SVM to regression problems, support vector
regression (SVR) is an approach to estimate the function mapped from input objects to
output numbers based on training data. Regression and classification are essentially the
same in a sense. Similar to SVM, the principle of SVR is to find a regression hyperplane, so
that all the data in a dataset are closest to the plane. When considering data distributed
in two dimensions (x-axis and y-axis are used to define the location of the points), SVR
tries to find the best line within a predefined or threshold error value. It classifies the data
into two types, one type above the error line and one type below the error line. For failed
lines, the error is estimated as the difference between the predicted and actual values and
represented by ε, as illustrated in Figure 3.
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3.2.4. Gaussian Process Regression

Gaussian process regression (GPR) is a typical regression method based on Bayesian
theory [41,42]. The probability distribution of GPR can be described through mean function
m(j) and kernel function k(j, j′) as:

G(j) ∼ GPR
(
m(j), k

(
j, j′
))

(4)
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with: {
m(j) = E(G(j))

k(j, j′) = E[(m(j)− f (j′))(m(j)− f (j′))]
(5)

Here, m(j) is usually set as zero to simply the computation process. In this context, for
a prediction, the prior distribution of output in a regression case is defined as:

y ∼ N
(
0, k
(

j, j′
))

(6)

Supposing the training set j and testing set j′ own the same Gaussian distribution,
then the testing output y′ presents the joint prior distributions with the training output y
as [43]: [

y
y′

]
∼ N(0,

[
k(j, j) k(j, j′)

k(j, j′)T k(j′, j′)

]
) (7)

Based on this joint prior distribution, the predicted output y′ related to the input j′

can be obtained through calculating the conditional distribution p(y′|j, y, j′):

p
(
y′
∣∣j, y, j′

)
∼ N

(
y′
∣∣y′, cov

(
y′
))

(8)

with {
y′ = k(j, j′)T [k(j, j)]−1y

cov(y′) = k(j′, j′)− k(j, j′)T [k(j, j)]−1k(j, j′)
(9)

where y′ represents the mean predicted value, while cov(y′) stands for the corresponding
variance value.

In real application of GPR, the kernel function k(j, j′) needs to be carefully selected. In
this study, a squared exponential (SE) kernel in the following form with effective perfor-
mance is utilized:

kSE
(

j, j′
)
= σ2

SEexp

(
−∥j − j′∥2

2σ2
m

)
(10)

where σSE and σm represent two hyperparameters to affect both the amplitude and length
of the SE kernel.

3.3. Modelling Process

Figure 4 illustrates the designed model structure and relevant process. To be spe-
cific, four machine-learning-based regression models, including DT, BDT, SVR and GPR,
are constructed using CG, S-LR, AM-MC, and viscosity as inputs to predict electrode
mass loading. Subsequently, three feature selection methods, namely MRMR, F-test and
RReliefF, are employed to assess the importance of these four features. This approach
unveils the decision-making process of the model and offers valuable insights for real
battery production.

World Electr. Veh. J. 2024, 15, x FOR PEER REVIEW 7 of 15 
 

𝐺(𝑗)~𝐺𝑃𝑅 𝑚(𝑗), 𝑘(𝑗, 𝑗 )  (4)

with: 𝑚(𝑗) = 𝐸(𝐺(𝑗))𝑘(𝑗, 𝑗 ) = 𝐸 𝑚(𝑗) − 𝑓(𝑗 ) 𝑚(𝑗) − 𝑓(𝑗 )  (5)

Here, 𝑚(𝑗) is usually set as zero to simply the computation process. In this context, 
for a prediction, the prior distribution of output in a regression case is defined as:  𝑦~𝑁 0, 𝑘(𝑗, 𝑗 )  (6)

Supposing the training set 𝑗 and testing set 𝑗  own the same Gaussian distribution, 
then the testing output 𝑦  presents the joint prior distributions with the training output 𝑦 as [43]:  𝑦𝑦 ~𝑁(0, 𝑘(𝑗, 𝑗) 𝑘(𝑗, 𝑗 )𝑘(𝑗, 𝑗 ) 𝑘(𝑗 , 𝑗 ) ) (7)

Based on this joint prior distribution, the predicted output 𝑦  related to the input 𝑗  
can be obtained through calculating the conditional distribution 𝑝(𝑦 |𝑗,𝑦, 𝑗 ): 𝑝(𝑦 |𝑗,𝑦, 𝑗 )~𝑁 𝑦 𝑦 , 𝑐𝑜𝑣(𝑦 )  (8)

with 𝑦 = 𝑘(𝑗, 𝑗 ) 𝑘(𝑗, 𝑗) 𝑦𝑐𝑜𝑣(𝑦 ) = 𝑘(𝑗 , 𝑗 ) − 𝑘(𝑗, 𝑗 ) 𝑘(𝑗, 𝑗) 𝑘(𝑗, 𝑗 ) (9)

where 𝑦  represents the mean predicted value, while 𝑐𝑜𝑣(𝑦 ) stands for the correspond-
ing variance value. 

In real application of GPR, the kernel function 𝑘(𝑗, 𝑗 ) needs to be carefully selected. 
In this study, a squared exponential (SE) kernel in the following form with effective per-
formance is utilized:  𝑘 (𝑗, 𝑗 )  = 𝜎 𝑒𝑥𝑝 −‖𝑗 − 𝑗 ‖2𝜎  (10)

where 𝜎   and 𝜎   represent two hyperparameters to affect both the amplitude and 
length of the SE kernel. 

3.3. Modelling Process 
Figure 4 illustrates the designed model structure and relevant process. To be specific, 

four machine-learning-based regression models, including DT, BDT, SVR and GPR, are 
constructed using CG, S-LR, AM-MC, and viscosity as inputs to predict electrode mass 
loading. Subsequently, three feature selection methods, namely MRMR, F-test and RRe-
liefF, are employed to assess the importance of these four features. This approach unveils 
the decision-making process of the model and offers valuable insights for real battery pro-
duction. 

 
Figure 4. Model structure and process. Figure 4. Model structure and process.



World Electr. Veh. J. 2024, 15, 72 8 of 14

3.4. Prediction Performance Indicators

To quantitatively reflect the solid-state battery electrode mass loading prediction
performance of machine-learning-based regression models, three classical prediction per-
formance indicators [44] are utilized:

(1) Mean absolute error (MAE): Supposing TS represents the total amount of all samples,
Yj is the real battery electrode mass loading value, while Ŷj stands for the predicted
electrode mass loading value from the machine-learning-based regression model.
MAE can then be defined by:

MAE =
1

TS∑TS
j=1

∣∣Yj − Ŷj
∣∣ (11)

(2) Root mean square error (RMSE): As another typical performance indicator, RMSE is
an effective prediction performance indicator, defined as:

RMSE =

√
1

TS∑TS
j=1

(
Yj − Ŷj

)2 (12)

(3) R2: supposing Y stands for the mean value of all predicted electrode mass loading,
R2 can be defined as:

R2 = 1 − ∑TS
j=1

(
Yj − Ŷj

)2/∑TS
j=1

(
Yj − Y

)2 (13)

In real solid-state battery electrode mass loading prediction, when the predicted value
is close to the real value, MAE and RMSE should become close to 0, while R2 should be
close to 1.

4. Result and Discussion

In this section, the feature importance analysis of four battery manufacturing terms is
carried out to quantify the effects of CG, S-LR, AM-MC and viscosity on determining the
electrode mass loading of the solid-state battery. Afterwards, four machine-learning-based
regression models with DT, BDT, SVR and GPR are established to predict battery electrode
mass loading in the early manufacturing stage.

4.1. Feature Importance Analysis Results

To quantify the importance of four manufacturing feature terms for all samples, the
MRMR-based machine learning method is first utilized. Figure 5 quantifies and plots the
importance values of four manufacturing feature terms of interest (CG, S-LR, AM-MC,
viscosity). It can be obviously seen that CG is the most important feature term, with the
highest importance value of 1.01, while S-LR provides the second-highest importance value
of 0.185, which is five-times smaller than CG. In comparison, the importance values of
AM-MC and viscosity are smaller than S-LR, meaning that their effect on determining
solid-state battery electrode mass loading decreases accordingly.

Next, an F-test is adopted to quantify the importance of these four manufacturing
terms, and the corresponding results are shown in Figure 6. It can be seen that although
the values of the F-test are significantly larger than those of MRMR, the importance trend
of these four manufacturing terms is similar. To be specific, CG gives the most important
contribution to determine electrode mass loading, with a value of over 80. S-LR and
AM-MC present the second and third most important contribution, with values of 21.732
and 8.121, respectively. Viscosity gives the smallest contribution to determine electrode
mass loading.
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Furthermore, after using the RReliefF-based machine learning approach, the impor-
tance of these four manufacturing terms is also quantified and plotted in Figure 7. Accord-
ing to Figure 6, although the importance values of CG and viscosity are positive, while S-LR
and AM-MC are negative, the quantified effects on determining electrode mass loading
are similar to those of MRMR-based and F-test-based machine learning methods. Specif-
ically, CG gives the largest quantified importance value of 0.1236, while S-LR provides
the second-largest quantified importance value with −0.0837. In comparison, viscosity
presents the smallest quantified importance value of 0.0126. The trend of the quantified
importance values of all three machine-learning-based approaches is similar, indicating
that the importance of CG, S-LR, AM-MC and viscosity can be successfully quantified and
analysed using our designed feature importance analysis methods.
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4.2. Mass Loading Prediction Results

Next, after developing a machine-learning-based approach to quantify and analyse
the importance of four key manufacturing terms (CG, S-LR, AM-MC and viscosity), the
machine-learning-based regression models by using four different technologies, including
DT, BDT, SVR and GPR, are carried out to predict the electrode mass loading of the solid-
state battery in the early manufacturing stage, respectively.

We first focus on the electrode mass loading prediction by using four manufacturing
feature terms (CG, S-LR, AM-MC and viscosity) as inputs via various machine-learning-
based regression models. After carrying out five-fold cross-validation, the electrode mass
loading prediction results of using DT-, BDT-, SVR- and GPR-based regression models are
shown in Figure 7, while their related prediction performance indicators are quantified in
Table 1. According to Figure 8, it can be seen that all these four machine-learning-based
regression models are capable of capturing most of the electrode mass loading sample
points, indicating the effectiveness of the machine-learning-based regression model in
predicting electrode mass loading in the early manufacturing stages. Specifically, the DT-
based regression model provides the worst prediction result, with an RMSE value of 1.919
and a R2 value of 0.978, which is 21.5% and 1.2% worse than those from the BDT-based
regression model. In comparison, the GPR-based regression model gives the best result
for electrode mass loading predictions, whose MAE and RMSE values are 0.883 and 1.089,
respectively, which are 3.5% and 30.3% better than those of the SVR-based regression model.
It can be concluded that four electrode manufacturing feature terms (CG, S-LR, AM-MC
and viscosity) present strong relationships with the electrode mass loading. Through using
more complicated regression models with kernel functions like SVR and GPR, the electrode
mass loading prediction performance could be further enhanced.

Table 1. Performance indicators for electrode mass loading prediction by using different machine-
learning-based regression models.

Models DT BDT SVR GPR

MAE 1.423 1.229 0.915 0.883
RMSE 1.919 1.506 1.145 1.089

R2 0.978 0.989 0.992 0.995

To further explore the electrode mass loading prediction results of using machine-
learning-based regression models, the prediction versus true plots for DT-, BDT-, SVR- and
GPR-based regression cases are shown in Figure 9. Theoretically, the farthest observations
in the prediction versus true plots are able to allow the prediction line for this sample.
The better prediction performance a model gives, the closer the observations from that
model to the perfect prediction line. According to Figure 8, it can be noted that for all
four machine-learning-based regression models, most of the observations are close to the
perfect prediction line, while only a few observations are far from the perfect prediction
line. This is mainly due to the overfitting phenomenon and can be enhanced by giving
more high-quality electrode manufacturing data observations.

4.3. Comparison and Discussion

To further explore the effectiveness of the designed approach, three other traditional
algorithms, including the linear regression (LR) model, the random forest (RF)-based
model and the AdaBoost-based ensemble model, are adopted for further comparisons.
To be specific, the LR model is a linear traditional algorithm to capture the relationships
between inputs and responses. RF and AdaBoost are all tree-based ensemble models.
Table 2 shows the results of electrode mass loading prediction by using all these traditional
algorithms after five-fold cross-validation. Obviously, the LR model gives the worst results,
with an R2 of 0.851, indicating that the underlying relationships between the investigated
manufacturing parameters and the electrode mass loading are highly non-linear. In contrast,
both the RF-based model and the AdaBoost-based model perform well in predicting the
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electrode mass loading, with an R2 above 0.992, which is similar to the GPR-based approach
we developed. In this context, the designed GPR-based approach and ensemble models can
provide a competent performance for early predictions of battery electrode mass loading.
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Table 2. Performance indicators for mass loading prediction by using traditional algorithms.

Models LR RF AdaBoost GPR-Based
Method

MAE [mg/cm2] 2.132 0.889 0.891 0.883
RMSE [mg/cm2] 3.271 1.091 1.094 1.089

R2 0.851 0.992 0.991 0.995

Due to its data-driven nature, this machine-learning-based approach can be easily
adopted by engineers in real-world applications, as limited professional knowledge of
the battery manufacturing mechanism is required. The designed modelling process can
be conveniently extended to other data analysis applications of battery manufacturing if
appropriate data are available. It should be noted that this is of great importance for battery
manufacturers to better understand their manufacturing line and make reasonable battery
property predictions in the early manufacturing stage. It is also convenient to extend this
machine-learning-based approach for analysing other battery cases such as the composite
electrode that comprises both the solid electrolyte and the electrode. Moreover, the de-
veloped method, as supported by [45], is flexible and free from limitations of the battery
mechanism. Analysing different combinations of solid electrolytes and electrodes can also
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be performed via the developed machine-learning-based solution when the corresponding
data are collected.
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5. Conclusions

The solid-state battery is developing into a promising technology that enables safer
operation of energy storage systems, with its performance largely determined by the charge
of the electrode mass. However, it is difficult to effectively analyse the importance of
the strongly coupled manufacturing characteristics and predict the load on the electrode
mass in the early stages of battery manufacturing. As suggested and requested by battery
manufacturers, this study proposes a machine-learning-based approach that combines the
advantages of effective feature selection and a user-friendly regression model to predict elec-
trode mass loading and quantify the importance and impact of manufacturing parameters
in the mixing and coating stages. The comparative analysis shows that CG and S-LR are the
first and second most important contributors to the determination of electrode mass loading
of a solid-state battery, while viscosity is the least important contributor to the prediction
of electrode mass loading. The developed GPR-based regression model provides the best
performance in predicting the electrode mass loading, with an RMSE and R2 of 1.089 and
0.995, respectively. Due to its data-driven nature, the developed machine-learning-based
approach can efficiently assist engineers in monitoring/predicting the mass loading of
solid-state battery electrodes in early manufacturing stages and analysing/quantifying
the significance of manufacturing features of interest. Additionally, it can be conveniently
extended to other applications of data analysis in battery manufacturing, as no professional
knowledge of the battery manufacturing mechanism is required. This could further ad-
vance the development of high-performance solid-state batteries for broader energy storage
applications. As obtaining available data from battery production requires specialised
equipment and is time consuming, we will conduct further experiments in the future to
generate more relevant data related to other characteristics, such as drying temperature
and pressure, and also consider the composite electrode to further improve the sensitivity
analysis of characteristics for high-performance Li-ion battery production.
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