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Abstract: To enhance the stability and disturbance rejection of wireless charging systems for elec-
tric vehicles, we designed a bilateral collaborative control strategy based on BP neural networks,
achieving closed-loop constant voltage control for the secondary rectification circuit. Integrating BP
neural network adaptive PID parameters with dual-phase-shift control, this strategy outperforms
conventional incremental PID controllers in terms of response time and overshoot. Validated on an
11 kW experimental platform, our approach demonstrated efficient response under disturbances; with
a load switch from 10 Ω to 12 Ω, the system exhibited a mere 5% fluctuation rate and an impressive
efficiency of up to 92.96%.

Keywords: electric vehicles; BP neural network; bilateral collaborative control; PID parameter
adaptation; closed-loop constant voltage control

1. Introduction

Today, low-carbon and environmentally friendly energy usage has become an area of
active exploration in various fields. Reducing the proportion of oil and coal in the energy
structure and developing new energy sources are effective approaches to addressing envi-
ronmental energy issues [1–3]. In recent years, the use of electric vehicles (EVs) and plug-in
hybrid electric vehicles (PHEVs) has been increasing. In comparison to traditional wired
charging methods, wireless power transfer methods can effectively avoid mechanical wear,
are not restricted by weather conditions, and typically involve underground placement of
the emitting device, thus efficiently saving surface space. Additionally, they lack external
exposed interfaces, offering higher safety and flexibility [4–6].

The existing control methods for wireless power transfer system in EVs can be broadly
categorized into three classes: primary-side control, secondary-side control, and dual-
side control. In primary-side control, a DC-DC section is typically introduced on the
primary side, with BUCK, BOOST, CUK transformation circuits, etc. Alternatively, constant-
frequency control techniques using high-frequency inverters, such as phase-shift control,
can be employed. Secondary-side control involves controlling the output by connecting DC-
DC converters or employing controllable rectifiers. Dual-side control is further divided into
dual-side communication control and dual-side non-communication control. To minimize
delays in wireless communication and reduce the introduction of energy conversion stages,
the research focus is primarily on secondary-side control. Existing studies analyze various
secondary-side control structures. In reference [7], a pair of bidirectional switches composed
of MOSFETs was added between the compensation circuit and the rectifier bridge, resulting
in eight possible operating states for the secondary side. The study also investigated the
relationship between total harmonic distortion of the input current and the output voltage.
Reference [8] proposed a secondary-side control method for an active rectifier with a dual
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LCC structure. The rectification section on the secondary side consists of two MOSFETs
and two diodes. By analyzing the operation of the secondary-side circuit, a second order
generalized integrator phase-locked loop generates a reference sine waveform. The phase
difference, obtained through a comparison using the PI method, serves as the control
variable, achieving higher-precision control of the secondary-side voltage. The system
exhibits a faster dynamic response under load and line disturbances.

With the emergence of vehicle-to-grid (V2G) and grid-to-vehicle (G2V) technologies,
bidirectional wireless power transfer is required. This technology relies on a symmetrical
system structure and corresponding control methods on both sides, where the primary
and secondary sides employ a full-bridge full-control structure to enable bidirectional
energy transfer. Bac Yuan Nguyen et al. [9] implemented bilateral control of the system
based on a symmetrical SS compensation topology. They designed a closed-loop controller
and analyzed the losses of the coil and power converter, obtaining the conditions for
obtaining the maximum efficiency of the system. However, this paper only implemented
closed-loop control based on traditional methods. Boshen Zhang et al. [10] conducted a
study on bidirectional control strategies for a dual LCC structure. Addressing the inherent
frequency deviations between the gate signals of primary and secondary-side controllers,
they introduced a novel dual-side LCC topology duty-cycle control scheme, specifically
employing traditional phase-shift control on the primary side and duty-cycle control on
the secondary side. Without the need for additional circuitry, this approach effectively
mitigates synchronization issues in electric vehicle charging. However, it is worth noting
that this method exhibits sensitivity to voltage fluctuations. F Liu et al. [11] conducted
research on control strategies for a bidirectional WPT system with an SS structure, achieving
efficiency optimization through a multi-degree-of-freedom combination control strategy.
Additionally, Zhao S et al. [12] introduced a digital phase-synchronization method for
bidirectional WPT systems, allowing for the extraction of active and reactive components of
the AC current on the secondary side’s high-frequency converter. By adjusting the reactive
current to zero, they synchronized the voltage phase of the secondary side’s high-frequency
converter with that of the primary high-frequency converter.

In summary, conventional constant current-constant voltage charging methods are
employed for the power batteries of EVs. However, this approach is associated with
prolonged charging durations and suboptimal efficiency. Moreover, the magnetically
coupled resonant wireless power transfer (MCRWPT) systems for electric vehicles are
characterized by strong nonlinearity and complex multi-variable behavior [13–15], making
conventional control strategies inadequate for addressing issues related to changes in
internal resistance within the power batteries and deviations in the alignment of primary
and secondary coils. Consequently, the exploration of innovative control strategies has
become a focal point. Adjusting the output by controlling the primary-side inverter would
require wireless communication for feedback regulation between the transmitting and
receiving ends, leading to potential issues related to communication delays. Furthermore,
the use of DC-DC converters on either the primary or secondary side for output regulation
introduces energy conversion steps, resulting in additional losses [16–20]. Hence, there is
room for improvement in the system response characteristics under traditional closed-loop
control methods, as highlighted by existing research.

To address the aforementioned issues, this paper presents a bidirectional coordinated
control strategy based on a symmetrical structure system. Initially, a dual-phase-shift
control strategy was chosen as the control method for this system. The dual LCC structure
is modeled, and a power converter loss model is established. The characteristics of the dual
LCC circuit are utilized to achieve constant current control. Through an analysis of the rela-
tionship between phase-shift angles and output characteristics, a dual-phase-shift control
strategy tailored to the MCRWPT system is designed, enabling high-efficiency bidirectional
coordination control. Building upon the foundation of traditional PID control methods, this
paper incorporates a BP neural network to update PID parameters, facilitating parameter-
adaptive control and enhancing output stability in the presence of disturbances. The control
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strategy proposed in this paper not only satisfies the system’s output characteristics but
also provides rapid, real-time response to significant disturbances during system operation
and closed-loop control.

2. System Structure and Analysis

To facilitate bidirectional energy transfer between electric vehicle batteries and the
electrical grid, the electric vehicle MCRWPT system adopts a symmetrical structure with
primary and secondary sides, as illustrated in Figure 1.
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Figure 1. Circuit of dual LCC topology.

In this configuration, Q1~Q8 represent MOSFET transistors. A direct current source
is processed by the inverter circuit to generate a high-frequency square-wave voltage uin.
The red arrows show the direction of different currents. The primary side is composed of
components Lf1, Cf1, C1 and Lp, which together form the resonance network. The energy
transfer coils are represented by Lp and Ls. The secondary side comprises components
Lf2, Cf2, C2 and Ls, creating a resonance network. The output of the dual LCC structure
yields a sinusoidal current iLf2, which is rectified and filtered before being supplied to
the battery load, RL. It is important to note that the input of the dual LCC circuit can be
equivalently represented as an AC source, Uin, and the output of the dual LCC circuit can
be equivalently represented as a load, Ro, where Ro = 8RL/π2. Given its fully controllable
mode, during forward energy transfer, the output load can be represented by the voltage
UL. The equivalent circuit is illustrated in Figure 2.
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The model and analysis of the dual LCC topology circuit were conducted, resulting in
expressions for the currents in the four mesh circuits, as follows:

Uin
0
0
0

 =


a b 0 0
b c d 0
0 d e f
0 0 f g




ILf1
I1
I2

ILf2

 (1)

where a = jωLf1 +
1

jωCf1
, b = 1

jωCf1
, c = jωLp +

1
jωCf1

+ 1
jωC1

, d =− jωM, e = 1
jωC2

+jωL2 +
1

jωCf2
, f = 1

jωCf2
, g = 1

jωCf2
+jωLf2 + Ro. The resonance condition is as follows:

jωoLf1 +
1

jωoCf1
= 0

jωoLf2 +
1

jωoCf2
= 0

jωoL1 +
1

jωoC1
+ 1

jωoCf1
= 0

jωoL2 +
1

jωoC2
+ 1

jωoCf2
= 0

(2)
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where ωo is the driving angular frequency.
Upon rearranging the above equation, we obtain the expression for the current phasor

in the system’s resonant state as follows:

ILf1 = UinM2Ro
ω2

oL2
f1L2

f2
∠0◦

I1 = Uin
ωoLf1

∠− 90◦

I2 = UinMRo
ω2

oLf1L2
f2
∠0◦

ILf2 = UinM
ωoLf1Lf2

∠− 90◦

(3)

3. Control Strategy
3.1. Dual-Phase-Shift Control Strategy Model

Figure 3 depicts voltage waveforms of triple-phase-shift control (TPS) [9]. When
the phase angle θ between the primary and secondary sides is set to a constant value, it
results in dual-phase-shift control (DPS) [20]. DPS control is achieved by manipulating
two sets of converter phase-shift angles to mitigate power backflow and current stress in
the system. The specific structure of the dual-phase-shift MCRWPT system is illustrated
in Figure 1 above. UQ1~UQ8 represent the trigger signal waveforms for eight MOSFETs
within the converters. Uin corresponds to the output voltage of the primary-side inverter,
while Uout represents the input voltage of the secondary-side rectifier. φ1 stands for the
inverter phase-shift angle, φ2 denotes the rectifier phase-shift angle, and θ indicates the
phase difference between the primary and secondary sides. Each switch conducts for
180◦, and the switching states of the upper and lower switches on the same bridge arm
are complementary. When adjacent switches on the same converter’s two bridge arms
conduct simultaneously, the corresponding Uin or Uout becomes zero. Conversely, when
the adjacent switches conduct with opposite states, the power source voltage is generated.
A larger phase-shift angle results in a higher effective value of terminal voltage.
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Based on the principles of dual-phase-shift control, and in conjunction with the system
model described earlier, we can derive the amplitude expressions for the input voltage Uin
and the output voltage Uout as follows:

Uin =
4Us

π

∞

∑
n=1,3,...

1
n

cos(nωo t) sin(
nφ1

2
) (4)

Uout =
4UL

π

∞

∑
n=1,3,...

1
n

cos(nωo t + nθ) sin(
nφ2

2
) (5)
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Then, the phasors Uin and Uout can be expressed as follows:

Uin =
2
√

2Us

π
sin(

φ1

2
)∠0◦ (6)

Uout =
2
√

2UL

π
sin(

φ2

2
)∠θ (7)

By combining the preceding derivation and rearranging the equation, we arrive at the
expression for the current phasor in the system’s resonant state as follows:

I1 = Uin
ωoLf1

∠− 90◦ = Uin
jωoLf1

ILf2 = MUin
ωoLf1Lf2

∠− 90◦ = MUin
jωoLf1Lf2

ILf1 = MUout
ωoLf1Lf2

∠90◦ = jMUout
ωoLf1Lf2

I2 = Uout
ωoLf2

∠90◦ = jUout
ωoLf2

(8)

The current amplitude is:

I1 = − 2
√

2Us
πωoLf1

sin(ωo t) sin(φ1
2 )

ILf2 = − 2
√

2MUs
πωoLf1Lf2

sin(ωo t) sin(φ1
2 )

ILf1 = − 2
√

2MUL
πωoLf1Lf2

sin(ωo t + θ) sin(φ2
2 )

I2 = − 2
√

2UL
πωoLf2

sin(ωo t + θ) sin(φ2
2 )

(9)

Hence, we can derive the expressions for the input power Pout of the secondary-side
rectifier. The expressions for the AC-side power, neglecting line resistance and circuit
parameter deviations, are as follows:

Pout =
MUinUout

ωoLf1Lf2
(10)

where the expressions for Uin and Uout are given by (6) and (7) as shown, the circuit
operates at the resonant frequency. When θ is set at +/−90◦, the reactive power component
becomes zero, and the power reaches its maximum. In the range of θ from −180◦ to 0◦,
power flows in the forward direction, while in the range of θ from 0◦ to 180◦, power flows
in the reverse direction. According to (10), adjusting the phase-shift angles on the primary
and secondary sides as well as the phase difference in voltage between the two sides can
be used to control the power. Changing the phase-shift angle on the secondary side can
adjust the output voltage, while the output current on the secondary side can only be
adjusted through the phase-shift angle on the primary side, thus validating the constant
current source characteristic of the double LCC circuit. In the following sections, we will
build upon this foundation to design a dual-side control strategy, aiming to achieve the
high-efficiency operation of the system.

3.2. Controller Structure

Figure 4 illustrates the control structure, where the input to the BP neural network
is set as the reference value r, the output value y, and the error e. The outputs are kp, ki,
and kd, corresponding to the three coefficients from the output layer as shown in Figure 5.
The PID method [21–24] is employed to achieve closed-loop control of the system, with its
output u(k) serving as the phase-shift angle control signal for the full-bridge rectifier or
full-bridge inverter. By adjusting the phase-shift angle on the secondary side, a constant
voltage control mode is achieved. The function u(k) is a function that depends on PID
coefficients and errors, and it can be trained through a BP neural network to establish
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the optimal control rules, allowing for adaptive adjustment of PID parameters based on
changes in the system’s operational state. The incremental digital PID formula is as follows:

u(k) = u(k − 1)+kp[e(k) − e(k − 1)]+kie(k)+kd[e(k) − 2e(k − 1) + e(k − 2)] (11)
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The BP neural network [25,26] employs a three-layer structure, as illustrated in Figure 5.
Since the output consists of three parameters that are non-negative, it is advisable to choose
a non-negative sigmoid function for the activation functions in the output layer. As for the
hidden layer, a symmetrical sigmoid function, which can take both positive and negative
values, can be employed.

3.3. Subsection

Based on the structure of the BP neural network, as depicted in Figure 5, the calcula-
tions are performed. First, we define superscripts (1), (2), and (3) to represent the input
layer, hidden layer, and output layer, as shown in detail in Table 1.

Table 1. Relationship equations for the input layer, hidden layer, and output layer.

Input Layer Hidden Layer Output Layer

O(1)
j = x(j), j = 1, 2, 3 (12)

net(2)i (k) =
3
∑

j=0
w(2)

ij O(1)
j (k), (i = 1, 2, . . . , q) (13) net(3)l (k) =

Q
∑

i=1
w(3)

li O(2)
i (k) (16)

O(2)
i (k) = f[net(2)i (k)] (14) O(3)

l (k) = g[net(3)l (k)], (l = 1, 2, 3) (17)

f(x) = tan h(x) = ex−e−x

ex+e−x (15) g(x) = 1
2 (1 + tan h(x)) = ex

ex+e−x (18)
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3.3.1. Neural Network Input Layer

The output of the input layer is denoted as O(1)
j , where j represents the number of

inputs. Next, we will provide a detailed explanation of the model derivation and weight
update process for the hidden layer and the output layer.

3.3.2. Second Item; Neural Network Hidden Layer

Let us write down the input and output for the hidden layer separately. The input
of each node in the hidden layer is the sum of the product of each output from the input
layer and its corresponding weight. The input of the hidden layer, denoted as net(2)i (k),

is subjected to an activation function to obtain the output, which is expressed as O(2)
i (k).

Here, q represents the number of nodes in the hidden layer, and w(2)
ij represents the weight

coefficients directly connecting the input layer to the hidden layer, which totals 3q. The
activation function employed is the hyperbolic tangent function, a symmetric sigmoid
function, with the functional form denoted as f(x).

3.3.3. Neural Network Output Layer

Then, attention is turned to the output layer. The input to the output layer is obtained
by multiplying the output of each node in the hidden layer by their respective weights and
summing them up. Similarly, the expressions for the input and output of the output layer
are denoted as net(3)l (k) and O(3)

l (k). Here, l represents the number of output variables,

and w(3)
li represents the weight coefficients directly connecting the hidden layer to the

output layer, totaling 3q. The activation function for the output layer nodes is the sigmoid
function, which is non-negative, and its expression is represented as g(x).

3.3.4. Weight Update

Using the square of the output error as a performance metric, the performance metric
function is represented as E(k):

E(k) =
1
2
[r (k + 1)−y(k + 1)]2 (19)

We employ the gradient descent method to recompute and adjust the weighting
coefficients of the entire neural network. To ensure rapid convergence to a global minimum
during the search, an inertia term is included. Thus, we obtain the weight correction
formula for the output layer of the BP neural network, as represented by ∆w(3)

li :

∆w(3)
li = −η

∂E(k)

∂w(3)
li (k)

+α∆w(3)
li (k − 1) (20)

Here, η denotes the learning rate, and α stands for the inertia coefficient.
To calculate the partial derivative of E(k) with respect to ∆w(3)

li , we have the equation
∂E(k)

∂w(3)
li (k)

.

∂E(k)

∂w(3)
li (k)

=
∂E(k)
∂y(k)

∂y(k)
∂u(k)

∂u(k)

∂O(3)
l (k)

∂O(3)
l (k)

∂net(3)l (k)

∂net(3)l (k)

∂w(3)
li (k)

(21)

Each term is elaborated on in the expression on the right-hand side of (21).

a The first item is:

∂E(k)
∂y(k)

= [
1
2
(r(k)− y(k))2]

′
= y(k)− r(k) =− e(k) (22)
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b For ∂y(k)
∂u(k) , due to the unknown nature of the model, this term needs to be approximated

by known quantities. Therefore, (23) is used. This term can be regarded as a product
factor. Its sign determines the direction of weight changes:

∂y(k)
∂u(k)

=
y(k)− y(k − 1)
u(k)− u(k − 1)

= sgn(
y(k)− y(k − 1)
u(k)− u(k − 1)

) (23)

while its magnitude affects only the rate of change. It can be adjusted by the learning
rate η to control the rate of change.

c According to the incremental digital PID formula, we have:

u(k) = u(k − 1)+O(3)
1 [e(k) − e(k − 1)]+O(3)

2 e(k)+O(3)
3 [e(k) − 2e(k − 1) + e(k − 2)], (24)

Hence, we obtain: 
∂u(k)

∂O(3)
1 (k)

= e(k)− e(k − 1)

∂u(k)

∂O(3)
2 (k)

= e(k)

∂u(k)

∂O(3)
3 (k)

= e(k)− 2e(k − 1) + e(k − 2)

, (25)

d The fourth term represents the partial derivative of the output of the output layer with
respect to the input. This is essentially the derivative of the output layer’s activation
function, given by:

∂O(3)
l (k)

∂net(3)l (k)
= g′(net(3)l (k)) =g′(x) =

2

(ex + e−x)2 , (26)

e The fifth component represents the partial derivative of the inputs to the output layer
with respect to the weights between the hidden and output layers, which corresponds

to the output of the hidden layer ∂net(3)l (k)

∂w(3)
li (k)

.

∂net(3)l (k)

∂w(3)
li (k)

= O(2)
i (k), (27)

According to the above equation, let:

δ
(3)
l = e(k)sgn(

y(k)− y(k − 1)
u(k)− u(k − 1)

)
∂u(k)

∂O(3)
l (k)

g′(net(3)l (k)), (28)

Therefore, we have:

∆w(3)
li (k) = ηδ

(3)
l O(2)

i (k) + α∆w(3)
li (k − 1), (29)

Let:

δ
(2)
i = f′(net(2)i (k))

2

∑
l=0

δ
(3)
l w(3)

li (k), (30)

Similarly, the weighted coefficients for the hidden layer are obtained as:

∆w(2)
ij (k) = ηδ

(2)
i O(1)

j (k) + α∆w(2)
ij (k − 1) (31)
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4. Simulation and Experimental Validation
4.1. Simulation and Comparison with Traditional Incremental PID Controller

The construction of the controller and the implementation of the control algorithm
were carried out in MATLAB Simulink. The input quantities returned to the neural network
module included the system outputs y(k) and y(k − 1) at different time points, the system
input r(k), the system output error e(k), e(k − 1), e(k − 2), the controller output u(k − 1),
and the individual elements of the weight matrix. The controller’s output, u, represents the
modulation signal for the phase-shift angle. The values of the learning rate η and the inertia
coefficient α are set to 0.05 and 0.1, respectively. According to the previous analysis, the
secondary-side control is mainly used, and the given of the system was set as the reference
value of the control target. Control the secondary-side fully controlled rectifier bridge was
controlled the load was changed from 15 Ω to 10 Ω at 0.08 s. The output constant voltage
was taken as the control objective, and the voltage reference value was set to 300 V to obtain
the simulation results. For the adjustment of the two sets of weights, the number of nodes
in the implied layer was set to 8. The weight between the input layer and the hidden layer
was defined as wi, the weight between the hidden layer and the output layer was defined
as wo, and the input and output were both three nodes. Initial values were assigned to
both matrices, and each set of weights was corrected by back-propagation of the error after
the simulation was started, as shown in Figure 6a, and after a load change of 0.08 s, each
weight was adjusted according to the error and stabilized again after about 0.007 s. The
adjustment of each coefficient of the PID is shown in Figure 6b. It can be seen that, after
the adaptive adjustment after the load change, the integral parameter ki parameter has the
largest change.
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The traditional incremental PID controller was built and compared with the improved
BP neural network PID parameter-adaptive control method. Figure 7a shows the output
under incremental PID control. The voltage value decreases after the load change, the
maximum overshoot is −64.9 V, and the output voltage recovers to 300 V after a perturba-
tion of 0.035 s, which realizes the closed-loop control. Figure 7b shows the corresponding
variation curve of the input AC voltage of the rectifier. It can be see in the output under
adaptive control of the neural network parameters in Figure 8, that the overshoot under
this control algorithm is reduced to −49 V, and the output voltage recovers to 300 V after
0.015 s of disturbance. Compared with traditional incremental PID, the overshoot of the
system is reduced from −64.9 V to −49 V, and the adjustment time is shortened from 0.035 s
to 0.015 s. The BP neural network PID parameter-adaptive control reduces overshoot by
25.5% and response time by 57.1%, verifying the advantages of this control algorithm.
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4.2. Experimentation

To demonstrate the rationality and effectiveness of the previous analysis, a dual LCC
structure high-power electric vehicle wireless charging experimental platform was built
for the experimental verification. The circuit parameters are shown in Table 2. The system
consists of a 20 kW DC charging module NXR75030 (Winline Technology, Shenzhen, China),
high-frequency inverter, dual LCC compensation circuit, rectifier, filtering circuit, and a
high-power adjustable load box. The control adopts a bilateral collaborative control method,
and the communication between the primary and secondary sides is achieved through a
2.4 G module. In this system, 100 information transfers can be achieved within 1 s. The
IMZ120R045M1 (Infineon, Munich, Germany) silicon carbide MOSFET is used, with a
maximum withstand voltage of 1200 V, extremely low switching loss, and a wide gate-
source voltage range. It is easy to drive and can perform synchronous rectification. The
driving circuit adopts four ISO5852S gate drive chips. STM32F407 (STMicroelectronics,
Geneva, Switzerland) is used as the control core, with 82 GPIO ports and a maximum
CPU frequency of 168 MHz, meeting the system control requirements. Figure 9 shows
the overall diagram of the high-power radio energy transmission system experimental
platform, which is suitable for electric vehicles.
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Table 2. System parameters.

Parameter Value Parameter Value

Lf1/(µH) 19.451 Lf2/(µH) 12.1
Cf1/(nF) 180.423 Cf2/(nF) 292.16
C1/(nF) 127.262 C2/(nF) 107.43
Lp/(µH) 47.20 Ls/(µH) 47.61
Udc/(V) 425 Req/(Ω) 6–15
Uref/(V) 270 f/(kHz) 85
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The dual LCC structure has the characteristic of constant current output, and the
output current is not affected by load changes. Open-loop experiments on constant current
output were conducted to verify this characteristic. The MOSFET of the secondary rectifier
bridge was placed in a fully open state. The voltage and current values at the load end, and
the load increases from 6 Ω to 15 Ω in steps of 1 Ω, were recorded. As shown in Figure 10,
as the load increases, the load current remains basically unchanged, while the load voltage
increases linearly with the load.
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After verifying the output constant current characteristics of the double LCC structure
with an open loop, a further closed-loop experiment was conducted to realize the rapid
constant voltage control at both ends of the load by adjusting the rectification bridge of
the auxiliary edge. The DC input voltage was set to 425 V, the set output voltage was
270 V, and the initial load was set to 10 Ω. Because the resistance box was used in the
experiment, the load was adjusted and graded, i.e., the load was gradually adjusted to 10 Ω,
10.17 Ω, 10.53 Ω, 10.91 Ω, and 12 Ω. Figure 11a shows the voltage and current waveform
of the two ends in the case of load mutation. With an increase in load, the current at the
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load end decreased accordingly, while the output voltage remained stable, and the actual
voltage value was kept at 267 V, so that the set target value was reached in the presence of
a sampling error. Figure 11b shows the overall waveform of the input end of the auxiliary
side rectifier bridge. As the load resistance increases, the output voltage amplitude remains
unchanged, and the output current amplitude gradually decreases.
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The figure illustrates the AC voltage and current waveform of the input end of the
rectifier bridge before and after the load change. At a load of 10 Ω, Figure 12a is the rectifi-
cation bridge input waveform, when the voltage ring has taken effect, and the rectification
bridge input voltage duty ratio is slightly below 50% due to the dead zone. When the load
changes to 12 Ω, Figure 12b shows the input voltage and current waveform of the rectifica-
tion bridge. After the load change, the controllable rectification becomes more effective, the
input voltage duty ratio of the rectification bridge becomes significantly smaller, and the
secondary closed-loop control of the output constant voltage is effectively realized.
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5. Conclusions

This paper proposed a bilateral cooperative control strategy for an EV wireless power
transfer system based on a BP neural network to realize closed-loop constant voltage control
for the secondary rectifier circuit. This paper designed a control strategy based on the
controller structure of a bidirectional energy wireless transmission system and selected a
dual-phase-shift control method to achieve maximum power output according to the actual
needs of the system. On this basis, in order to improve system stability and effectively
achieve a fast response to disturbances, a PID parameter-adaptive controller based on
a BP neural network was designed. Finally, a simulation and experimental verification
compared the strategy with traditional control methods. The system achieved a control
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target with an output voltage constant at 267 V near the set value when the load changed.
The control strategy has the advantages of shortening the response time and reducing
overshoot. A constant pressure control experiment for the secondary rectifier bridge was
also completed, showing an output power of up to 10.3 kW and a maximum efficiency of
92.96%, realizing closed-loop control with stable output.
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