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Abstract: The tendency towards thin insulation layers in traction battery systems presents new chal-
lenges regarding insulation quality and service life. Phase-resolved DC partial discharge diagnostics
can help to identify defects. Furthermore, different root causes are characterized by different patterns.
However, to industrialize the procedure, there is the need for an automatic pattern recognition system.
This paper shows how methods from computer vision can be applied to DC partial discharge diag-
nostics. The derived system is self-learning, needs no tedious manual calibration, and can identify
defects within a matter of seconds. Thus, the combination of computer vision and phase-resolved DC
partial discharge diagnostics provides an industrializable system for detecting insulation faults and
identifying their root causes.

Keywords: phase-resolved DC partial discharge diagnostics; computer vision; insulation testing;
pattern recognition; automotive industrialization; root cause analysis

1. Introduction

Despite the urgency to reduce carbon dioxide (CO2) emissions, the CO2 emissions of
the transport sector grew from 2021 to 2022 by 2.1%. The increase would have been even
higher without the “accelerating deployment of low-carbon vehicles”. Electric vehicles
saved 13 million tons of global emissions in 2022 compared to typical diesel or gasoline
cars [1]. Hence, the increasing number of battery electric vehicles (BEV) can reduce carbon
emissions and improve the sustainable development of the transportation sector. A crucial
component of BEVs is the traction battery system, which requires reliable insulation systems
to ensure safe and efficient operation. However, the trend towards thin insulation layers
in these systems has presented new challenges regarding insulation quality and service
life [2]. Thus, a quality test is essential to avoid current and future insulation faults. Future
faults are detectable using partial discharge diagnostics. Partial discharges (PD) can be a
preprocess of an electrical breakdown of insulation systems [3].

PD diagnostics have been established as a reliable testing method in AC power sys-
tems [3]. However, their application in DC power systems, particularly in low- and
medium-voltage applications in the automotive sector, is still in the research stage [4,5].
The DC operating voltage defines the requirement for a quality test using DC stress [3].
PDs in the solid insulation system at DC stress are usually at the surfaces of defects due to
space charge formations [4,6]. Thus, the aging process defers using an AC or a DC stress.
Consequently, DC partial discharge diagnostics should be applied.

In this context, a new approach is transferring AC PD diagnostics via phase-resolved
partial discharge (PRPD) patterns to DC systems in low- and medium-voltage applications.
The proposed method involves applying a small ripple to the DC voltage and using it
as a phase-angle reference for partial discharge diagnostics. This early fault detection [5]

World Electr. Veh. J. 2023, 14, 222. https://doi.org/10.3390/wevj14080222 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj14080222
https://doi.org/10.3390/wevj14080222
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0009-0001-0380-7059
https://orcid.org/0009-0001-3417-8099
https://orcid.org/0000-0003-3996-0642
https://doi.org/10.3390/wevj14080222
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj14080222?type=check_update&version=1


World Electr. Veh. J. 2023, 14, 222 2 of 21

can provide several discharge patterns that refer to faults on and in the insulation system.
As well as the AC PRPD patterns [7], the introduced DC patterns should be quantified
for establishing an industrial short-term routine test. Until now, DC partial discharge
diagnostics have been considered unsuitable for routine tests due to the long testing time
of “over tens of minutes or hours” [4], due to a slower recovery time [8]. Considering
the thin insulation layers of traction battery systems, the PD rate is higher than in DC
high-voltage applications caused by the lower ohmic recharging process of capacitive faults.
Additionally, the ripple can accelerate partial discharges in the volume of the defect. Thus,
the test method and the application enable a routine test in a short test time. To meet
industrial routine test requirements for early fault detection, there is the need for a fully
automated system, which is capable of quantifying the PRPD patterns within seconds.

2. Related Work

This work investigates the automatic identification of PRPD patterns, which is well
studied [9]. However, to the best of our knowledge, the present work is the first to
investigate the automatic identification of PRPD patterns of an insulation from a DC power
system. The application of DC partial discharge diagnostics provides several advantages:

• Potential root causes can be identified by different patterns.
• Partial discharges in the volume of the defect can be detected.
• Depending on the application, one can simulate the working load of the test object.

In order to apply the testing procedure in a manufacturing environment, an automated
pattern recognition system is desirable. It must be capable of identifying the patterns of
the test object and thus the potential root causes within seconds. This work provides the
primary proof of concept (PoC) for this.

From a machine learning perspective, automated PRPD pattern recognition algorithms
can be roughly split into methods based on features identified by experts [10,11] and
methods which are purely data-driven [12,13]. In this work, we focus on the latter, which
we consider to be more robust towards perturbations of the testing setup and new images.
Compared to existing works, we leave the denoising of the images mostly to the pattern
recognition algorithms. This avoids tedious calibrations of the noise removal step [14],
while further increasing the robustness of the model.

To create partial discharge plots, one needs to decide on their resolution. The optimal
resolution of the PRPD patterns for automatic classification has so far been neglected in the
literature. We dedicate Section 5.1 to this issue.

Additionally, the automatically learned patterns are checked for plausibility using
methods from explainable artificial intelligence (xAI) in Section 5.4. In this way, we involve
the existing expert knowledge in the validation procedure.

3. Technical Background

AC partial discharge measurements are usually utilized in high-voltage applications.
The phase of the AC test voltage is used as a reference to identify defects. The partial
discharges (PDs) in faults behave according to the field stress, material properties and
geometrical properties. Thus, PDs in different failure routines can be related to phase-
resolved partial discharge (PRPD) patterns [4]. This method can also be used in DC PD
diagnostics by superimposing a small ripple on the DC stress [15]. Thus, the methodological
knowledge can be transferred, supporting the introduction of DC PD diagnostics using
PRPDs. The DC PD diagnostic method can be applied using the test setup in Figure 1a. The
AC side consists of a controlled AC voltage source, a transformer, a coupling capacitance
Cac (1.2 nF), and the PD measurement device Omicron MPD 800 (PDac). It measures PD
at the AC side to ensure a PD-free power supply. The diode rectifies the voltage via the
transition to the DC side. According to the direction of the diode, positive and negative
voltages can be applied. The DC voltage ripple can be set using a smoothing capacitance Cg
(20 nF) and a load resistor RL (5 MΩ). The inductance L decouples the measurement part
from the test voltage generation part. The ohmic divider measures the mixed signal at the
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test object (TO). The coupling capacitance Cdc (1.2 nF) and the MPD 800 (PDdc) are utilized
to measure the apparent charge and are calibrated to the TO. An electrode (conductive
elastomer) [5] connects the test setup to the TO (Figure 1b).

Electrode material

Test adapter

Weight discs

Insulation layer
Battery cell body

Cac

Cg

Cdc

LD

RL Rdc1

TO

ac-side dc-side

PDac PDdc

Vdc

Rdc2

Vac

TO

(a)

(b)

Figure 1. Test setup: (a) equivalent circuit and (b) test object [5].

An integration of the PD current impulses over the frequency domain calculates the
discharge magnitude. A bandpass filter is applied according to IEC 60270 [16]. The PDs are
related to the phase angle. PRPD patterns are recognizable by overlaying several periods
(20 ms) of the ripple. The discrete intensity of discharges is displayed with a color map to
identify the PD distribution. Figure 2 shows the usual patterns in thin insulation systems
of traction battery systems. The noise with a maximum discharge magnitude of 100 fC
(QIEC = 55 fC) is removed to clearly display the patterns. Figure 2a shows a pylon-shaped
pattern representing PDs in the air gap between the electrode and TO. The pylon-shaped
pattern is in the range of the maximum absolute voltage. The deviation of the pylon-shaped
pattern depends on the distribution of space charge in the air. Solid PDs caused by impurities
occur as plateau-shaped PRPD patterns (Figure 2b). The PD behavior of solid PDs can be
described by hopping, tunneling and combined processes [17]. The discharge magnitude
depends on the local electric field stress and the magnitude of the potential barrier [18] of the
specific impurity. Thus, PDs can occur over the total phase range triggered by the field stress
of the PD location. Volume PDs form a hill-shaped pattern (Figure 2c), which depends on
the gradient of the applied voltage [15]. A quadratic shape and a phase shift, in contrast to
the pylon-shaped pattern, characterize the hill-shaped pattern. These patterns are usually
measured in a combined pattern, like pylon and plateau, as shown in Figure 2d. In particular,
plateau and hill can reduce the life cycle of traction battery systems. Orienting investigations
show that these patterns lead to an erosion and a breakdown of insulation. More detailed
information about the patterns, effects and physical discharge processes are summarized
in [5].

Until now, the patterns have been qualitatively analyzed. The PD rate and the
weighted discharge magnitude QIEC are not suitable for a binary ok or not ok decision in a
routine test. Additionally, both parameters cannot provide information about the type of
measured defect. However, this information can help optimize the production process by
understanding the cause of the defect. To achieve this, an automatic system is necessary
to identify and quantify the patterns. Furthermore, the automatic approach should fulfill
routine test requirements to optimize cycle times.



World Electr. Veh. J. 2023, 14, 222 4 of 21

(a) (b)

(c) (d)

Figure 2. Introduced PRPD patterns: (a) pylon-shaped pattern at Vpeak = −2 kV; (b) plateau-shaped
pattern at Vpeak = −2.7 kV; (c) hill-shaped pattern at Vpeak = −0.85 kV; (d) combined pattern pylon
and plateau at Vpeak = −4.5 kV and ttest = 1 min.

In this work, a full machine learning approach is followed, where patterns are learned
autonomously by the system from the PRPD diagrams. As an alternative, one could
implement the expert knowledge as a predetermined classification algorithm, e.g., one
could count the number of discharges in a certain area of the diagram. However, this kind
of approach involves the calibration of many parameters; for our example, there would be
the need to specify the following:

• The area;
• A threshold for the number of discharges in that area, above which we assign the

diagram to a specific pattern.

This calibration is tedious and the approach is unstable for unseen images or slight
variations in the experiment setup. A mixed approach of machine learning and expert
systems, as described in [9,11,14], provided unsatisfactory results in a preliminary analysis
and was thus not considered further.

4. Machine Learning Approach

In this section, the machine learning approach is described. The analysis is based
on a dataset of PRPD recordings, which is detailed in Section 4.1. As the procedure aims
to identify patterns in PRPD diagrams, their generation is outlined in Section 4.2. This
is followed by an explanation of the machine learning algorithms under investigation
(Section 4.3) and a description of the methodology (Section 4.4), which we use to compare
the algorithms in Section 5 to conclude.

4.1. Dataset Description

The data presented in this study are the intellectual property of BMW AG and have
been used with their permission. Due to the proprietary nature of the dataset, it cannot
be published in its entirety. However, in the following we provide the necessary details to
support the reproducibility and validity of our results.

The studied dataset consists of N = 369 files. Each file contains the output of one
discharge experiment, which consists of a succession of discretized discharges. Inside a
file, data are organized in a three-column table. The three columns contain the signed
amplitude of the discharge, the phase of the discharge and the absolute time of the discharge,
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respectively. Given that the frequency of the discharges and the duration of the experiment
vary, the number of rows differs between the files.

An expert assigns a label to each file, based on the corresponding PRPD diagram.
Each label is made of a combination of C = 3 base classes, namely “Hill”, “Plateau” and
“Pylon”. Figure 3 shows isolated instances of each base class. Table 1 gives the number of
files for each class combination. It shows that 28% of the instances contain a “Hill”, 74% of
the instances contain a “Plateau” and 49% of the instances contain a “Pylon”. Thus, the
imbalance of the base classes is limited.
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Figure 3. From left to right, examples of a hill, a plateau and a pylon. Many instances present a mix of
these labels. The process for the preparation of the PRPD diagrams is described in the following sections.

Table 1. Number of files per combination of labels. This table is formatted like a truth table with ¬
standing for the logical negation. For example, there are 80 training instances with the label “Plateau
& Pylon”.

Plateau ¬ Plateau

Pylon ¬ Pylon Pylon ¬ Pylon

Hill 20 75 4 5
¬ Hill 80 98 77 10

Other parasitic patterns are also present in some of the files. They are considered as
noise and ignored in the subsequent classification task.

4.2. Creation of PRPD Diagrams

In the original data files, the amplitude of the discharges is signed, meaning that there
are positive and negative discharges. However, in our case, keeping the signed amplitude
to create PRPD diagrams is not relevant; indeed, it would lead to mirrored patterns, which
do not help to solve the classification task, as well as a loss of density of the patterns. Thus,
the absolute value is applied to the discharge amplitude column. The discharge amplitudes
range between the measurement thresholds 10−2 pC and 105 pC . The decimal logarithm is
applied to map the discharge amplitudes to the interval [−2, 5].

The raw data face challenges at both ends of the discharge amplitude range. On
one hand, low-amplitude discharges consist mainly of noise. On the other hand, high-
amplitude discharges are extremely scarce. Therefore, discharges with an amplitude in
the interval [−1.5, 3] are filtered out. The lower bound is empirically set to minimize the
amount of noise. The upper bound is set to the 99.9th empirical percentile of the discharge
amplitude distribution.

Without specification, it can be assumed that PRPD diagrams are generated based on
the whole duration of the experiment. However, in some cases, only a temporal subset of
the experiments is considered to generate PRPD diagrams. For example, in the evaluation
section (Section 5), the impact of reducing the experiment length is evaluated by creating
PRPD diagrams from the first seconds of the experiments. In this case, filtering is applied to
the absolute time column, relative to the first timestamp. For example, if the time horizon
is set to 10 s, then only rows with a timestamp belonging to the first 10 s of the experiment
are kept.
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Along the phase axis, the range [0, 360] remains untouched.
It is now possible to generate the PRPD diagrams from the filtered data, as illustrated

on Figure 4. Thus, the discharge amplitude and discharge phase are split in namp and
nphase bins, respectively. Then, the number of discharges falling into each square bin (i, j)
is calculated and used to define the raw intensity of the pixel (i, j) of the PRPD diagram.
Hence, the couple (namp, nphase) defines the resolution of the generated PRPD diagrams.
The higher the number of bins, the higher the detail of the PRPD diagram, as shown in
Figure 5. It can be noted that the resolution of the images fed to the classification algorithms
is much smaller than that of the original images shown in Figure 2. A specific evaluation is
carried out to determine the optimal resolution in Section 5. Until then, that parameter is
not set to a concrete value.

Figure 4. Illustration of the filtering and creation of a PRPD diagram. The table on the left is a subset
of a PRPD file, which leads to the PRPD diagram represented on the right. Here, the discharge bounds
are [−1.5, 3], the time bounds are [0, 25] and there are 5 bins along the discharge and the phase axis.
The discharges are thus split into bins of [−1.5,−0.6), [−0.6, 0.3), [0.3, 1.2), [1.2, 2.1), [2.1, 3] and used to
build the rows, while the phase angles are binned into [0, 72), [72, 144), [144, 216), [216, 288), [288, 360]
and used to build the columns. After the application of the filtering, the red rows are dropped and
only the green rows remain. Then, the green rows are added to the corresponding bins. For example,
the lower green row is assigned to the second column and the first row bin.
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Figure 5. The same “Hill & Plateau” image under three different resolutions, namely (20, 20), (56, 56)
and (20, 56), from left to right. All the images have been logarithmically normalized.

The previous data filtering is not sufficient to balance the intensities of pixels. Indeed,
pixels forming the patterns to be recognized have a typical intensity of 10, while a few noisy
pixels remain, with an intensity greater than 700. Thus, a rescaling of the pixel intensities
is necessary. Several methods have been considered, namely logarithmic normalization,
power-law normalization, empirical cumulative distribution function and quantile transfor-
mation. A preliminary evaluation was conducted to select the logarithmic normalization.
The logarithmic normalization of a PRPD diagram consists of two steps:

plog = log(1 + praw)

pscaled =
plog −min(plog)

max(plog)−min(plog)

(1)
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where praw is the intensity of a pixel of the raw image and the extremal values are computed
over the image. Given that praw is non-negative, the logarithmic transformation is always
valid. Intuitively, the logarithmic normalization allows us to make the low-intensity pixels
more visible relative to the high-intensity pixels. For example, taking one pixel of intensity
Ilow = 10 and another of intensity Ihigh = 700, the intensity ratio changes from rraw = 70 to
rscaled ≈ 2.7. Therefore, the normalization improves the contrast. Thanks to the min–max
normalization, the pixel intensities lie in the interval [0, 1].

4.3. Algorithms

The flow of the system is depicted in Figure 6. The preprocessing and picturization
steps were presented in the previous sections, but we still need to specify the classifying
machine learning algorithm, which takes images of fixed size with known labels as input
and uses them for training a model. This model is a function that accepts unseen images
and returns predictions on their labels. For this purpose, we utilize five different machine
learning algorithms, which we introduce below. The learning of the model can be adjusted
with so-called hyperparameters. Hyperparameters play a central role in nearly all machine
learning algorithms and must be chosen by the researcher. The optimal choice of hyper-
parameters heavily depends on the problem at hand. Some challenges and objectives in
the training of machine learning algorithms are outlined in Section 5. It is assumed that N
vectors x1, . . . , xN ∈ Rd are observed, where each of the d entries keeps the information on
the gray-level of a specific pixel. The entries of the vectors are called features. The labels
of the images are stored correspondingly in y1, . . . , yN . For simplicity, it is assumed that
yn ∈ {−1, 1}, for n = 1, . . . , N. Thus, every image belongs to exactly one of two classes.
Except for convolutional neural networks (CNNs), the machine learning algorithms are
combined with upstream dimension reduction techniques. However, to promote the ac-
cessibility of this section, it is assumed that the presented machine learning algorithms
provide models that map images (and not their lower-dimensional projections) to labels.
The utilized dimension reduction techniques are described at the end of this subsection.

Figure 6. Data pipeline flow chart. The last two steps rely on hyperparameters that will be optimized.

4.3.1. Classifiers
Logistic Regression

Under the logistic regression model, the probability of an image x belonging to class 1
is given by

P(Y = 1|x) = σ(xT β), (2)

where β ∈ Rd, and σ is the sigmoid function. Intuitively, the logistic regression model
classifies x based on its orientation relative to the hyperplane of normal β. The sigmoid
function σ allows us to map the prediction to the interval [0, 1]. The logistic regression
model is popular due to its simplicity, as it is fully characterized by β. The impact of each
pixel in xj on the prediction is given by the corresponding parameter β j. The larger β j, the
stronger the pixel intensity xj, forcing the prediction towards class 1. In order to avoid
overfitting for high-dimensional data as images, we search for β by minimizing

β̂ = arg min
β∈Rd

−L(β|x1, . . . , xN) + λh(β), (3)



World Electr. Veh. J. 2023, 14, 222 8 of 21

where h(β) penalizes complex models (for example, β with many non-zero entries) and L
is the log-likelihood function of the logistic regression model. As hyperparameters, one has
to choose the scalar value λ and the function h. In the experiments below, h is chosen to be
the sum of the absolute values of β (i.e., its l1 norm) and λ is varied. An increasing λ prefers
models of lower complexity, while λ = 0 corresponds to no penalization of complexity. If
there are more than two classes an image x can belong to, then we use a classifier chain,
where we train a different model for every label and chain these together [19].

Support Vector Machine

Assuming that the images x1, . . . , xN are ordered in such a way that x1, . . . , xr belong
to class 1 and xr+1, . . . , xN belong to class −1, then support vector machines (SVMs) search
for a hyperplane that splits the data points x1, . . . , xr and xr+1, . . . , xN across different
sides. Furthermore, SVMs try to maximize the minimal distance of any data point to the
hyperplane. A two-dimensional example, for which such a hyperplane exists, is depicted
in Figure 7. As data are seldom linearly separable (i.e., such a separating hyperplane exists),
one can map the data into a higher-dimensional feature space. If chosen correspondingly,
distances and angles in this feature space can be calculated via a so-called kernel. As
hyperparameters, we need to choose the mapping (i.e., the kernel) and a regularization
factor, which ensures that hyperplanes of lower complexity are preferred. Furthermore,
we choose the radial basis function as kernel, which offers another free parameter. An
introduction to SVMs can be found in [20].

Figure 7. In the linearly separable scenario above, the support vector machine (SVM) finds the
hyperplane (dotted and solid lines), which has the maximal distance to the nearest data point. While
all drawn hyperplanes separate the data, the solid line has the largest distance to the closest data
point and is thus the result of the SVM algorithm. An unseen data point is assigned to the green class
if it falls above the solid line and to the red class if it falls below the solid line.

Random Forest

A decision tree can be constructed by a root node, which contains all data points. Then,
using the features of x1, . . . , xN it splits the data into two child nodes. Applying this pattern
recursively on the child nodes, we obtain a decision tree. A concrete example of a decision
tree is shown on Figure 8. A new data point x to classify is assigned to a label by walking
through the decision tree until a node with no children is reached. We call nodes with
no children leaf nodes. By convention, one assigns the new data point x to the label that
builds the majority in the respective leaf node. During the training of the decision tree, the
algorithm identifies at each node the criterion of the features that separates instances with
different labels y as well as possible. Decision trees are very simple but often do not provide
enough complexity. However, they are popular in ensemble methods, two of which are
outlined below. In the case of more than two classes (multiclass) or if an instance can even
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belong to an arbitrary number of labels (multilabel), the learning of the decision tree can be
adjusted [21].

One example of an ensemble method is the random forest (RF) [22]. During the
training of an RF, the algorithm trains multiple decision trees, while randomly subsampling
the images and features. To predict the labels of an image x, every decision tree makes a
prediction. The prediction of the RF is then the majority vote of the decision trees.

There are numerous hyperparameters for an RF. However, we vary only the number
of decision trees and their maximal depth, which is the maximal number of junctions one
needs to pass to arrive at a leaf node. A lower number results in simpler models.

Figure 8. A decision tree to distinguish a cat from a dog based on the features Weight, Age, and Likes
Swimming. The leaf nodes are colored in green and red depending on the prediction. An example
animal, which weighs 18 kg, does not like swimming and is 4 years old, is predicted to be a dog. The
depth of the depicted decision tree is three.

XGBoost

XGBoost also uses a combination of decision trees. However, the training algorithm to
derive the decision trees is different. Indeed, the trees are derived sequentially to steadily
improve the efficiency of the combination of trees. Given a certain loss function L and a
learning rate α, the algorithm finds a first decision tree D1 that approximately minimizes

L(D) =
N

∑
n=1

L(yn, D(xn)) + h(D), (4)

where h measures the complexity of a tree D and prevents excessive overfitting. For this
decision tree D1, we denote the class prediction of xn by ŷn

1 = αD1(xn). Then, XGBoost
iteratively searches at step t + 1 for a decision tree Dt+1 that approximately minimizes

N

∑
n=1

L(yn, ŷn
t + D(xn)) + h(D). (5)

Finally, the prediction for xn is given by

ŷn
t+1 =

t+1

∑
v=1

αDv(xn). (6)

Several hyperparameters allow us to tune the XGBoost method. In the experiments,
we vary the learning rate α, which determines the magnitude of the contribution of each
tree, and the maximal depth of the decision trees. An extensive introduction to XGBoost is
provided in [23].
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Convolutional Neural Networks

Artificial neural networks are machine learning methods inspired by the organization
of human neurons. A neural network consists of a directed graph of parameterized
nodes organized in layers, which can be trained to solve classification tasks inter alia.
Convolutional neural networks (CNN) are particularly suitable for image classification [24].
The specificity of CNNs lies in their convolutional layers. Those layers are made of
learned kernels, which are convolved along the input images to generate activation maps.
These activation maps capture meaningful characteristics of the image and facilitate the
classification made by the dense layers of the network. Thus, as opposed to the previously
presented algorithms, no dimension reduction technique is needed. Raw images can be
directly fed to the network.

Figure 9. The architecture of the CNN model. The convolution and pooling layers are in charge of
the feature selection, while the classification is made by fully connected layers.

In this work, the considered CNN architectures have only one convolutional layer and
two dense layers, as shown on Figure 9. This choice is justified by the limited size of the
dataset, which prevents the efficient training of deeper networks. The activation functions
are rectified linear units, except for the output layer, which uses a sigmoid function. This
allows us to output a score ranging between 0 and 1 for each of the base classes. L2
regularization is applied to the weights of the network to prevent overfitting. At training
time, the Adam optimizer [25] is used to fit the weights of the network.

4.3.2. Dimension Reduction Techniques
Principal Component Analysis

For simplicity, let us assume that the data are centered, i.e., that ∑N
n=1 xn = 0 ∈ Rd (this

can be obtained by subtracting the mean from each data point). The principal component
analysis (PCA) [26] searches for the linear combination of the d features that contains the
largest variation. More precisely, the first principal component a1 ∈ Rd is

a1 = arg max
a∈Rd

N

∑
n=1

(aTxn)
2. (7)

Geometrically, a1 is the normal of the hyperplane that separates the centered point
cloud (xn)n=1,...,N best. For k > 1, the kth component ak ∈ Rd is the vector maximizing
Equation (7) while being orthogonal to the subspace spanned by {a1, . . . , ak−1}. The
dimensions of the data x1, . . . , xN can then be reduced by zn = (aT

1 xn, . . . , aT
k xn) ∈ Rk,

n = 1, . . . , N and k ≤ d. Typically, k is smaller than d by several orders of magnitude to
allow high compression.
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Non-Negative Matrix Factorization

Let X = (x1, . . . , xN)
T ∈ RN×d be the data matrix with non-negative entries. For

a given k ≤ d, non-negative matrix factorization (NMF) searches for the non-negative
matrices H ∈ RN×k and W ∈ Rk×d such that

||X− HW||F (8)

is minimized, where || · ||F is the Frobenius norm on matrices. Intuitively, the columns of
W can be interpreted as basis vectors of the original space. The coefficients of H show how
to combine these basis vectors in order to reconstruct the original data. The dimensions of
the data can then be reduced by considering hn ∈ Rk instead of xn, and hn is the nth row
of the matrix H. NMF is often able to learn good lower-dimensional representations for
images [27].

4.4. Evaluation Methodology
4.4.1. Classification Metrics

Section 4.1 shows that a single PRPD diagram can belong to multiple classes. Therefore,
classifying PRPD diagrams is a multi-label classification problem. It implies that the labels
ln, with n ∈ {1, . . . , N}, can be encoded as boolean vectors of a size equal to the number of
classes C. The order of the coordinates of the label vectors follows that of the classes “Hill”,
“Plateau” and “Pylon”. For example, assuming the first file is labeled as “Hill & Pylon”,
then l1 = [1, 0, 1]. In the following, l̂n denotes a prediction made for the n-th file.

To evaluate the ability of the models to solve the classification task, we consider the
Hamming loss, which is the fraction of misclassified individual labels. Formally, it is
defined by

hamming loss =
1

NC

N

∑
n=1

C

∑
c=1

xor(ln,c, l̂n,c). (9)

The Hamming loss is chosen as the main decision metric. This is reasonable as

1
NC

N

∑
n=1

C

∑
c=1

ln,c (10)

is well between 0 and 1.

4.4.2. Nested Cross-Validation Methodology

The dataset at our disposal contains fewer than 1000 files. It can thus be considered as
small. Therefore, special emphasis must be placed on the algorithm and model selection
methods to ensure that the selected model generalizes well on unseen data. In this work,
the nested cross-validation methodology is chosen to tune and compare the classification
methods [28,29].

Nested cross-validation is a generalization of cross-validation, which is a resampling
method that allows the training and testing of a classification method over rotating splits
of the dataset [30], as shown on Figure 10. By averaging the classification scores obtained
over the different splits, it is possible to compute the value of a fitted model derived from
a particular hyperparameter configuration. However, it is not possible to optimize the
hyperparameter configuration based solely on the cross-validation score. Indeed, this
would lead to the overfitting of the hyperparameters. Nested cross-validation addresses
that issue by nesting two cross-validation loops: the optimal hyperparameter configuration
is found in the inner loop and then the ability of the tuned algorithms to generalize to
unseen data is evaluated in the outer loop.
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Figure 10. Illustration of the nested cross-validation. The inner and outer cross-validation are
represented in blue and orange respectively. 5 folds

It remains to set the number of folds both for the inner and outer cross-validation. On 356

one hand, the number of folds must be restricted to preserve the computational feasibility of 357

the selection process. On the other hand, shrinking the number of folds negatively impacts 358

the statistical significance of the generalization score. A trade-off is found by setting the 359

number of folds of the inner cross-validation to 5 and the number of folds of the outer 360

cross-validation to 10. 361

5. Results 362

In this section, we evaluate the different machine learning algorithms using the 363

methodology described in the previous section. As the resolution of the PRPD diagrams is 364

somewhat arbitrary, we start by evaluating how different algorithms perform with images 365

of different resolutions (Section 5.1). The obtained optimal combination of algorithm and 366

resolution, we use in the subsequent subsection, where we evaluate the performance of the 367

algorithms for different durations of the PRPD recordings (Section 5.2). This is of particular 368

interest as it gives a hint at the applicability of the dc partial discharge method for industrial 369

routine tests. We present which labels are hard to identify (Section 5.3) before we apply 370

methods that aim to explain the decision of a machine learning model in Section 5.4. In 371

such a way, structures learned by the algorithm can be visualized and compared with the 372

expert assessment. 373

5.1. Choosing the Image Resolutions 374

For each combination of algorithm and PRPD diagram shape, a nested cross validation 375

is executed to determine the ability of the given algorithm to generalize on pictures of 376

that given size. We vary the hyperparameters of the algorithms within the inner loop. For 377

details on the hyperparameter search spaces, we refer the reader to Appendix A. The results 378

of the experiments are presented in Table 2. 379

Figure 10. Illustration of the nested cross-validation. In this example, the inner and outer cross-
validations are represented in orange and blue and have 3 and 5 folds, respectively.

All that remains is to set the number of folds both for the inner and outer cross-
validation. On one hand, the number of folds must be restricted to preserve the compu-
tational feasibility of the selection process. On the other hand, shrinking the number of
folds negatively impacts the statistical significance of the generalization score. A trade-off
is found by setting the number of folds of the inner cross-validation to 5 and the number of
folds of the outer cross-validation to 10.

5. Results

In this section, we evaluate the different machine learning algorithms using the
methodology described in the previous section. As the resolution of the PRPD diagrams is
somewhat arbitrary, we start by evaluating how different algorithms perform with images
of different resolutions (Section 5.1). In the subsequent subsection, we use the obtained
optimal combination of algorithm and resolution, where we evaluate the performance
of the algorithms for different durations of the PRPD recordings (Section 5.2). This is of
particular interest as it hints at the applicability of the DC partial discharge method for
industrial routine tests. We present which labels are hard to identify (Section 5.3) before we
apply methods that aim to explain the decision of a machine learning model in Section 5.4.
In such a way, structures learned by the algorithm can be visualized and compared with
the expert assessment.

5.1. Choosing the Image Resolution

For each combination of algorithm and PRPD diagram shape, a nested cross-validation
is executed to determine the ability of the given algorithm to generalize on pictures of
that given size. We vary the hyperparameters of the algorithms within the inner loop. For
details of the hyperparameter search spaces, we refer the reader to Appendix A. The results
of the experiments are presented in Table 2.

The search for the optimal shape does not lead to a unified result. This is probably due
to the low sample size and a few hard-to-classify samples. Nevertheless, the algorithms
logistic regression, support vector machine, random forest, and XGBoost prefer shapes,
where at least one side is not too large. At the same time, shapes with a small number of
pixels show a bad performance. Intuitively, the algorithms need enough information to
learn the correct patterns. At the same time, too many pixels lead to variance that cannot
be eliminated sufficiently through dimension reduction. A heatmap of the results for RFs
can be found in Figure 11.
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Table 2. Image resolution experiment results for the different considered algorithms. The mean of
the Hamming loss was calculated on the hold-out set in the outer loop of the nested cross-validation.
The preferred hyperparameters were found using a regular cross-validation on the optimal shape.

Algorithm Optimal Shape Mean (Hamming Loss) in
Outer CV

Preferred Hyperparameters
(on Separate CV)

CNN 74× 38 0.107

Batch Size: 8
Dense Layer Width: 128

Kernel Size: 4
Learning Rate: 10−5

Number of Filters: 48

Logistic Regression 20× 20 0.118
Dimension Reduction: NMF

Regularization: 100
Dimensions Projection: 37

Support Vector Machine 20× 38 0.128

Dimension Reduction: NMF
Regularization: 10

Kernel Coefficient: 10
Dimensions Projection: 25

Random Forest 92× 20 0.106
Dimension Reduction: NMF

Maximal Depth Trees: 20
Dimensions Projection: 45

XGBoost 20× 74 0.106

Dimension Reduction: NMF
Maximal Depth Trees: 11
Dimensions Projection: 45

Learning Rate: 0.3
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Figure 11. Generalization scores obtained after nested cross validation of the Random Forest (RF)
algorithm for multiple image resolutions. For each resolution, the mean and the standard deviations
of the outer fold scores are displayed on the left and right heatmaps, respectively. The optimal
resolution for this algorithm (RF) is 92× 20.

On the contrary, the results of the CNNs seem to be robust with respect to the res-
olution. Figure A1 in the Appendix A shows several local optima without a clear trend.
Still, resolutions where the number of phase bins is significantly greater than the num-
ber of discharge bins under-perform compared to the other resolutions. Again, the high
variance of classification scores on the outer folds can be explained by the presence of
a few hard-to-classify samples. In the following, the algorithm and shape with the best
mean score are chosen: the random forest with a resolution of 92× 20. Despite the small
sample size compared to typical deep learning applications, CNNs are competitive with the
best-performing algorithms. For experiments with a larger sample size, it is thus absolutely
reasonable to consider CNNs, and their performance might even be superior.
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5.2. Short-Term Identification Ability of PRPD Patterns

Here, the impact of time spans is evaluated. In a general setting, we could repeat the
experiment of Section 5.1 for every time horizon. However, considering the stationarity of
the process, it is postulated that the best coupling of algorithm and image resolution for
the complete time span is also near-optimal for shorter time intervals. Thus, the random
forest with shape 92× 20 from Section 5.1 is selected. Its performance is assessed using
pictures with time spans of 1.0, 1.5, 5.0, 10.0, and 30.0 s. For every time interval, a nested
cross-validation is run to estimate the expected generalization ability of the algorithm,
as described in Section 4.4. The hyperparameter search space is chosen as in Section 5.1.
The outcome of that evaluation is shown in Figure 12, where we report the mean of
the Hamming loss over the ten outer cross-validation folds (blue line) and the standard
deviation (blue area). We see that the Hamming loss drops within the first two seconds,
before it starts to flatten out.

Figure 12. Nested cross-validation scores (solid line) and standard deviation (shaded area) for the
random forests with resolution 92× 20 and time spans of {1.0, 1.5, 5.0, 10.0, 30.0}.

This is in line with our visual analysis of the diagrams. For many instances, stationarity
is achieved early. That means if we cut out arbitrary time spans (e.g., between 5 and 10 s),
the discharge diagrams look very similar for one specific test object. Thus, the pattern can
already be detected within the first seconds of the procedure.

5.3. Performance by Label

Again, we use the RF algorithm with shape 92× 20. Additionally, we take the optimal
hyperparameters learned through cross-validation as presented in Table 2. Another five-
fold cross-validation is run. As usual, four folds are used for training the model. The
predictions of the model of the test-fold diagrams are compared with their true labels. As
every image appears in the test-fold exactly once, the numbers are summed up by label. In
total, there are 369 images, and the number of false positives is reasonably low , as shown in
Table 3. Unfortunately, the number of false negatives is relatively high. For a classification
procedure in series production, the main goal is to reduce the number of false positives as
much as possible, as they pose a threat to the final product quality. At the same time, the
number of false negatives should be reasonably small in order to avoid having to sort too
many pieces and thus increase the scrap rate. The calibration of the model is beyond the
scope of this paper. In fact, we implicitly consider false positives to be as harmful as false
negatives during our analyses.
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Table 3. The predictions of the model on unseen images by label. We see that the number of diagrams
and the number of false positives are correlated, as are the number of diagrams without patterns and
the number of false negatives. The predictions for the label “Plateau” are better than for the labels
“Pylon” and “Hill”. The latter are harder to distinguish with the human eye.

Label Diagrams with
Pattern

Diagrams
without Pattern False Positive False Negative

Plateau 273 96 18 12
Pylon 181 188 18 25
Hill 105 264 10 45

In the second step, we combine the labels “Plateau” and “Hill” as “faulty”. That means
as soon as one label is either “Plateau” or “Hill”, the image is considered as a “Fail”. In any
other case, the image is considered as a “Pass”. Using the results of the cross-validation
above, we observe the confusion matrix of Figure 13.

Figure 13. Confusion matrix, where labels are grouped as “Fail” and “Pass”. We consider an image
as a “Fail” if a diagram has at least one of the labels “Hill” or “Plateau”. If the diagram has neither
of these labels, we consider it as a “Pass”. We see that the model predicts only one false negative.
However, there are also 28 false positives. As false negatives are the most harmful in a series
production, we aim for an over-sensitive system.

Due to the higher share of “Fail” images, the system detects images with insulation
faults very well. The number of false negatives is reasonable.

5.4. Explainability

The focus of this work is to show that the root causes behind PRPD images can
be automatically detected, and this can be achieved in a reasonable time span. In many
domains, models which are hard for humans to explain have shown a superior performance
for predictions. These models are called black box models. All presented algorithms but the
logistic regression can be understood as black box models. While the lack of interpretability
is unfortunate, applications focusing on predictions for unseen data often accept no intrinsic
explainability. However, we would like to ensure that the model performs well on unseen
images or on perturbations of known images [31]. This is particularly relevant for the rather
low number of images in our dataset. In recent years, the interpretation of machine learning
models [32,33] has become a growing research topic. These methods are summarized by the
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term explainable AI (xAI). Among other applications, xAI can be applied to detect possible
vulnerabilities and weaknesses and to uncover possible improvements in the model [34].
As domain experts can formulate why an image belongs to a certain label, the explanations
of the ML method are compared with the expert assessment. This serves two purposes:

1. In cases where the explanations of the model match those of the expert, one can be
confident that the algorithm has learned the correct patterns and the model will also
apply them to unseen images.

2. It is important to rule out that the algorithm has not learned specific artifacts in the
training images, which have a high predictive power but contain no information for
unseen data [35].

Both aspects hint at the robustness of the model and the ability to transfer the learned
patterns to unseen images.

5.4.1. Local Interpretable Model-Agnostic Explanations (LIME)

Local Interpretable Model-Agnostic Explanations (LIME) is an algorithm that can
explain the predictions of a classifier by approximating it locally with an interpretable
model [32]. For example, applying the LIME method to a classifier and a particular PRPD
allows us to identify the areas of the PRPD which are deemed meaningful by the classifier
to determine the presence of “Hill”, “Plateau” and “Pylon”. LIME is particularly suitable
to our study case compared to other xAI methods like SHapley Additive exPlanations
(SHAP) [36]. Indeed, the heuristic approach of LIME drastically reduces the computa-
tional cost of an explanation, which matters when dealing with highly dimensional data
like PRPDs.

5.4.2. Interpretation of the Classifier

Again, we consider the best-performing algorithm of Section 5.1, which is the random
forest. However, to improve the presentation, we do not consider the resolution 92× 20
but 38× 54, which also provided a reasonable result (mean of Hamming score in outer
loop is 0.112) but is better for visualization purposes. Again, we could consider different
time spans. However, due to the stationarity of the process, we focused on the PRPDs
containing all recorded discharges. In the beginning, we ran a cross-validation in order to
determine suitable hyperparameters for the random forest. Then, one specific example was
chosen for examination. The remaining images and the identified hyperparameters were
used for training the model. Afterwards, LIME provided explanations for the image under
inspection. It is emphasized that this image was not used for training.

This subsection is of an exemplary nature. However, two representative instances
are shown.

5.4.3. “Pylon” Predicted, True Label Is “Pylon”

We examine a PRPD image, whose true label is “Pylon”, which was also correctly
predicted by the model. We analyze the prediction with respect to the labels “Hill” and
“Pylon”. We see in the left canvas of Figure 14, that the model considers the red shaded
areas to not be compatible with the label “Hill”. These red areas outweigh the green areas,
which support the label prediction “Hill”. For the true label “Pylon”, the green areas in
the middle canvas show that the sharp spike and the narrow area of discharges are typical
for the label “Pylon” and there are no particular regions which contradict this. The right
canvas shows the true PRPD image.
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Figure 14. This image was labeled “Pylon”, which was also correctly classified by the model. The
areas covered in green show the areas which led to the correct prediction. The explanation matches
the expert assessment, as “Pylon” is characterized by a narrow spike.

5.4.4. “Plateau” Predicted, True Labels Are “Pylon” and “Plateau”

In the second example, we depict in Figure 15 a hard-to-classify image, whose true
labels are “Pylon” and “Plateau”. The model correctly predicts the label “Plateau”, but
misses the label “Pylon”. The red areas in the left canvas indicate which parts of the image
lead to a lower prediction score for the label “Pylon” according to the model. We see that
the discharges with a lower phase angle contradict the model’s concept of the label “Pylon”.
This is due to the fact that “Pylons” in other diagrams are typically characterized by a
narrow spike of discharges at a higher phase angle. At the same time, the discharges along
the phase angle are identified as driving factors for the prediction of “Plateau”, which
matches the expert assessment.

Figure 15. This image was assigned the labels “Pylon” and “Plateau”. While “Pylon” was not
detected, the driving areas are colored in red in the left canvas. The green areas support the decision
for the label “Pylon” but are outweighed by the red areas. The middle canvas shows the driving areas
for the correct assignment of the label “Plateau”. There are no areas contradicting this prognosis. The
right canvas shows the original PRPD image.

6. Discussion and Conclusions

In this paper, we have presented an automated pattern recognition system, which is
capable of detecting faulty insulation in the production process of traction battery systems.
Defects like solid impurities or voids can occur during the insulation process, e.g., due
to missing technical cleanliness. Based on DC partial discharge diagnostic diagrams, we
applied computer vision methods. Contrary to plain-vanilla computer vision use cases, the
creation of the images (the diagrams) is part of the presented pattern recognition system.
We have shown that the chosen resolution has a smaller impact on the effectiveness of the
image classification algorithms, while the pixel intensity had a large influence. Comparing
different classification algorithms, we have shown that the system is able to identify
faulty pieces and their root causes. Although our database consists of only 369 images,
convolutional neural networks known to be effective for classifying real-world images have
shown a competitive performance compared to other methods based on trees and bagging
or boosting, such as random forests and gradient boosting.

The common misconception that the application of DC partial discharge diagnostics
is always time-consuming [4] can be refuted in this application. Thus, the presented
method is competitive with leakage current measurements [5]. This is demonstrated in
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Figure 12, which shows a strong classification quality even for short testing intervals
(e.g., 2 s). However, as the loss of accuracy within the first few seconds is based on physical
phenomena like ignition delay and the varying avalanche behavior of discharges [5], some
patterns appear later. Hence, one must balance the system’s precision and the testing
duration. Figure 12 serves as a basis for this decision.

Aside from routine tests, the DC partial discharge diagnostic can also be applied as
an initial test for new insulation materials and geometries. In this case, the test duration
should be increased to ensure the highest accuracy. In contrast to the existing literature [4],
our results show that this can be achieved within minutes rather than hours.

In this paper, the algorithms are designed to separate specific discharge patterns,
which can be used for the identification of root causes. However, the discharge patterns
also fall into the two categories “Pass” and “Fail”. Reassigning the labels accordingly, we
have shown that the system rarely misses defects, i.e., the number of false negatives is
very low. At the same time, the number of falsely identified defects, i.e., false positives, is
reasonable. This indicates that faulty pieces are detected reliably.

In the manufacturing of electric vehicles, insulation tests are applied frequently to
ensure the highest quality standards. Repeated testing increases the total testing time.
Thus, the manufacturer can guarantee that no mechanical, thermal, or electrical stress
leads to defects during production. However, the faults should be detected as early as
possible. Thus, resources can be saved by, for example, recoating the batteries before they
are non-destructively assembled in modules and packs [37]. In this context, introducing
DC partial discharge diagnostics and pattern recognition in the automotive sector leads
to the gain of valuable information on the insulation quality in traction battery systems.
Hence, DC partial discharge diagnostics contribute to the sustainable development of
BEVs by increasing the resource efficiency and thus by reducing carbon emissions in the
transportation sector [1].

For future work, improvements in the classification algorithm are to be considered. In
particular, one idea would be to replace the PRPD encoding, which was derived thanks
to expert knowledge of the field, with a learned encoding. For example, a transformer
neural network [38] could be trained on the temporal series of discharges and afterwards be
applied to embed those series in a vector space of reduced dimensions. Such an extension
would allow us to compare the domain-aware algorithm presented before with a purely
data-driven method.

Additionally, the calibration of the system toward minimizing false negatives is of
interest. This results in an improved pass–fail test.
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Abbreviations

The following abbreviations are used in this manuscript:

BEV Battery electric vehicles
CNN Convolutional neural network
CO2 Carbon dioxide
LIME Local interpretable model-agnostic explanations
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NMF Non-negative matrix factorization
PCA Principal component analysis
PD Partial discharge
PoC Proof of concept
PRPD Phase-resolved partial discharge
RF Random forest
SHAP Shapley additive explanations
SVM Support vector machine
TO Test object
xAI Explainable artificial intelligence

Appendix A. Hyperparameter Search Spaces

Table A1. Hyperparameter Search Spaces for the presented algorithms. For all algorithms and all
presented experiments we conducted a grid search, i.e., we evaluated all possible combination of
the hyperparameters.

Algorithm Hyperparameter Search Space

CNN

Batch Size: {4, 16}
Dense Layer Width: {64, 192}

Kernel Size: {2, 8}
Learning Rate: {10−5.5, 10−4}

Number of Filters {32, 96}

Logistic Regression Regularizer: {1, 10, 100}
Dimensions Projection: {15, 22, 30, 37, 45}

Support Vector Machine
Regularizer: {0.1, 1, 10}

Parameter Kernel: {0.1, 1, 10}
Dimensions Projection: {15, 25, 35}

Random Forest Maximal Depth Trees: {15, 20}
Dimensions Projection: {20, 25, 30, 35, 40, 45, 50}

XGBoost
Maximal Depth Trees: {6, 11}

Dimensions Projection: {25, 30, 35, 40, 45, 50}
Learning Rate: {0.3, 0.5}
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Figure A1. Generalization scores obtained after nested cross validation of the Convolutional Neural
Network (CNN) algorithm for multiple image resolutions. For each resolution, the mean and the
standard deviations of the outer fold scores are displayed on the left and right heatmaps, respectively.
The optimal resolution for CNN is 38× 74.
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