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Abstract: Naturalistic driving data (NDD) are valuable for testing autonomous driving systems under
various driving conditions. Automatically identifying scenes from high-dimensional and unlabeled
NDD remains a challenging task. This paper presents a novel approach for automatically identifying
test scenarios for autonomous driving through deep unsupervised learning. Firstly, US DAS2 NDD
are leveraged, and the selection of data variables representing the vehicle state and surrounding
environment is conducted to formulate the segmentation criterion. The isolation forest (IF) algorithm
is then employed to segment the data, yielding two distinct types of datasets: typical scenarios and
extreme scenarios. Secondly, a one-dimensional residual convolutional autoencoder (1D-RCAE) is
developed to extract scenario features from the two datasets. Compared to four other autoencoders,
the 1D-RCAE can effectively extract crucial information from high-dimensional data with optimal
feature extraction capability. Next, considering the varying importance of different features, an
information entropy (IE)-optimized K-means algorithm is employed to cluster the features extracted
using 1D-RCAE. Finally, statistical analysis is performed on the parameters of each cluster of scenarios
to explore their distribution characteristics within each class, and four typical scenarios are identified
along with five extreme scenarios. The proposed unsupervised framework, combining IF, 1D-RCAE,
and IE-improved K-means algorithms, can automatically identify typical and extreme scenarios from
NDD. These identified scenarios can then be applied to test the performance of autonomous driving
systems, enriching the library of automated driving test scenarios.

Keywords: autonomous driving; scenario identification; naturalistic driving data; one-dimensional
residual convolutional autoencoder; optimized K-means algorithm

1. Introduction

The development of autonomous driving technology has increased the demand for
diverse and realistic test scenarios. Naturalistic driving data (NDD) provide valuable
information for testing autonomous driving systems under various driving conditions.
Scene-based testing for autonomous driving is an effective approach used to reduce testing
costs and improve testing efficiency. Well-known open-source datasets such as NGSIM [1],
KITTI [2], and High-D [3] have been widely applied to scenario identification and valida-
tion for autonomous driving algorithms. By collecting and analyzing the NDD, a better
understanding of the patterns in real driving environments can be achieved, providing
valuable support for testing scenario construction. Additionally, the extracted test scenarios
can be utilized to evaluate and compare the performance and limitations of autonomous
driving systems, thereby guiding system optimization.

Numerous scholars have conducted related research on the identification of testing
scenarios based on NDD. Some have placed significant emphasis on mining features from
NDD, such as road types, road conditions, and traffic situations, in order to support the
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generation of test scenarios for automated driving. Gu et al. [4] employed NDD for scene
graph generation, integrating external knowledge and image reconstruction techniques to
enhance the accuracy and reliability of scene generation. Ries et al. [5] proposed a network
structure that combines convolutional neural network (CNN) and long short-term memory
network (LSTM) methods to identify scenes from videos. The positions of traffic participant
and ego vehicle are encoded in a grid-based format. Z. Du et al. [6] extracted scenario
features from NDD using LGBM decision trees and combined them with CIDAS accident
data to restructure scenarios. Ding et al. [7] proposed the conditional multiple-trajectory
synthesizer (CMTS), which combines normal and collision trajectories to generate safety-
critical scenarios by interpolating them in the latent space. The method of extracting test
scenarios from NDD has shown promising progress, but it still faces numerous challenges.
These challenges primarily include accurately identifying scenes from massive datasets,
automating the annotation process for efficient data labeling, and handling diverse data
sources and formats. Consequently, the development of ways to effectively utilize NDD to
improve the accuracy and efficiency of scenario identification has become a critical concern
for researchers. Therefore, there is a pressing need in both industry and academia for an
automated data labeling approach in order to reduce labeling costs.

The existing unsupervised and semi-supervised methods [8,9] can reduce labeling
efforts but are not suitable for handling large amounts of high-dimensional time-series
data. Additionally, existing research mostly focuses on specific scenarios based on NDD,
such as lane changing [10,11] and car following [12,13]. This approach cannot fully utilize
the scenario information contained in NDD. Thus, the challenge is to identify different
types of scenes on a large scale from massive NDD. This problem can be addressed using
rule-based [14] and machine learning-based approaches [15–18]. Rule-based approaches
rely on expert experience. Zhao et al. [19] modeled driving scenarios based on ontology and
integrated data from multiple sensors. They constructed a rule library for driving scenarios
by incorporating expert knowledge and legal regulations. This was leveraged to assist in
the development and testing of various functions in intelligent connected vehicles. Sun
et al. [20] identified dangerous scenarios from NDD by setting thresholds for parameters
such as speed and acceleration. Wachenfeld et al. [21] introduced a dangerous scenario
extraction method based on the worst-case collision time. The fundamental principle of
identifying test scenarios through machine learning lies in mining the intrinsic features
and patterns within the data for scene classification. Tan et al. [22] inputted the current
state of the autonomous vehicle and the high-definition map into an LSTM network and
trained the model using NDD to generate natural driving scenarios. Rocklage et al. [23]
presented a retrospective-based approach for automatic scene extraction and generation
that was capable of randomly generating static or dynamic scenes. Fellner et al. [24] pro-
posed a heuristic-guided branch search algorithm for scene generation. Spooner et al. [25]
introduced a novel method called ped-cross generative adversarial network (Ped-Cross
GAN) to generate pedestrian crosswalk scenes. Additionally, importance sampling [26]
and Monte Carlo search [27] methods have also been widely applied in efforts to generate
critical scenarios.

Despite the efficiency and simplicity of the rule-based approach, subjective rules and
threshold settings are often introduced during rule formulation. However, these are not
generalizable approaches for different NDD, and their use can result in subjective errors.
In contrast, machine learning-based methods can automatically learn and discover features
and identify scenarios from data with better adaptiveness. Therefore, applying machine
learning theory in scene identification is becoming one of the mainstream methodologies
in the present and will be important into the future.

To obtain different scenarios under extreme and typical driving conditions, it is neces-
sary to divide original NDD into extreme and typical data subsets. Isolation forest (IF) [28]
is a fast, efficient, and unsupervised data segmentation method. Its fundamental principle
involves randomly partitioning the dataset and applying the depth of trees to determine
the typical and extreme data. Due to the high dimensionality of the raw data, the use of
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direct training would result in inefficiency. Therefore, autoencoders [29] have been widely
employed in the field of feature extraction. The conventional autoencoder (AE) employs
fully connected layers, which results in a large number of parameters. When dealing with
high-dimensional data, this method is prone to overfitting and lacks local perception. In
contrast, convolutional neural networks consist of convolutional layers and pooling layers.
By introducing convolutional kernels, parameter sharing can be achieved, reducing the
number of model parameters and accelerating the training process. Additionally, increasing
the number of network layers can cause training difficulties and higher training costs, as
well as issues like gradient vanishing or exploding. The application of residual learning [30]
can help to propagate gradients more effectively within the network, thereby improving its
training performance.

Identifying test scenarios is crucial in the research for and development of autonomous
driving systems. The identified test scenarios can be adopted to objectively evaluate the
performance of autonomous driving algorithm. By testing the behavior and performance
of autonomous vehicles in various scenarios, a better understanding of the algorithm’s
strengths and limitations can be gained, guiding its improvement and optimization. Differ-
ent test scenarios may involve varying risks and challenges. Accurately identifying and
categorizing these scenarios can assist autonomous vehicles to proactively responding to
potential hazards, thereby ensuring safety. Identifying test scenarios based on the avail-
able data resources is a critical issue that requires urgent attention in the development of
autonomous driving technology.

This paper addresses the challenges of large-scale and complex unlabeled NDD by
proposing a deep unsupervised learning framework that combines IF, one-dimensional
residual convolutional autoencoders (1D-RCAE), and information entropy (IE)-optimized
K-means algorithms for autonomous driving testing scenario identification. Additionally,
this method exhibits robustness to the complex noise and high-dimensional features present
in NDD. The main contributions of this study are as follows: (1) Utilizing IF to achieve the
segmentation of typical and extreme driving scenarios, resulting in separate datasets for
the extraction of typical and extreme scenes. (2) Designing a novel neural network, the
1D-RCAE, which can learn and extract features from data without the need for labels, in
contrast to traditional machine learning methods. (3) The residual learning mechanism is
introduced to optimize the training process and enhances the feature extraction capability
of the network. (4) The application of IE optimizes the K-means algorithm, enhancing the
accuracy and robustness of the clustering process. The framework of the proposed method
is shown in Figure 1.
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2. Methodology

In this section, a novel scene recognition method is proposed for accurately classifying
different traffic scenes, and the flow chart of the proposed methodology is shown in
Figure 2.
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2.1. Typical–Extreme Scenario Data Segmentation Based on Isolation Forest

The IF algorithm is applied to divide the original dataset into two parts: extreme data
and typical data. The specific process of the IF algorithm is as follows.

(1) Building isolation forest: an isolation forest is composed of multiple randomly parti-
tioned binary trees.

(2) Calculate the path length h of a binary tree h(x): the path length h(x) can be calculated as,

h(x) = e + C(T.size) (1)

where e denotes the number of edges traversed from the root node to a leaf node
during the process of obtaining the sample x in a tree. C(T.size) represents the
average path length of a binary tree constructed, with T.size indicating the number of
sample data.

(3) Deviation measurement of extreme points: calculate the expected value E(h(x)) and
variance S(h(x)) of the outlying degree of all samples, and then obtain the extreme
data that deviate from the expected value and variance.

After computing the binary tree forest, normalize E(h(x)) by C(n), with the C(n)
expressed as,

C(n) = 2H(n− 1)− (2(n− 1)/n) (2)

where n is the number of data samples and H(∗) is the harmonic number, which can be
represented as,

H(∗) = ln(n− 1) + ξ (3)

where ξ is the Euler’s constant, with a value of 0.5772156649. It is important to note that
the given Euler’s constant is an approximate value.
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The degree of extreme in data can be represented as,

S(x, n) = 2−
E(h(x))

C(n) (4)

2.2. Scene Feature Extraction Based on One-Dimensional Residual Convolutional Autoencoder

The typical scenario data and extreme scenario data, obtained after the segmentation-
based application of the IF algorithm, have high dimensions. Therefore, a convolutional
autoencoder (CAE) is designed based on AE for feature extraction. Meanwhile, by incor-
porating residual learning into the CAE, a 1D-RCAE network is constructed. This can
mitigate problems that arise with increasing network depth, such as vanishing or exploding
gradients. The residual block can be defined as follows.

y = F(x, {Wi}) + x (5)

where x and y, respectively, represent the input and output of the module. F(•) represents
the residual mapping to be learned, and Wi denotes the parameters of the module.

As shown in Figure 3, residual learning employs a residual mapping function
F(X) = H(X)− X instead of learning the potential mapping H(X) of the input at that
layer. By introducing skip connections, which connect the input X to the output of
the module through identity mapping, gradients can be better propagated, thereby
addressing the training issues of deep convolutional networks and improving network
performance. This enables better capture of high-level features in the input data. Several
existing network models, such as Inception-V4 [31] and Res-Next [32], have incorporated
residual learning to enhance their performance.
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Figure 3. Residual module diagram.

The feature extraction model based on the 1D-RCAE is shown in Figure 4. The encoder
consists of convolutional layers and max pooling layers, while the decoder consists of deconvo-
lutional layers and upsampling layers. The bottleneck layer denotes feature representation.

In order to reduce the number of learning parameters of the network and effectively
reduce the dimensionality of the input data, convolutional kernels of size 1 × 4 and 1 × 6
with a stride of 1 are deployed in the one-dimensional convolutional layer. The sizes of the
two max pooling layers are 2 and 4, respectively. Moreover, a convolutional kernel of size
1 × 1 with a stride of 1 makes up the bottleneck layer. The specific parameter values of the
1D-RCAE network are shown in Table 1.

As shown in Figure 5, the 1D-RCAE consists of two residual modules. In the first
residual module, the output of the first max pooling layer in the encoder is added to the
output of the deconvolutional layer 2 in the decoder via a skip connection. This results in
the development of new features that serve as the input to upsampling layer 2. The input
of upsampling layer 2 can be expressed as

xu2 = P1(C1(xin)) + D2(yD1) (6)
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where xu2 represents the input of upsampling layer 2, P1 stands for max pooling layer 1,
C1 stands for convolutional layer 1, D2 denotes deconvolutional layer 2, xin represents the
original input data and yD1 denotes the output of deconvolutional layer 1.
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Table 1. The network parameters of 1D-RCAE.

Parameters Value

Encoder

convolutional layer 1 kernel_size: 1 × 4, strides: 1
max pooling layer 1 size = 2

convolutional layer 2 kernel_size: 1 × 1, strides: 1
convolutional layer 3 kernel_size: 1 × 6, strides: 1
max pooling layer 2 size = 4
bottleneck layer 1 kernel_size: 1 × 1, strides: 1

Decoder

bottleneck layer 2 kernel_size: 1 × 1, strides: 1
upsampling layer 1 size = 4

deconvolution layer 1 kernel_size: 1 × 1, strides: 1
deconvolution layer 2 kernel_size: 1 × 6, strides: 1

upsampling layer 2 size = 2
deconvolution layer 3 kernel_size: 1 × 4, strides: 1

In the second residual module, the output of convolution layer 3 is added to the output
of upsampling layer 1 through a skip connection to obtain a new feature, which serves as
the input to deconvolution layer 1. The input of deconvolution layer 1 can be expressed as,

xD1 = C3(yC2) + U1(yB2) (7)
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where xD1 represents the input of deconvolution layer 1, C3 stands for convolutional layer
3, U1 stands for upsampling layer 1, yC2 represents the output of convolutional layer 2 and
yB2 denotes the output of bottleneck layer 2.
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During training, the one-dimensional convolution process can be represented as,

xl
i = δ(

N

∑
i=1

xl−1
i × wl

i + bl
i) (8)

where δ(•) represents the activation function, xl
i and xl−1

i , respectively, represent the i-th
feature vector of the l-th and (l − 1)-th convolutional layers, and wl

i denotes the weights
between the convolutional kernel and the input data. bl

i stands for the bias term and N
represents the dimension of the input data in the convolutional layer.

To prevent lower training efficiency due to the gradual dispersion of data distribution
resulting from shifts in internal variables after multiple convolutions, a batch normalization
(BN) layer [33] is introduced after each convolutional layer. If the batch input data value x
is set to B = {x1, x2, . . . , xm}, the calculation process of the BN layer is as follows.

µβ =
1
m

m

∑
i=1

xi (9)

σ2
β =

1
m

m

∑
i=1

(xi − µβ)
2

(10)

x̂i =
xi − µβ√

σ2
β + ε

(11)

yi = γx̂i + β ≡ BNγ,β(xi) (12)

where µβ represents the mean of batch processed data, σ2
β represents the variance of batch

processed data, x̂i denotes the normalized data, and yi stands for the normalized network
response. γ and β are the scale factor and shift factor, respectively, which are learned during
the training of the network.
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The activation function of the 1D-RCAE adopts the ReLU activation function, and it
can be expressed as,

ReLU(x) = max(0, x) (13)

The 1D-RCAE learns features by reconstructing the input data, and its loss function is
defined as follows.

Loss =
1
N

N

∑
i=1
‖yi − xi‖

2

(14)

where xi stands for the inputs of the encoder and yi represents the outputs of the decoder.

2.3. K-Means Algorithm Based on Information Entropy Optimization

K-means is a commonly imposed unsupervised machine learning classification algo-
rithm. In the clustering process, it utilizes the Euclidean distance as a measure of similarity
between data points. A smaller value of the Euclidean distance indicates a higher degree of
similarity. The calculation of Euclidean distance can be represented as,

d(x, Ci) =

√√√√ n

∑
j=1

(xj − Cij)
2 (15)

where x represents the input data, Ci denotes the i-th cluster center, n represents the data
dimension, xj and Cij, respectively, stand for the j-th attribute value of the input data x and
the cluster center Ci.

The traditional K-means algorithm does not consider the weights of different features,
assuming that all features are equally important. This can lead to poor clustering perfor-
mances in certain situations. Therefore, IE is introduced to assign different weights to
different features [34], thereby improving the accuracy and robustness of clustering. The
calculation process of IE is as follows.

(1) Standardize xij with attribute j for sample i, usually applying the min–max method
for data standardization. The min–max method can be described as,

x′ij =
xij −mini(xij)

maxi(xij)−mini(xij)
(16)

(2) Calculate the proportion of the i-th sample in feature j.

pij = x′ij/∑n
i=1 x′ij (17)

(3) Calculate the IE of n samples in the feature j.

Ej = −
1

ln n∑n
i=1 pij ln pij (18)

(4) Calculate the weight of the j-th feature.

wj = (1− Ej)/∑p
k=1 (1− Ek) (19)

where p denotes the number of features.

By introducing IE to calculate weights, the dispersion and uncertainty of data within
clustering clusters can be better measured. A smaller IE corresponds to a higher weight,
indicating that the feature is more important for distinguishing different samples. A
larger IE corresponds to a lower weight, indicating that the feature is less important for
distinguishing different samples.
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3. Data Collection and Experiments
3.1. Datasets and Data Processing

NDD from DAS2, collected using the safety pilot model deployment (SPMD) [35]
data collection system of the US Department of Transportation, are used in our research.
Compared to datasets such as NGSIM and High-D, the DAS2 dataset offers a wide range of
road conditions, including urban, rural, and highway settings, providing a comprehensive
representation of real-world driving scenarios. These data are collected with a sampling
frequency of 10 Hz and cover a geographic range of longitude (−83.91◦, −83.54◦) and
latitude (42.17◦, 42.43◦).

Considering that different variables in the data have different dimensions and value
ranges, their direct implementation would affect the training effectiveness of the model.
Therefore, to improve the training effectiveness and stability of the model, it is necessary to
normalize the data. This paper applies the min–max normalization method, which linearly
transforms the data for the purpose of mapping it into the range [0, 1]. The formula for
min–max normalization is expressed as follows,

x′ =
x− xmin

xmax − xmin
(20)

where x′ is the normalized data, x is the original data, and xmin and xmax are the minimum
and maximum values of that variable in the data, respectively.

3.2. Typical—Extreme Scenario Data Segmentation

When leveraging IF to partition data, eight variables related to vehicle kinematics and
the surrounding driving environment are selected as input data for partitioning. The eight
variables are as follows: velocity, acceleration, steering wheel angle, yaw rate, relative lateral
position, relative longitudinal position, relative lateral velocity, and relative longitudinal
velocity. IF assigns a label of −1 or 1 to each data point based on the calculated results. A
label of −1 indicates extreme scenario data, while 1 indicates typical scenario data. Taking
the segmentation results of velocity and acceleration as examples, the segmentation results
are visualized in Figure 6. It can be observed that the red points are located near the peaks
of each acceleration and velocity change interval. This suggests that when the vehicle
experiences large changes in acceleration and velocity, IF classifies it as extreme data.

Typical scenario data account for approximately 90% of the total data in the segmented
dataset, while extreme scenario data comprise approximately 10% of the total. The segmen-
tation results effectively reflect the driving behavior of vehicles to a certain extent, and the
results align with the proportion of normal driving behavior and abnormal driving behav-
ior in NDD. In this study, a scenario is defined as an overall description of the interaction
between a vehicle and its surrounding environment during a certain period of time. When
the continuous driving data of a vehicle exceed 0.5 s [36], they constitute a driving event,
and the driving event, together with the surrounding environment, constitutes a scenario.
Therefore, after completing data segmentation, driving events are extracted separately from
the typical dataset and the extreme dataset. This resulting in 5584 driving events being
obtained from the typical dataset, with a further 1274 driving events extracted from the
extreme dataset.

Despite obtaining good results by conducting IF for data segmentation, in order to
further demonstrate the superior performance of the IF, a comparison is made between
IF, local outlier factor (LOF) [37], and one-class support vector machine (OCSVM) [38]
methods in terms of steering wheel angle and velocity, as shown in Figure 7. From the
segmentation results, it can be observed that IF designates the data with large variations in
steering wheel angle and velocity as extreme data, while the segmentation results of LOF
and OCSVM lack interpretability.
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3.3. Scenario Feature Extraction

To verify the proposed 1D-RCAE network feature extraction model, an experimental
environment is constructed to combine Tensorflow 2.2.0 and Keras 2.3.1 (Google LLC,
Mountain View, CA, USA) on a Windows 11 operating system (Microsoft Corporation,
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Redmond, WA, USA). The network model is built using Python 3.7 (Anaconda Inc, Austin,
TX, USA). The hardware environment for the experiments consists of a processor of 12th
Gen Intel(R) Core(TM) i7-12700H with 2.30 GHz (Intel Corporation, Santa Clara, CA, USA)
and a GPU of NVIDIA GeForce RTX3050 (NVIDIA Corporation, Santa Clara, CA, USA).

The Adam optimizer based on backpropagation is adopted for optimization in the
training process. The mean-squared error (MSE) method is applied as the loss function
to evaluate the model. In addition, a weight decay term is added to the loss function to
control the degree of weight decay and prevent the network from overfitting. The net-
work training parameters are ultimately determined through multiple experiments using
different parameter settings. The initial learning rate, regularization factor, momentum
parameter and training epochs are set to 0.001, 0.1, 0.9 and 400, respectively. The specific
network training parameters are shown in Table 2.

Table 2. Training parameters of 1D-RCAE.

Parameters Values

Network structure of encode layer conv-pooling-conv-conv-pooling-conv
Initial learning rate 0.001

Optimizer Adam
Activation function ReLu

Loss function MSE
λ 0.05

Momentum 0.9
Epochs 400

Batch size 32

The input of 1D-RCAE comprises original data, encompassing velocity, acceleration,
steering wheel angle, vehicle position, turn signal, relative distance, relative velocity, target
motion state, and other relevant features. The output is the reconstructed data of the
original input, which maintain the same dimensions as the input data. In this paper, the
required features are the output data of the encoder, specifically the data from the bottleneck
layer 1, as illustrated in Figure 5. Figure 8a shows the loss variation during the training and
validation processes of 1D-RCAE. Analysis reveals that the training loss for the 1D-RCAE
is 0.0009, while the validation loss converges to 0.0011. This indicates that the model is
capable of effectively extracting data features and reconstructing the original data. Finally,
the original data are represented as three-dimensional features by 1D-RCAE, as shown in
Table 3. These features to some extent can represent the original high-dimensional data.
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Table 3. The three-dimensional features extracted by 1D-RCAE.

Feature 1 Feature 2 Feature 3

0 0.19868 1.28456 2.54810
1 0.19664 1.29419 2.53582
2 0.19499 1.02378 2.44288
3 0.19685 0.98529 2.46010
4 0.19582 1.03302 2.47379

. . . . . . . . . . . .

To illustrate the performance of the 1D-RCAE compared to the original CAE, the
changes in their loss values during training are compared, as shown in Figure 8b. From
the comparison, it can be observed that the use of 1D-RCAE delivered enhanced perfor-
mances compared to the original version. The network converges faster and achieves lower
convergence loss.

3.4. Scenario Clustering

The features extracted using 1D-RCAE are applied to cluster and the different feature
weights of typical scenarios and extreme scenarios obtained through the calculation of IE
are shown in Table 4.

Table 4. Feature weights of typical scenarios and extreme scenarios.

Scenarios Features Weights

Typical scenarios
Feature 1 0.1371
Feature 2 0.1665
Feature 3 0.6964

Extreme scenarios
Feature 1 0.2155
Feature 2 0.2251
Feature 3 0.5594

The number of clusters K has a significant impact on clustering performance. Setting
K value to be too small or too large will result in poor clustering results. In this study,
the “Elbow method” is applied to determine the value of K. The IE-optimized K-means
algorithm is applied to the features, and elbow plots are generated for different K values.
As illustrated in Figure 9, the optimal number of clusters for typical scenarios is 4, whereas
it is 5 for extreme scenarios.
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4. Results and Analysis
4.1. Performance Comparison of Different Feature Extraction Networks

To compare the performance of 1D-RCAE with other types of autoencoders under
the same data and experimental conditions, the performances of AE, deep regularized
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autoencoder (DRAE), marginalized denoising autoencoder (mDAE), CAE, and 1D-RCAE
are compared. Figure 10 illustrates the comparative results of these five networks in terms
of MSE, mean absolute error (MAE), and root-mean-squared error (RMSE), which are three
evaluation metrics.
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From the Figure 10, it can be concluded that the 1D-RCAE has lower MSE, MAE, and
RMSE values compared to other networks. This indicates that the 1D-RCAE designed
in this paper possesses superior feature extraction capability. It is capable of uncovering
deep-level features from high-dimensional data.

4.2. Performance Comparison of Different Clustering Algorithms

To verify the performance of the IE-improved K-means algorithm, the silhouette
coefficient (SC) [39], Calinski–Harabaz (CH) score [40], and Davies–Bouldin (DB) index [41]
are chosen as evaluation metrics. These metrics provide objective and quantitative methods
of evaluating the performance of different clustering algorithms when used on specific
datasets. Through these evaluation metrics, a better understanding of the clustering
algorithm’s performance can be obtained, enabling the selection of the optimal clustering
results. Applying the same experimental data and operating procedures, the IE-improved
K-means algorithm is compared with commonly employed algorithms such as DBSCAN,
mini-batch K-means, hierarchical clustering, and traditional K-means. The results are
shown in Table 5. A higher value for the SC and CH indicates better clustering performance,
while a smaller value for the DB indicates better clustering performance. It should be noted
that when conducting other methods for clustering, the number of clusters is determined
using the K value obtained from IE-improved K-means. The analysis of results obtained
from various evaluation metrics indicates that the IE-improved K-means clustering method
proposed in this paper achieves the best overall performance.

Table 5. Comparison of different clustering algorithms.

Scenarios Algorithms SC CH DB

Typical scenarios

DBSCAN 0.314 3266.536 1.282
Mini-batch K-means 0.583 17,829.595 0.538

Hierarchical clustering 0.417 10,321.479 0.719
K-means 0.429 4930.992 0.902

Ours 0.585 17,849.535 0.536

Extreme
scenarios

DBSCAN 0.474 2672.742 1.352
Mini-batch K-means 0.340 721.814 1.072

Hierarchical clustering 0.206 359.014 0.902
K-means 0.347 732.298 0.898

Ours 0.435 1547.784 0.832

4.3. Analysis of Scene Identification Results

Different parameters are selected to analyze the characteristics of each category of
scenario data. Speed and acceleration are critical factors for identifying hazardous driving
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behaviors and effectively distinguishing between various road scenes, including highways
and urban roads. The steering wheel angle serves as a valuable indicator of the vehicle’s
directional changes during scene identification, enabling the recognition of diverse road
scenarios, such as turns and intersections. Additionally, the behavior of the ego vehicle
directly reflects its intentions and driving actions, making its analysis instrumental in
identifying different traffic scenarios, such as lane changes and turns. Understanding the
motion state of the target vehicle is essential for comprehending the surrounding traffic
conditions and effectively differentiating between various traffic scenarios. Moreover,
different types of traffic participants exhibit distinct behaviors and actions on the road,
underscoring the importance of recognizing the types of surrounding traffic participants to
enhancing the precision of traffic scenario classification. By comprehensively analyzing
these parameters, a better understanding of the distinct characteristics of various traffic
scenarios can be achieved, leading to accurate scene classification.

The analysis results for typical scenarios are shown in Table 6. In this study, speeds
below 11 m/s are considered as low, speeds between 11 m/s and 22 m/s as medium,
and speeds above 22 m/s as high. According to the driver’s dangerous driving standard,
the danger level can be divided into four categories. Level one is defined as an absolute
acceleration value greater than or equal to 2.78 m/s2, level two falls between 2.22 m/s2

and 2.78 m/s2, level three is between 1.67 m/s2 and 2.22 m/s2, while level four is less than
1.67 m/s2. Level one and level two represent dangerous driving with sudden braking and
acceleration, which may lead to safety accidents. Level three represents normal driving
and braking with large amplitudes, and poses some risk. Level four represents normal
driving with higher safety. It should be noted that both the first-level and second-level
standards for acceleration are rarely presented in typical scenarios. Therefore, the first-level
and second-level standards are denoted as ‘Others’.

Table 6. Statistical analysis of typical scenario clustering results.

Parameters Classification Scenario 1 Scenario 2 Scenario 3 Scenario 4

Speed (m/s)
Low speed 18.7% 30.4% 54.9% 16.8%

Medium speed 24.8% 45.9% 35.3% 24.5%
High speed 56.5% 19.7% 9.8% 58.7%

Acceleration
(m/s2)

Level three 0.7% 0.3% 0.4% 0.4%
Level four 99.1% 99.7% 99.6% 99.5%

Others 0.2% 0 0 0.1%
Average −0.0597 −0.33 −0.3682 0.1243

Standard deviation 0.3812 0.4521 0.3456 0.3449

Steering wheel
angle (◦)

Minimum average steering wheel angle −0.7614 −5.1246 −17.9846 −2.8176
Maximum average steering wheel angle 3.916 6.8848 27.9020 3.7130

The behavior of
ego vehicle

Left lane changing (Turn left) 87.03% 73.55% 78.57% 88.25%
Right lane changing (Turn right) 6.87% 15.79% 16.52% 5.25%

Straight ahead 6.10% 10.66% 4.91% 6.50%

Target motion state
Uniform speed 35.5% 7.29% 4.83% 4.32%

Deceleration 32.2% 81.51% 53.23% 48.87%
Acceleration 32.75% 11.2% 41.94% 46.77%

Target position
Straight ahead 71.81% 82.05% 87.5% 76.67%

Left cut in 16.70% 7.42% 4.46% 10.90%
Right cut in 11.48% 10.53% 8.04% 12.43%

Types of
surrounding traffic

participants

Pedestrian 0.1% 0.5% 0.1% 1.6%
Bicycle 0 0 0 0

Light vehicle 95.7% 90.2% 95.4% 94.8%
Heavy vehicle 2.7% 1.2% 0.5% 1.7%

Tractor 0.1% 0.1% 0.1% 0.2%

Total
Numbers 1820 741 224 2799

Proportion 32.6% 13.3% 4.0% 50.1%
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From Table 6, each scenario includes two or more parameter variables for each element.
For instance, the velocity element in the first category has three parameter variables: low
speed, medium speed, and high speed. To address this issue, the scenario selection will be
based on the element with the highest proportion of scenario element variables.

By applying Google Earth, the GPS data for each type of scene are projected in order to
observe the road types and surrounding environmental conditions of the traveling vehicle.
The driving environments of four typical scenes are identified as expressway, urban roads,
suburbs, and expressway. Furthermore, multiple consecutive times from different scene
categories are projected, as shown in Figure 11, where the red dot represents the vehicle’s
position at each sampling moment. Upon observation, the road conditions for the four
scenes are found to be as follows: straight road, straight road, curve road, and straight road.

World Electr. Veh. J. 2023, 14, x FOR PEER REVIEW 16 of 22 
 

Right cut in 11.48% 10.53% 8.04% 12.43% 

Types of surround-

ing traffic partici-

pants 

Pedestrian 0.1% 0.5% 0.1% 1.6% 

Bicycle 0 0 0 0 

Light vehicle 95.7% 90.2% 95.4% 94.8% 

Heavy vehicle 2.7% 1.2% 0.5% 1.7% 

Tractor 0.1% 0.1% 0.1% 0.2% 

Total 
Numbers 1820 741 224 2799 

Proportion 32.6% 13.3% 4.0% 50.1% 

A summary of the four typical scene characteristic parameters is drawn up according 

to the analysis results mentioned above, and the results of this are shown in Table 7. The 

four types of scenes are as follows: (1) scenario 1 depicts a high-speed, constant speed 

straight driving scenario, where the road environment consists of a high-speed section 

with fewer surrounding vehicles, and the target vehicle maintains a constant speed. (2) 

Scenario 2 represents medium-speed driving with vehicle deceleration, where the road 

environment is a straight urban road segment with a higher density of surrounding vehi-

cles, and the target vehicle decelerates. (3) Scenario 3 involves low-speed driving with 

deceleration. In this example, the road environment is a suburban road with noticeable 

changes in steering angles, representing a typical scenario of deceleration in a curved 

road. The target vehicle slows down. (4) Scenario 4 features high-speed driving with slight 

acceleration and fewer surrounding vehicles. The target vehicle accelerates while driving 

on a straight high-speed road. Therefore, Scenario 4 is a typical high-speed acceleration 

scenario. 

(a) Typical scenario 1 (b) Typical scenario 2

(c) Typical scenario 3 (d) Typical scenario 4  

Figure 11. Typical scenario projection. 

Table 7. The results of typical scenario identification. 

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Regional distribution Expressway City Suburb Expressway 

Ego vehicle behavior Straight ahead Straight ahead Driving around a curve Straight ahead 

Ego vehicle state Uniform speed Deceleration Deceleration Acceleration 

Target type Light vehicle Light vehicle Light vehicle Light vehicle 

Target state Uniform speed Deceleration Deceleration Acceleration 

Target position Straight ahead Straight ahead Driving around a curve Straight ahead 

Traffic flow Vehicles on the right Vehicles on both sides Vehicles on the left Vehicles on the left 

Number of surrounding 

traffic participants 
1–4 1–10 1–5 1–5 

Figure 11. Typical scenario projection.

A summary of the four typical scene characteristic parameters is drawn up according
to the analysis results mentioned above, and the results of this are shown in Table 7. The
four types of scenes are as follows: (1) scenario 1 depicts a high-speed, constant speed
straight driving scenario, where the road environment consists of a high-speed section with
fewer surrounding vehicles, and the target vehicle maintains a constant speed. (2) Scenario
2 represents medium-speed driving with vehicle deceleration, where the road environment
is a straight urban road segment with a higher density of surrounding vehicles, and the
target vehicle decelerates. (3) Scenario 3 involves low-speed driving with deceleration. In
this example, the road environment is a suburban road with noticeable changes in steering
angles, representing a typical scenario of deceleration in a curved road. The target vehicle
slows down. (4) Scenario 4 features high-speed driving with slight acceleration and fewer
surrounding vehicles. The target vehicle accelerates while driving on a straight high-speed
road. Therefore, Scenario 4 is a typical high-speed acceleration scenario.

Analyzing extreme scenarios using the same method yields the results shown in
Table 8.

Applying Google Earth to project GPS data of each type of extreme scenario, as
shown in Figure 12, the driving environments for the five typical scenarios are identified as
expressway, urban road, urban road, expressway, and urban road. The road conditions for
the five scenarios are continuous curves, intersection, intersection, curves, and intersection.

The five types of extreme testing scenarios are extracted, and the characteristics and
parameter features of extreme scenarios are summarized, based on the analysis results of
the extreme scenarios mentioned above, as shown in Table 9.
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Table 7. The results of typical scenario identification.

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4

Regional distribution Expressway City Suburb Expressway
Ego vehicle behavior Straight ahead Straight ahead Driving around a curve Straight ahead

Ego vehicle state Uniform speed Deceleration Deceleration Acceleration
Target type Light vehicle Light vehicle Light vehicle Light vehicle
Target state Uniform speed Deceleration Deceleration Acceleration

Target position Straight ahead Straight ahead Driving around a curve Straight ahead
Traffic flow Vehicles on the right Vehicles on both sides Vehicles on the left Vehicles on the left
Number of

surrounding traffic
participants

1–4 1–10 1–5 1–5

Intersection shape Non-intersection Non-intersection Non-intersection Non-intersection
Straight road/curved

road Straight road Straight road Curve road Straight road

Diagram
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Table 9. The results of extreme scenario identification.

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Regional
distribution Expressway City City Expressway City

Ego vehicle
behavior

Driving around a
curve Turn right Turn left Driving around a

curve Turn left

Ego vehicle state Uniform speed Uniform speed Uniform speed Uniform speed Deceleration
Target type Light vehicle Light vehicle Light vehicle Light vehicle Light vehicle
Target state Deceleration Deceleration Deceleration Deceleration Deceleration

Target position Driving around a
curve Left cut in Straight ahead Driving around a

curve Straight ahead

Traffic flow Vehicles on the left Vehicles on both
sides

Vehicles on both
sides Vehicles on the left Vehicles on both

sides
Number of

surrounding traffic
participants

1–9 1–12 1–11 1–10 1–8

Intersection shape Non-intersection Intersection Intersection Non-intersection Intersection
Straight

road/curved road Curve road Straight road Straight road Curve road Straight road

Diagram
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In extreme scenario 1, the vehicle is continuously turning while traveling at a high
speed, and there is another vehicle ahead with a decreasing relative velocity, posing a safety
hazard. In extreme scenario 2, the vehicle is approaching an intersection with complex
road conditions and heavy traffic. The vehicle tends to make a right turn, and there is a
risk of conflict and collision with other vehicles merging into the main lane. In extreme
scenario 3, the vehicle is approaching an intersection with complex road conditions and
heavy traffic. The vehicle tends to make a left turn, and there is a risk of conflict and
collision with other vehicles on intersecting paths. In extreme scenario 4, the main vehicle
is traveling at high speed on a curved road with other vehicles ahead, increasing the risk
of driving. In extreme scenario 5, the vehicle is approaching an intersection with complex
road conditions and heavy traffic. The vehicle tends to make a left turn, and there is a risk
of conflict and collision with other vehicles on intersecting paths.
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4.4. Comparative Analysis of Typical-Extreme Scenarios

As shown in Figure 13, the proportions of acceleration levels one, two, and three in
extreme scenarios are significantly higher compared to typical scenarios. This indicates
that in these five scenarios, the incidence of dangerous driving conditions such as sudden
deceleration and rapid acceleration is noticeably increased. Additionally, in extreme sce-
narios, vehicles operate in complex environments such as intersections and curves with a
higher number of surrounding vehicles. These factors collectively increase the driving risk.
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5. Conclusions

This paper proposes an automatic driving test scenario identification method based
on deep unsupervised learning that combines IF, 1D-RCAE, and IE-improved K-means
algorithms. Firstly, data variables that can represent the ego vehicle state and surrounding
environment information are selected as the segmentation criteria. IF is employed for
typical–extreme scenario segmentation, and the results demonstrate that IF can obtain
more interpretable segmentation results compared to LOF and OCSVM. Secondly, a novel
network called 1D-RCAE is designed to extract scene features. The results illustrate that
the 1D-RCAE outperforms other networks, highlighting its superior feature extraction
capability. Finally, considering the different importance of different features, the K-means
algorithm is optimized using IE, and the extracted scene features are clustered. By analyzing
the characteristics of each scene parameter in different categories, four typical scenes and
five extreme scenes are obtained. The IE-optimized K-means algorithm is compared
with other commonly applied clustering algorithms, and the results demonstrate that the
performance of the IE-improved K-means algorithm outperforms those of other algorithms.
The identified scenes can provide strong support for the construction of an automatic
driving test scenario library.

In the future, virtual test scenarios will be constructed based on the identified scenes
to test the autonomous driving systems, and an assessment system will be built to evaluate
the test results quantitatively and provide suggestions of how to optimize the autonomous
driving systems. Additionally, based on this foundation, research will be also conducted on
scene generalization to generate various types of scenarios, enriching the automated driving
test scenario library. These scenarios will be applied for automated driving algorithm
verification, identifying deficiencies through scenario testing and making improvements in
order to enhance the safety of autonomous vehicles.
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Abbreviations

NDD naturalistic driving data
1D-RCAE one-dimensional residual convolutional autoencoder
IF isolation forest
IE information entropy
CNN convolutional neural network
LSTM long short-term memory network
CTMS conditional multiple-trajectory synthesizer
AE autoencoder
mDAE marginalized denoising autoencoder
CAE convolutional autoencoder
DRAE deep regularized autoencoder
BN batch normalization
OCSVM one-class support vector machine
LOF local outlier factor
MSE mean-squared error
MAE mean absolute error
RMSE root-mean-squared error
SC silhouette coefficient
CH Calinski–Harabaz score
DB Davies–Bouldin index
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