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Abstract: The precise determination of the state of health (SOH) of lithium-ion batteries is critical in
the domain of battery management systems. The proposed model in this research paper emulates
any deep learning or machine learning model by utilizing a Look Up Table (LUT) memory to store
all activation inputs and their corresponding outputs. The operation that follows the completion
of training is referred to as the LUT memory preparation procedure. This method’s lookup process
supplants the inference process entirely and simply. This is achieved by discretizing the input data
and features before binarizing them. The term for the aforementioned operation is the LUT inference
method. This procedure was evaluated in this study using two distinct neural network architectures:
a bidirectional long short-term memory (LSTM) architecture and a standard fully connected neural
network (FCNN). It is anticipated that considerably greater efficiency and velocity will be achieved
during the inference procedure when the pre-trained deep neural network architecture is inferred
directly. The principal aim of this research is to construct a lookup table that effectively establishes
correlations between the SOH of lithium-ion batteries and ensures a degree of imprecision that is
tolerable. According to the results obtained from the NASA PCoE lithium-ion battery dataset, the
proposed methodology exhibits a performance that is largely comparable to that of the initial machine
learning models. Utilizing the error assessment metrics RMSE, MAE, and (MAPE), the accuracy of
the SOH prediction has been quantitatively evaluated. The indicators mentioned above demonstrate
a significant degree of accuracy when predicting SOH.

Keywords: lithium-ion batteries; SOH; SoC; RUL; batteries; deep learning; LUT

1. Introduction

The use of lithium-ion batteries has rapidly increased due to their low cost, high energy
densities, low self-discharge rate, and long lifetime compared to other batteries [1–4]. Hence,
lithium-ion batteries have gained significant prominence across diverse domains, including,
but not limited to, mobile computing devices, aerospace applications, electric cars, and
energy storage systems [5,6]. Despite the noteworthy advantages of lithium-ion batteries,
a significant drawback is the occurrence of capacity fading upon repeated utilization. In
addition, it is imperative to diligently observe and precisely assess their capacity, since an
inaccurate evaluation of capacity might result in irreversible harm to the battery through
excessive charging or discharging [7]. The assessment of battery capacity fade relies heavily
on what is called the state of health, or SOH, serves as a pivotal indication of battery
capacity. Hence, it is vital to precisely determine the SOH of lithium-ion batteries in order
to ensure their safety and dependability [8].

Numerous research endeavors have been undertaken to obtain a precise assessment of
the SOH of batteries. In general, the studies can be categorized into three distinct groups:
model-based methods [9–14], data-driven methods [15,16], and hybrid methods [17,18].

The evaluation of a battery’s health state, as determined by the SOH metric, is con-
ducted based on the varying beginning capacities of each battery. There exist several
approaches for determining the SOH of a battery. However, the predominant methods
revolve around assessing its impedance and its useful capacity. The utilization of the
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battery’s impedance as a measuring technique is deemed unsuitable for online applications
due to the necessity of specialized instruments, for example electrochemical impedance
spectroscopy. The majority of research therefore used the SOH metric, which is based on
the battery’s usable capacity, to measure its performance.

The subsequent sections of this article are structured in the following manner: Section 1
outlines the many contemporary techniques employed for forecasting the state of health
(SOH) of batteries. Section 2 presents the employed approach and its corresponding context.
Section 3 enumerates other relevant studies. Section 4 provides a comprehensive summary
of the dataset utilized. Section 5 demonstrates the utilization of the FCNN and LSTM
training models. Section 6 of the paper focuses on the assessment of performance and
the specific measurements employed. Discussions on the study’s results are presented in
Section 7. In Section 8, the conclusion is represented.

Numerous studies have been undertaken to precisely assess the state of health (SOH)
of batteries. The methods can be categorized into three distinct groups: direct measurement
(experimental) methods, model-based methods, and data-driven methods.

Starting with the experimental methods, cycle counting determines the age of a battery
by analyzing its chronological charge and discharge cycles. The most straightforward
approach to determine the SOH is by tallying the total number of battery cycles. During
each cycle, the degradation of batteries is significantly influenced by characteristics such as
charge and discharge depth temperatures, as well as their C rating. A coefficient can be
derived to establish a connection between those characteristics and the full discharge (100%
depth of discharge) [19].

Charge counting: The charge counting method, also known as ampere-hour counting,
is regarded as a precise and straightforward approach for measuring battery capacity.
The ratio of the actual battery capacity (Qact) to its nominal capacity (Qnom) yields an
accurate SOH. The measurement of the charge transferred throughout a complete charging
or discharging process at a low C-rate and controlled temperature (usually 25 ◦C) provides
a precise assessment of the remaining capacity [19–21].

SOH =

(
Qact

Qnom

)
(1)

The internal resistance approach is based on the observation that the internal resistance
(IR) of a battery increases as it ages. This property makes it a good parameter for estimating
the SOH of a battery. To compute the IR, one can take a small step in the current and apply
Ohm’s law, as shown in Equation (2). Here, ∆Ut represents the voltage pulse and ∆UL
represents the current pulse [19,20].

R0 =
∆Ut

∆UL
(2)

The electrochemical impedance spectroscopy (EIS) method involves analyzing the
impedance properties of a battery by subjecting it to a sinusoidal current voltage signal
across a broad range of frequencies. Consequently, the response of a current or voltage
can be examined. A Nyquist plot can facilitate comprehension of the estimation. Further-
more, Warburg elements, in addition to inductors, can be used in an ECM to enhance the
capture of intricate dynamics. At low frequencies, the impedance is essentially ohmic,
and the significance of capacitive effects increases. The ohmic resistance exhibits a direct
relationship with battery aging, therefore making it a suitable indicator for SOH assess-
ment [19]. Despite its accuracy, this system is deemed challenging to apply due to its high
cost and complexity.

The Incremental Capacity Analysis (ICA) method examines the rate of change of the
charge Q in relation to the voltage V. The morphology of the IC curve undergoes alterations
as it ages, rendering it a potential predictor of the SOH. As the battery degrades, the incline
of the voltage curve during the constant current charging phase intensifies. The primary
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drawbacks of the ICA technique are the requirement for a relatively low C-rate compared
to typical charge rates and the computationally intensive numerical differentiation carried
out by the BMS.

The differential voltage analysis method (DVA) [22] shares similarities with the In-
dependent Component Analysis (ICA) method. The rate of change of voltage, denoted
as V, with respect to the charge, is calculated during the constant current (CC) charging
phase. The peaks in question correspond to specific chemical reactions within the cell that
persist independent of battery aging. The gap between these peaks indicates a segment of
the battery’s capacity that can be utilized for estimating its SOH.

The inside examination of a battery cell, without causing any harm, can be accom-
plished by employing ultrasonic inspection or X-ray techniques. Both tasks can be executed
manually during maintenance in order to obtain an approximation of its SOH. The idea
relies on the sensitivity of ultrasonic wave propagation in liquid-filled porous media to
several factors such as electrode tortuosity, porosity, thickness, density, elastic modulus,
fluid density, and ion concentration [23,24]. A more thorough comprehension of the ag-
ing process in different types of batteries has been achieved using techniques such as
X-ray computed tomography [25] and others [26]. Characterizing the internal information
with accuracy can be a difficult undertaking; the fundamental aging mechanisms must
be deduced from the examination of exterior signals. Several studies integrate ultrasonic
examination and machine learning to accurately evaluate the SOH.

A battery SOH estimation can be achieved by a number of model-based approaches,
which entail building a model of a battery and including the internal deterioration pro-
cess in the model. Knowledge of the internal battery reaction mechanisms, the accurate
formulation of the mathematical equations driving these reactions, and the development of
effective simulation models are all essential for model-based approaches. There may be
difficulties in putting these ideas into practice. Lithium-ion battery life was predicted using
a weighted ampere-hour throughput model in a study by the author in [27]. The researcher
determined how severely the batteries had been damaged. To determine a battery’s SOH,
the author of [28] applied an analog circuit model and an improved Kalman filter. To
determine a battery’s SOH, in the study presented in [29], the authors relied on nominal
filtering methods. They discovered that battery capacity is proportional to the square of the
internal impedance. The researchers in [30] presented a method for estimating a battery’s
SOH, or state of health. This method takes battery discharge rates as input variables for
a state-space model. The SOH of a battery was predicted using a single-particle model
developed by study [31], which is based on the physics of electrolytes. The degeneration
of the internal mechanisms and the batteries were the focus of this investigation. From a
chemical perspective, the construction of a precise aging model for lithium-ion batteries
is difficult due to the complex structure of the chemical interactions occurring within the
battery, although model-based approaches are useful in forecasting the SOH of batteries.
Furthermore, various environmental variables, such as operational temperature, anode
and cathode materials, and related parameters, have a major impact on the performance of
lithium-ion batteries. Therefore, there are difficulties in establishing a reliable aging model
for lithium-ion batteries.

Improvements in hardware have allowed computers to perform increasingly complex
mathematical operations in recent years. Concurrently, there has been an uptick in the
number of databases that can be mined for information on a battery’s SOH due to the
growing use of data-driven methodologies for this purpose. This paved the way for the
broad adoption of data-driven approaches. Even without a thorough understanding of the
battery’s internal structure and aging mechanisms from an electrochemical standpoint, a
data-driven method allows for the reliable prediction of a battery’s SOH. Therefore, these
methods can be implemented with little to no familiarity with a battery’s electrochemical
properties or the environmental context. The success of data-driven approaches relies
greatly on the accuracy and usefulness of the information that is collected. Acquiring
attributes that are highly linked with the degradation process is crucial to the success of a
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data-driven model. In a related study [32], the authors suggested using sparse Bayesian
predictive modeling with a sample entropy metric to boost the reliability of voltage se-
quence predictions. The SOH of a battery can be estimated and analyzed with the help of
a hidden Markov model, which was introduced by the authors in study [33]. In a differ-
ent study [34], researchers used Gaussian process regression to estimate health status in
their investigation. This method combines covariance and mean functions into a single
estimate. Another work [35] presented a data-driven prognosis method that makes use
of deep neural networks to foretell the SOH and RUL of lithium-ion batteries. In another
study, the authors [36] developed a method for an adaptive SOH estimate based on an
online alternating current (AC) complex impedance and a fully connected neural network
(FCNN). The use of recurrent neural networks to foresee battery performance decline has
been demonstrated by another study [37]. In study [38], the authors proposed using a deep
convolutional neural network (CNN) trained on recorded currents and voltages to estimate
battery capacity.

In this work, I develop an efficient processing method to replace the inference operation
through a trained network with a pre calculated LUT memory. The accuracy and efficiency
of the SOH estimation using this substitute proved to be acceptable. This technique depends
entirely on the quantization operation and selected bits per feature, and it does not make
use of any of the trained machine learning models in any way.

2. Proposed Methodology

The objective of machine learning is to identify and construct an appropriate model
based on the provided training samples in order to establish the relationship between the
training data and the target output, denoted as y. In this context, x represents the charge
voltage of the charging curves, N is the number of training samples, and y denotes the SOH
of a Li-ion battery. The nonlinear mapping f(·) can be defined as follows:

yi = f (xi) (3)

Before proceeding, it is important to establish a function capable of discretizing the
characteristics of the neural network model inputs into a limited range of values. The
desired quantization process involves converting real numbers represented in floating
point format into a narrower range of lower-precision values. One commonly used option
for a quantization function is explained in the Equation (4).

Q(r) = Int
(

R
S

)
− Z (4)

The quantization operator, denoted as Q, operates on a real-valued input (activation or
weight) represented by the variable r. The scaling factor, denoted as S, is also a real-valued
variable. Lastly, the integer zero point is represented by the variable Z. In addition, the
Int function converts a real value into an integer value by performing a rounding oper-
ation, such as rounding to the closest integer or truncating the decimal part. Essentially,
this function is establishing a correspondence between the real r values and integer val-
ues. The technique of quantization described here is commonly referred to as uniform
quantization, as it produces quantized values (also known as quantization levels) that are
evenly distributed.

Dequantization is the process by which real values, denoted as rˆ, can be recovered
from quantized values, denoted as Q(r). It should be noted that the true values that have
been recovered, denoted as rˆ, will not perfectly match the original values due to the
rounding operation.

r̂ = S(Q(r) + Z) (5)
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The selection of the scaling factor S is a crucial aspect in uniform quantization. This
scaling factor essentially divides a specified range of real values, denoted as r, into a specific
number of partitions.

S =
β − α

2b − 1
(6)

The clipping range, denoted by [α, β], is a bounded range used to restrict the real
values. The quantization bit width is represented by b. In order to determine the scaling
factor, it is necessary to first establish the clipping range. One simple option is to use
the signal’s min/max for the clipping range, that is, α = rmin and β = rmax. This method
employs an asymmetrical quantization strategy.

Symmetric quantization is a widely used technique for quantizing weights and biases
in neural networks [39] that also makes the implementation more straightforward, although
quantization exhibits a noticeable error called quantization noise. The following formula
will be used to determine the power of the quantization noise:

E
[
v2
]
=

q2

12
(7)

From this, one may extract the formula for calculating the Signal-to-Quantization-
Noise Ratio, also known as SQNR.

SQNR = 20·log10

(
2Q

)
≈̂ 6.02·Q·dB (8)

where Q is the number of quantization bits. This study will use quantization to convert
continuous numerical values belonging to features into discrete digital representations
in the form of binary numbers. The range of bits transformed will span from 2 to 8 bits.
Table 1 shows the quantization bits’ distribution per feature and corresponding SQNR level
and total memory size needed. When the number of bits rises, the memory size needed
becomes larger, but the SQNR is improved.

Table 1. Quantization bits distribution per feature and corresponding SQNR level and total memory
size needed.

Bits/Feature Values Given Bits Total
(Address)

SQNR
dB Memory Size

2 4 14 12.04 16 K
3 8 21 18.06 2 M
4 16 28 24.08 256 M
5 32 35 30.10 32 G
6 64 42 36.12 4 T
7 128 49 42.14 -
8 256 56 48.16 -

In this study, we will utilize a neural network model to acquire knowledge about
nonlinear mapping. Both the fully connected neural network (FCNN) and long short-term
memory (LSTM) have been utilized as learners for nonlinear mapping. The suggested
method mimics the correlation between any inputs and outputs mapping implemented,
however any machine learning technique or neural network model might be utilized.

2.1. LUT Memory Creation and Usage

The chosen machine learning architecture is firstly prepared by selecting seven input
features, which are prepared in the dataset in a 7 × 1 format. The input and output
variables of the estimation model need to have a certain correlation. This study takes the
next measurements of the battery (capacity, ambient temperature, date–time, measured
volts, measured current, measured temperature, load voltage, and load current), as the
input variables of the model. The models chosen to be tested are the FCNN and LSTM
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models. Figure 1 is the architecture of the LUT estimation system, which consists of LUT
generation and inference modules. The LUT generation module consists of Integer address
generation, grouping bits, Digital to Analog Conversion (DAC), the features’ normalization,
model training, and then finally LUT filling. The LUT inference module consists of the
features’ preparation and normalization, binarization, binary address bits binding, inferring
the LUT memory, and finally calculation of the analysis results. The entire process can be
described as follows:
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2.2. LUT Generation

• Step 1. Looping linearly over every possible combination of address bits, starting from
0 and going up to 27n. The binary address generated depends highly on the number
of bits assigned to each of the seven features. The ones that will be tested are 2, 3, 4, 5,
6, 7, and 8 bits.

• Step 2. Then, the generated address bits are grouped into seven feature groups, while
each feature owns its own number of bits, generating a feature binary address bit.

• Step 3. The address bit value for each feature is normalized as the bit’s value/2n,
where n is the number of bits selected for the feature.

• Step 4. The seven normalized feature values are presented to the trained deep neu-
ral network.

• Step 5. The value inferred from the model is stored in the LUT memory at the
given address.

• Step 6. Then, the next address is selected, and the whole operation is repeated (from
step 1).

The execution of the inference procedure involves accessing memory after converting
the continuous values of the features into binary address bits. This process is described in
the following subsection.
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2.3. LUT Usage

• Step 1. It starts with the seven feature values (capacity, ambient temperature, date–
time, measured volts, measured current, measured temperature, load voltage, and
load current).

• Step 2. Each of the seven feature values will be normalized (0, 1).
• Step 3. Then, those values will be quantized based on the following configurations: 2

bits, 3 bits, 4 bits, 5 bits, 6 bits, and 8 bits, depending on the adaptation.
• Step 4. Quantization produces binary bits for each feature.
• Step 5. All bits are combined into one address, as shown in Figure 1,

In general, the methodology utilized in this study is founded on the application of
a pre-inference process. It is evident that the process will require a total of 2n7 iterations
to go through all the combinations of features. The aim is to populate the LUT memory
with the range of values that are obtained through the processes of approximation and
quantization. These values are derived from the inference process of the selected model.
The process of converting the inference operation results in a significant boost in speed,
mostly attributed to the simplicity of the conversion and the use of less complex hardware
for implementation. Significantly, this transformation is not contingent upon the existence
of the trained model.

3. Related Works on Quantization in DNNs

Certain investigations initially employed 2-bit quantization of activation functions,
which is a uniform quantization [40–43] that transforms quantities of complete precision
into quantization levels of uniformity (0; 1/3; 2/3; 1).

It was initially suggested in the research conducted by the authors of [44] that the
weights could be quantified using only the binary values −1 and +1. Then, trained ternary
quantization (TTQ) [45] was implemented to symbolize the weights using the ternary
values −1, 0, and +1. Scale parameters were employed in research in [46] to binarize these
activations; however, they remain full-precision values when solving the activations in
these networks. It is noteworthy that a majority of uniform quantization techniques employ
linear quantizers, namely utilizing the round() function, in order to uniformly quantize
floating-point numbers.

In numerous instances (e.g., the quantization of activations), non-uniform quantization
has been implemented to align the quantization of weights and activations with their
respective distributions. This was suggested in a work implemented to fit a combination
of prior Gaussian models to cluster centroids serving as quantization levels, as opposed
to weights [47]. In accordance with this concept, another work implemented layer-wise
clustering in order to convert weights into cluster centroids [48]. Logarithmic quantizers
were implemented in the two works of [49,50] to symbolize weights and activations with
powers-of-two values.

Despite the fact that deep neural networks (DNNs) are extensively employed in real-
time applications, they are computationally intensive tasks, consisting primarily of linear
computation operators, which place a tremendous strain on constrained hardware resources.
Considerable effort and research have been devoted to developing a cost-effective and
efficient DNN inference algorithm. Model compression [51,52], operator optimization
for sophisticated computation [53–56], tensor compilers for operator generation [57,58],
and customized DNN accelerators [59–61] are a few of these techniques. In order to
accommodate various deployment conditions, these methods necessitate the repetitive
redesign or reimplementation of computation operators, accelerators, or model structures.

In contrast to the aforementioned approaches, this article investigates the novel possi-
bility of substituting computation operators in DNNs in order to reduce inference costs
and the laborious process of operator development. LUT, a novel system that enables DNN
inference via a table search, is proposed to address this inquiry. The system computes the
LUT in accordance with the learned typical features after traversing every permutation for
each of the seven SOH features.
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4. Dataset Description

The information utilized in this work for the purpose of estimating the SOH of lithium-
ion batteries was acquired from the NASA Prognostics Center [62]. The four batteries
used, labelled as #5, #6, #7, and #18, have been extensively utilized for the purpose of SOH
estimates [63–65]. The dataset utilized in this study comprised the operational profiles and
impedance measurements of 18,650 lithium-ion batteries’ measurement trials throughout
the processes of charging and discharging at ambient temperature (around 24 ◦C). The
batteries underwent a charging process where a 1.50 A current was maintained with a
continuous flow until the voltage reached 4.2 V. Subsequently, the charging proceeded at
4.2 V of constant voltage until the current decreased to a value below 20 mA. A constant
current of 2 A was used to discharge batteries #5, #6, #7, and #18 until their voltages reached
2.7 V for B0005, 2.5 V for B0006, 2.2 V for B0007, and 2.5 V for B0018. This process took
place until the batteries’ individual voltages reached the desired levels. Eventually, the
batteries gradually started to decrease in capacity as the number of charges and discharges
continued to grow. It is taken that, once the battery dropped 30% from its rated capacity, its
end of life (EOL) is reached, nominally from 1.4 Ah to 2.0 Ah.

The aforementioned collected datasets provide us with the capability to predict the
batteries’ SOH. The number of cycles performed by the battery exhibits a correlation with
its ageing process, as illustrated in Figure 2. Additionally, Table 2 illustrates the features’
value boundaries observed throughout an aging cycle for battery #5.
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Table 2. Boundaries of the measured features for B0005 battery.

Capacity Vm Im Tm ILoad VLoad Time (s)

Min 1.28745 2.44567 −2.02909 23.2148 −1.9984 0.0 0
Max 1.85648 4.22293 0.00749 41.4502 1.9984 4.238 3,690,234

The primary indication of battery deterioration is its decline in capacity, which is
mostly associated with its SOH. Capacity, which can be readily computed utilizing the
equation 9 formula, constitutes the definition of SOH. In this formula, CUsable and CRated
denote the actual and notional capabilities of the batter, correspondingly. In this study
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I utilize lithium-ion battery time series data for the purpose of predicting the SOH. The
research also delves into the essential process of data preprocessing in order to ensure
accurate and reliable predictions.

SOH =
CUsable
CRated

(9)

To illustrate this further, the term “CUsable” refers to the usable capacity of a device,
representing the maximum capacity that may be released when it is entirely discharged.
On the other hand, “CRated” denotes the rated capacity, which is the capacity value supplied
by the manufacturer. The available capacity diminishes as time progresses.

Data normalization is a widely utilized technique in depth modeling methods, as it
is seen as suitable for enhancing both the convergence of the model and the accuracy of
the prediction. Normalization will be conducted using the minimum–maximum approach,
which involves scaling the data within the range of 0 to 1. The aforementioned relationship
is mathematically represented by the following Equation (10). In this given context, the
symbol “x” is used to denote the processed data, while “x” represents the original data.
Additionally, “xmax” and “xmin” are used to indicate the maximum and minimum values of
the original data, respectively.

xn =
x − xmin

xmax − xmin
(10)

5. Background and Preliminaries

Using the newly developed technique, the fully connected neural network (FCNN)
and LSTM models are intended to be attested in this study. Table 3 displays the model
structures of FCNN and LSTM. The FCNN model comprises five layers, while the LSTM
model comprises nine layers. The quantization concept will also be discussed in conjunction
with the error it generates. A detailed description of the internal structure of both models
can be found in Table 3.

Table 3. Training model specifications.

Layers Output Shape Parameters No.

Model 1
FCNN

Dense (node, 8)

217
Dense (node, 8)
Dense (node, 8)
Dense (node, 8)
Dense (node, 1)

Model 2
LSTM

LSTM 1 (N, 7, 200)

1.124 M

Dropout 1 (N, 7, 200)
LSTM 2 (7, 200)

Dropout 2 (N, 7, 200)
LSTM 3 (N, 7, 200)

Dropout 3 (N, 7, 200)
LSTM 4 (N, 200)

Dropout 4 (N, 200)
Dense (N, 1)

5.1. Fully Connected Deep Neural Network

The FCNN is a type of artificial neural network characterized by its acyclic graph
structure. It is considered the most basic and straightforward form of a neural network.
The FCNN is a crucial component in machine learning, serving as the foundation for
various architectures. It has multiple layers of neurons, each incorporating a nonlinear
activation function.

A neural network consists of three distinct types of layers: the input layer, the hidden
layer, and the output layer. Hidden layers are a set of intermediary layers positioned be-
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tween the input and output layers in a neural network. These hidden layers are established
by adjusting the parameters of the network. In the case of standard rectangular data, it is
commonly observed that the utilization of two to five hidden layers is typically adequate.
The quantity of nodes included in each layer is contingent upon the quantity of character-
istics in the dataset; however, there exists no rigid guideline governing this relationship.
The computational load of the model is influenced by the quantity of hidden layers and
nodes; hence the objective is to identify the most sparing model that exhibits a satisfactory
performance. The output layer generates the intended output or forecast, and its activation
is contingent upon the specific modeling methodology employed. In regression problems, it
is common for the output layer to consist of a single node that is responsible for generating
continuous numeric predictions. Conversely, in binary classification issues, the output
layer normally comprises a single node that is utilized to estimate the probability of success.
In the case of a multinomial output, the output layer of the neural network consists of a
number of nodes that corresponds to the total number of classes being predicted. Overall,
layers and nodes play a crucial role in determining the complexity and performance of
neural network models.

5.2. Long Short-Term Memory (LSTM) Deep Neural Network

Long short-term memory (LSTM) is a distinct variant of the recurrent neural network
(RNN) architecture, which facilitates the utilization of outputs from previous time steps
as inputs for the purpose of processing sequential data. One notable distinction between
LSTMand a simple RNN (Recurrent Neural Network) lies in the conditioning of the weight
on the self-loop. Unlike simple RNNs, LSTM incorporates contextual information to dy-
namically adjust the weight on the self-loop. The model effectively captures and preserves
enduring relationships between sequential input data, such as time series, text, and speech
signals. LSTM models employ memory cells and gates to effectively control the flow of
information, enabling the selective retention or removal of information as required. LSTM
networks consist of three distinct types of gates, namely input, forget, and output gates.
The input gate controls the data stream towards the memory cell, and the other gate, the
forget gate, controls the extraction of data from the memory cell. Additionally, the output
gate is responsible for controlling the transmission of information from the LSTM unit to
the output. The construction of these gates involves the utilization of sigmoid functions,
and their training is accomplished through a process of backpropagation. The gates in an
LSTM model dynamically modify their openness or closure based on the current input and
the previous hidden state. This adaptive mechanism enables the model to effectively choose
whether to retain or discard information. The cells of a LSTM network are interconnected
in a recurrent manner, provided that the input gate permits it. The state unit is equipped
with a self-loop that is regulated by the forget gate, while the output gate has the ability
to inhibit the output of the LSTM cell. Figure 3 shows a general diagram for the FCNN
and LSTM models, while Table 3 lists the structural components of the FCNN and LSTM
models used in this study.
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6. Performance Evaluation and Metrics

The following is a description of the experimental setup used in this work. Hard-
ware specifications include a 64-bit operating system, x64-based processor, Intel(R) Core
(TM) i5-9400T CPU @ 1.80 GHz running at 1.80 GHz, and 8 GB RAM. Kaggle Notebooks
(version 5.5.0, Google, Mountain View, CA, USA) is used to enable, explore, and run ma-
chine learning code, with a cloud computational environment based on Jupyter (version
4.7.1, NumFOCUS, Austin, TX, USA) that enables reproducible and collaborative analysis.
Python (version 3.7, Python Software Foundation, Beaverton, OR, USA) was the main
programming language used.

Predicting the SOH of lithium-ion batteries requires the use of four datasets: DS0005,
which is designated for training and validation purposes, and DS0006, DS0007, and DS0018,
which are utilized for testing. The purpose of the training set is to facilitate the training
process of the model, while the validation set is used to fine-tune the model’s parameters.
Lastly, the testing set is employed to evaluate the performance of the model. In order to
ensure that the model’s prediction is accurate, a number of suitable hyperparameters must
be chosen. I used grid search and cross-validation to obtain the optimal parameters for
model performance.

6.1. Performance Evaluation Indicators

This work utilizes three error evaluation metrics, namely root mean square error
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). These
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metrics are employed to quantitatively analyze the accuracy of the proposed state of health
(SOH) prediction model and its Quantized Approximators (QA). The definitions of these
metrics are provided as follows:

RMSE =

√√√√ 1
N

[
N

∑
i=1

(yi − ŷi

)
2

]
(11)

MAE =
1
N

N

∑
i=1

|yi − ŷi | (12)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (13)

In this context, yi represents the actual SOH value, while ŷi represents the expected
(estimated) SOH value. In relation to metrics such as RMSE, MAE, and MAPE, the predictive
accuracy increases as these indicators approach zero.

6.2. Model Training

In preparation for the model training phase, I split the training dataset into training
and testing data. Using the SOH dataset, we evaluated two distinct ML models, one
employing an FCNN and the other an LSTM. The model architectures make up Table 4.
In the dataset used for training, which was divided into training and validation data, the
training data to validation data ratio was 2:1. The simulation was implemented with Kaggle
Environment, based on Jupyter and Python 3.7. Each machine learning model evaluation
was executed five times in total, and the average value of all the results was used.

Table 4. Training parameters for B0005 battery dataset.

Model Batch Size Epochs Time (s) Loss

FCNN 25 50 200 0.0243
LSTM 25 50 7453 3.1478 × 10−5

Table 4 shows the batch size, the epochs, the time, and the loss functions that emerged
from the training process. It is clearly seen that, because of the large size of the LSTM
model, its time for convergence is very large when compared to the simple FCNN model.

7. Evaluation Results and Discussion

The efficiency of the suggested methodology in extracting findings was demonstrated
by adapting the FCNN and LSTM learning models for training and inference. I compared
the original prediction from the trained model, in both forms, the FCNN and the LSTM,
with the LUT prediction for different quantization bits and show the results. To compare
and demonstrate the difference between the true SOH and its estimated value utilizing
the two neural network learning models, SOH estimation was executed for the FCNN and
LSTM learning models, as shown in Table 5. The training used B0005 and prediction used
B0006, B0007, and B0018 batteries. In Table 5, the batteries were tested without quantization
using actual model validation. Figure 4 shows that SOH estimation follows the same
pattern as the real SOH, with a little deviation due to training on a different battery than
that tested.
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Table 5. Estimation error results for FCNN training model when trained on a B0005 battery and
tested on others, using actual model validation (testing) without quantization.

Battery Model RMSE MAE MAPE

B0006
FCNN 0.080010 0.068220 0.100970
LSTM 0.076270 0.067620 0.098770

B0007
FCNN 0.019510 0.018019 0.021460
LSTM 0.029282 0.024710 0.030434

B0018
FCNN 0.015680 0.013610 0.016890
LSTM 0.018021 0.016371 0.020547
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Another setup of SOH predictions for the different batteries at different quantization
levels was built to illustrate the accuracy of the suggested quantization when estimating
the SOH. Table 6 displays the relevant results. RMSE, MAE, and MAPE are used as error
evaluation measures. The table shows the SOH predictions from the deep learning models
for B0006, B0007, and B0018 batteries with different quantization bits assigned. The SOH
prediction without and with quantization for all bits is illustrated in Figure 5. The FCNN
and LSTM models were evaluated with b values of 2, 3, 4, 5, 6, 7, and 8 bits.

To supplement the preceding results, a visual comparison between the quantized and
real inferences was prepared. Figure 6 illustrates the comparison between the original
estimated SOH and its quantized counterparts for 2 bits and 5 bits.

Initially, the evaluation of the training models was conducted without incorporating
quantization operations. This approach aims to provide an understanding of the outcomes
in their unaltered state, prior to exploring the impact of quantization. The correlation
between the estimated and measured SOH values for a B0006 battery is illustrated in
Figure 4. This phenomenon is expected to be applicable to all other batteries, despite the
lack of empirical evidence, as has been observed. According to the findings presented
in Table 3, it is evident that the two training models exhibit significant differences in
terms of elapsed training time, although they have identical batch sizes and epochs. The
rationale behind this observation stems from the architectural differences between the
LSTM and FCNN models. Specifically, the LSTM model possesses a significantly larger
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building structure, consisting of over 1.14 million parameters that need to be mathematically
computed. In contrast, the FCNN model exhibits a much smaller parameter count, totaling
only 217.

Table 6. The FCNN and LSTM training models endured RMSE, MAE, and MAPE errors when trained
on the B0005 battery and tested on the B0006, B0007, and B0018 batteries, each with a different set of
quantization bits.

Battery Model Quantization Bits RMSE MAE MAPE (%)

B0006

FCNN

2 0.0195370 0.0159236 0.0190499
3 0.0098006 0.0080317 0.0096645
4 0.0046815 0.0037988 0.0045664
5 0.0024301 0.0020093 0.0024294
6 0.0012535 0.0010379 0.0012461
7 0.0006150 0.0005068 0.0006144
8 0.0003125 0.0002565 0.0003088

LSTM

2 0.0216045 0.0185078 0.0225291
3 0.0104658 0.0088477 0.0107360
4 0.0050010 0.0042487 0.0051737
5 0.0025885 0.0022293 0.0027206
6 0.0013394 0.0011620 0.0014114
7 0.0006609 0.0005692 0.0006974
8 0.0003309 0.0002835 0.0003446

B0007

FCNN

2 0.0187614 0.0162685 0.0191451
3 0.0101181 0.0088282 0.0103004
4 0.0050026 0.0043651 0.0051114
5 0.0024498 0.0021127 0.0024730
6 0.0012030 0.0010481 0.0012269
7 0.0006394 0.0005566 0.0006533
8 0.0003060 0.0002578 0.0003013

LSTM

2 0.0209633 0.0181984 0.0219105
3 0.0113147 0.0099692 0.0119157
4 0.0056382 0.0049296 0.0059140
5 0.0027386 0.0023843 0.0028542
6 0.0013495 0.0011826 0.0014153
7 0.0007212 0.0006320 0.0007581
8 0.0003432 0.0002912 0.0003475

B00018

FCNN

2 0.0205289 0.0159912 0.0189426
3 0.0096451 0.0077552 0.0092191
4 0.0050730 0.0040254 0.0047780
5 0.0022966 0.0017585 0.0020886
6 0.0011492 0.0008754 0.0010336
7 0.0006432 0.0005005 0.0005950
8 0.0002954 0.0002268 0.0002719

LSTM

2 0.0218554 0.0189299 0.0233109
3 0.0109069 0.0094792 0.0116619
4 0.0057440 0.0049472 0.0060704
5 0.0026591 0.0022228 0.0027317
6 0.0013255 0.0011411 0.0014012
7 0.0007168 0.0006208 0.0007612
8 0.0003431 0.0002941 0.0003649
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Table 5 presents the outcomes of the estimation error analysis of the FCNN training
model. The model was trained on the B0005 battery and subsequently evaluated on different
batteries using actual model validation, without employing quantization. Divergent error
estimations were detected across the two training models across different battery types.
In the B0006 battery, the root mean square error (RMSE) of the FCNN model exhibited a
superior performance compared to the long short-term memory (LSTM) model by a margin
of 0.003, equivalent to a relative improvement of 4.6%. In the case of the B0007 battery, the
root mean square error (RMSE) exhibited a difference that favored the LSTM model by
0.0097, which corresponds to a 50% improvement. In the case of the B0018 battery, both
the FCNN and LSTM models exhibited similar performances, with a slight advantage of
0.0023 (15%) in favor of the FCNN model. The mean absolute error (MAE) metric revealed
a significant disparity in performance for the B0007 battery, with an observed value of
0.0067 (37%). In contrast, the remaining batteries had similar scores in this regard. In terms
of the MAPE error metric, the B0006 battery exhibited the smallest disparity, with a score of
2.1%, whilst the FCNN model demonstrated the biggest disparity, with a score of 42%.

Next, I will commence the examination of the impact of quantization on the SOH
forecasts for various batteries across different quantization levels and analyze its influence
on the accuracy of these predictions. Based on the findings presented in Table 6, it is evident
that the accuracy of the SOH prediction utilizing quantization approaches diminishes as
the number of quantization bits increases, in comparison to the original non-quantized
model’s SOH prediction. Figure 7 shows the three error metrics in relation to the number
of quantization bits for B0006 batteries tested using FFN and LSTM models to support
the quantization level-error relationship. The results demonstrate that even when em-
ploying a limited number of quantization bits, the magnitude of the error remains quite
small. Notably, the errors tend to become inconsequential after utilizing a quantization of
b = 5 bits. Table 6 provides compelling evidence for the identification of distinct patterns.
The findings indicate that the variations in the battery types and the training models, FFN
or LSTM, are inconsequential, with the primary distinguishing factor being the number of
quantization bits.
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on a B006 battery.

Table 6 presents data analysis on the B0006 battery test, which is derived from the
dataset utilized by the FCNN model and subsequently approximated using the LUT. The
initial values of the root mean square error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE) are 0.0195370, 0.0159236, and 0.0190499, respectively,
for a value of b equal to 2 bits. The values obtained when b is equal to 8 bits are 0.0003125,
0.0002565, and 0.0003088, respectively. The ratios are 65 X, 61 X, and 61 X, respectively.
The LSTM model demonstrates findings consistent with the RMSE, MAE, and MAPE
error measurements. At b = 2 bits, the initial values for these measurements are 0.0216045,
0.0185078, and 0.0225291, respectively. At b = 8 bits, the final values for these measurements
are 0.0003309, 0.0002835, and 0.0003446, respectively. The ratios are 65 X, 66 X, and 65 X,
respectively. An identical computation can be performed for the remaining batteries.

Figure 5 presents the predictions of the SOH without quantization, as well as with
quantization for varying bit values, specifically 2, 3, 4, 5, 6, 7, and 8 bits. However, Figure 6
illustrates that the deviation from the initial prediction (before quantization) becomes
insignificant when utilizing 5 or more bits. This implies that a minimum of 5 bits is required
in order to obtain distinct agreement with the prediction.

8. Conclusions

This article proposes a replacement and an approximation for the neural network
model for battery health estimation. Quantizing all battery SOH features and training
FCNN and LSTM networks with pre inference creates a unique LUT memory network
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replacement model. Furthermore, training data and testing data were collected from NASA
to train and test the combined models, respectively. The experiment results show that the
proposed method is superior when compared to the algorithms and models that it mimics.
It was found that its accuracies were slightly affected by this adoption, when compared to
the actual inferred SOH estimation without quantization. The prediction accuracy error
was improved up 65X when comparing b =2 bits to b = 8 bits. An average b = 3 bits was
found to be a good quantization level, which gave RMSE, MAE, and MAPE error accuracies
of 0.0098006, 0.0080317, and 0.0096645, respectively. The novel finding of this work was
that b = 5 bits will mostly quantize the seven SOH battery prediction features, totaling 35
bits. However, even with b = 3 bits, the results were satisfactory, with a total of 21 bits. This
discovery demonstrates that the LUT operation is reasonable with 2 MB of LUT stored in a
memory device giving virtually as accurate results as a full inference model.
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