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Abstract: With the popularity and promotion of electric vehicles (EVs), virtual power plants (VPPs)
provide a new means for the orderly charging management of decentralized EVs. How to set the
price of electricity sales for VPP operators to achieve a win–win situation with EV users is a hot
topic of current research. Based on this, this paper first proposes a Stackelberg game model in
which the VPP participates in the orderly charging management of EVs as a power sales operator,
where the operator guides the EV users to charge in an orderly manner by setting a reasonable
power sales price and coordinates various distributed resources to jointly participate in the power
market. Furthermore, taking into account the impact of wind power output uncertainty on VPP
operation, a robust optimization method is used to extend the deterministic Stackelberg game pricing
model into a robust optimization model, and a robust adjustment factor is introduced to flexibly
adjust the conservativeness of the VPP operator’s bidding scheme in the energy market. The model
is then transformed into a robust mixed-integer linear programming (RMILP) problem solved by
Karush–Kuhn–Tucker (KKT) conditions and strong dyadic theory. Finally, the effectiveness of the
solution method is verified in the calculation example, which gives the optimal pricing strategy for
the VPP operator, the optimal charging scheme for EV users, and the remaining internal resources’
contribution plan, providing an important idea for the VPP to centrally manage the charging behavior
of EVs and improve its own operating revenue.

Keywords: electric vehicle; virtual power plant; Stackelberg game; robust optimization; pricing
strategy; KKT

1. Introduction

With the accelerated progress of the “double carbon” goal, energy production is
accelerated, clean energy consumption is highly electrified, energy allocation is increasingly
platform-based, and energy utilization is gradually becoming more efficient [1,2]. The
profound adjustment of the energy pattern will definitely bring significant changes to the
future development of electric power systems [3,4]. In this process, electric vehicles (EVs)
are vigorously promoted, with their advantages of energy savings and zero emissions.
The grid connection of a large number of EVs can improve the utilization of resources
in our electricity market on the one hand, but on the other hand it may also increase the
peak-to-valley difference in grid load due to the disorderly charging behavior of EVs, which
brings great challenges to the stable operation and efficient management of the grid [5–7].

At present, some scholars in China have conducted research on the orderly charging
management of EVs after grid integration. Wei et al. [8] considered that the number of
EVs in the jurisdiction is relatively large and requires decentralized management of EVs by
means of agents, so the distribution of benefits between cell-charging agents and EVs can be
realized based on Stackelberg game theory, but the number of EVs that can be dispatched
by agents within it is small, and they do not have the ability to participate in electricity
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market transactions. Hou et al. [9] managed the orderly charging of EVs in charging
stations through price and incentive demand response mechanisms, but they did not take
into account that the charging process of EVs is stochastic. Zang et al. [10] determined the
optimal EV charging and discharging strategy based on a model-free approach for interior
point strategy optimization, but EV users could only participate in grid interactions as price
receivers, and the authors did not consider the charging cost of EV users. Zhan et al. [11]
established a bidding strategy for charging stations under the electricity retail market based
on the non-cooperative game relationship between multiple charging station agents to
achieve an orderly interaction between EVs and the grid, but they did not consider the
equilibrium relationship between the interests of charging station agents and EVs. Cai
et al. [12] proposed that multiple aggregators separately integrate large-scale EVs into the
grid to participate in the electricity market bidding and guide EVs to optimize charging and
discharging behavior in real time based on the bidding results, but they failed to consider
that the basic attribute of EVs is transportation and that off-grid EVs do not have the ability
to interact with the grid, which limits the ability of EV aggregators to integrate EV user
groups to participate in electricity market transactions.

Because of the limitations of the EV orderly charging optimization theories in the
above studies in enabling the effective utilization of multiregional, large-scale EVs in the
power market and generating economies of scale in the power market, in this case, the
virtual power plant (VPP) [13,14]—as a new type of operator in the power system—is more
competitive in the power market because it can manage the charging behavior of massive
amounts of EVs through advanced control, metering, and communication technologies,
as well as integrating different types of distributed energy sources such as distributed
power sources, energy storage, and flexible loads to provide efficient and stable power
to the grid; these advantages enable the VPP to be more competitive in the electricity
market [15]. Therefore, this paper adopts a VPP as an EV management concept for EV
sales and coordinates multiple distributed resources to jointly participate in the power
market, which can not only achieve the orderly grid entry of EVs and the coordination and
complementation among multiple new energy sources, but also generate the corresponding
socioeconomic benefits of making large-scale EVs.

Furthermore, when a VPP produces renewable energy, the VPP must consider the
risk that uncertainty in renewable energy output poses to its market bidding decisions
and economic operations [16]. Currently, the main methods to deal with the uncertainty
of renewable energy are the stochastic programming method, the conditional value-at-
risk (CVaR) method, and the robust optimization method. Yang et al. [17] dealt with the
uncertainty of renewable energy output using the stochastic programming method, but it
did not reflect the actual situation of the variables through only limited scenario simulation.
Although Li et al. [18] and Wang et al. [19] used the CVaR method to ensure that the
expected return under the corresponding scenario was not lower than the given confidence
level, thereby reducing the risk of the system, the scenario analysis method itself led to a
less accurate model. Compared with the above methods, the robust optimization method,
as an optimization method that replaces the probability distribution of random variables
with an uncertainty set [20], can effectively deal with the uncertainty of the power output
of wind power or PV units and further improve the robustness of the VPP operator’s
decision scheme, which is more suitable for the actual engineering needs [21]. All of the
above analyses motivated us to build a Stackelberg game model of a VPP and EVs based
on Stackelberg game theory and robust optimization ideas. The main contributions of this
work are summarized as follows:

(1) For the problem of orderly charging management of EV customers, based on Stack-
elberg theory, we propose a Stackelberg game model in which a VPP acts as the
electricity sales operator and coordinates resources such as wind turbines, energy
storage, and demand response loads to participate in the orderly charging manage-
ment of EVs. Among them, the VPP guides EVs’ orderly charging by specifying a
reasonable pricing strategy, which not only solves the problem of balanced benefit
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distribution between the VPP and EVs, but also realizes the advantages of multiple
distributed resources to complement one another.

(2) Based on the existing electric power communication network resources, this paper in-
tegrates multiple kinds of data such as demand response, energy storage management
and other business systems, distributed energy, and EV charging station monitoring,
and combines communication technologies such as broadband power line carriers,
micropower wireless, Wi-Fi Halow, and 5G networks to build a communication struc-
ture for VPP–grid interaction. In addition, this paper also proposes a supporting
operation model for the VPP to manage EVs’ participation in power market trading,
in conjunction with the actual day-ahead market trading process.

(3) Considering the impact of wind power output volatility on VPP operation revenue,
this paper extends the deterministic Stackelberg game optimization model into a
robust optimization model through a strong pairwise theory and robust optimization
method, introduces the robust adjustment coefficient as a measure of risk–return for
VPP operators, and compares the impacts of different robust adjustment coefficients
on VPP operation revenue under nominal parameters in the calculation example. This
can provide an important reference for VPPs to optimize their operation strategies
according to their own risk preferences.

(4) The impact of different maximum energy storage capacity on the VPP’s operating
revenue is investigated for a given robust regulation factor, and the optimal maximum
energy storage capacity for this VPP system is summarized by the analysis.

The rest of this paper is organized as follows: In Section 2, the communication structure
of the VPP is built based on the existing power communication network resources, and
the operation model of the VPP is given based on the existing market transaction rules.
In Section 3, a Stackelberg game pricing model for a VPP with EV determinism is built
based on Stackelberg game theory. In Section 4, the Stackelberg game model of the VPP
and EVs is transformed into a mixed-integer linear programming (MILP) problem by first
linearizing the nonlinear part of the objective function and constraints based on strong
dyadic theory and KKT conditions. Then, the original MILP problem is extended to a robust
mixed-integer linear programming (RMILP) problem by introducing robust conditioning
coefficients in the deterministic bidding model based on the robust optimization idea.
Finally, the solution method of the RMILP problem is given. In Section 5, the validity of
the solution method is verified by example analysis, and important conclusions such as
the optimal pricing strategy for VPP operators and the optimal charging strategy for EV
users are presented. Finally, in Section 6, the important contributions and conclusions of
this work are highlighted.

2. The Communication Structure of the VPP and Its Operation Mode
2.1. Communication Structure of the VPP

The VPP in this paper consists of four parts: wind turbine, energy storage equipment,
demand response load, and EVs. Its communication network architecture is based on
the existing electric power communication network resources and incorporates multiple
sources and types of data, such as demand response, energy storage equipment manage-
ment and other business systems, distributed energy, and EV charging station monitoring.
In the local communication layer of the VPP, demand response loads, DERs, energy storage,
EVs, and other multiple business terminals transmit local data through plug-and-play com-
munication units with multiple communication technologies, such as broadband power
line carriers (HPLC) and micropower wireless/Wi-Fi Halow as a backup to one another.
The communication band of the VPP can be considered to use 230 MHz [22]—a dedicated
frequency band for electricity—and the 40 and 25 kHz frequency points in this band are
aggregated by using IF carrier aggregation to meet the minimum 1 MHz communica-
tion bandwidth requirement of Wi-Fi Halow. The VPP’s participation in power market
transactions and interaction with the grid leads to the gradual extension of control-type
services—such as distributed power control and demand response—to the medium- and
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low-voltage distribution network. The time delay and security of traditional 4G networks
no longer meet the basic service requirements of the VPP, so the VPP should adopt 5G
networks with the advantages of low time delay and high reliability to realize the commu-
nication and data transmission with power trading center. The communication structure of
the VPP interacting with the power grid is shown in Figure 1 below.
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2.2. Operational Model of the VPP

Assuming that the VPP participates in the day-ahead electricity market (DAM) as
a price receiver [23], EV users charge according to the charging price and charging slots
agreed with the VPP operator, and the rest of the distributed resources purchase and sell
electricity according to the basic tariff of the grid; the specific operation model of the VPP
is as follows:

(1) Before the end of the energy market transaction on day (D), EV users shall submit to
the operator the charging periods and power demand for day (D + 1). Based on the
power demand of EV users, the VPP shall coordinate and optimize internal resources
to determine the power demand for each period on day (D + 1) and draw up the
corresponding power purchase and sale plan.

(2) The VPP operator will promptly release the tariff information for each period on
day (D + 1) to EV customers after signing a power purchase and sale contract with
the grid in the day-ahead market. In addition, this paper stipulates that the VPP
operator’s retail electricity price for selling electricity to EV users shall not be higher
than the grid’s benchmark sale price, and that the average daily sale price shall be set
to fully guarantee the basic interests of EV customers. For example, if the operator
deliberately raises the price of electricity in a certain period, the price of electricity in
other periods is required to be lower than the average price of electricity, and then
the intelligent terminal will naturally choose the “valley price” period to charge EV
users automatically.

(3) After the EV is connected to the charging pile, the intelligent charging terminal on the
pile will automatically control the EV’s charging and pay the charging fee for the user
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instantly. At the same time, the operator can assess the performance of EV users who
do not charge at the agreed time.

3. The Stackelberg Game Model of the VPP and EVs
3.1. The Objective Function of the Upper-Level Problem of the Stackelberg Game Model

The upper-level description of the Stackelberg game model in Figure 2 is an optimiza-
tion problem with the objective of maximizing the daily operating revenue of the VPP
operator as the solution, and its objective function is shown in Equation (1) below:

max
T

∑
t=1

[
N

∑
i=1

λtPEV,i,t∆t− (CESS,t + CDR,t + CDAM,t)

]
(1)

where T is the scheduling period of the VPP, taken as 24 h; ∆t is the scheduling step, taken
as 1 h; N is the total number of EVs dispatched by the VPP operator; PEV,i,t is the charging
power of the i-th EV in time period t; CESS,t is the operation and maintenance cost of energy
storage equipment in time period t; CDR,t is the scheduling cost of demand response load
in time period t; and CDAM,t is the transaction cost of the VPP in the DAM in time period t.
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(1) The cost of the energy storage equipment [24]:

CESS,t = κESS[Pdis
ESS,t/ηdis

ESS + Pch
ESS,tη

ch
ESS]∆t (2)

where κESS is the unit charging and discharging cost of the converted energy storage
equipment, respectively, Pch

ESS,t and Pdis
ESS,t are the charging and discharging powers of the

energy storage equipment in time period t, respectively, and ηch
ESS and ηdis

ESS are the charging
and discharging efficiency of the energy storage equipment, respectively.

(2) The scheduling costs for demand response loads [7,25]:

CDR,t = κDR
∣∣PDR,t − PDR,t

∣∣∆t (3)

where κDR is the unit dispatch cost of demand response load, PDR,t is the actual dispatched
power of demand response load in time period t, and PDR,t is the expected power of the
demand response load. However, since the absolute value term in the above equation will
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cause the model to be nonlinear and unsolvable, the auxiliary variables Pa
DR,t and Pb

DR,t are
introduced to transform Equation (4) into the following form:

CDR,t = κDR[Pa
DR,t + Pb

DR,t]∆t (4)

(3) The transaction costs of the VPP in the day-ahead market:

CDAM,tw = [π+
DAM,tP

buy
DAM,t − π−DAM,tP

sell
DAM,t]∆t (5)

where π+
DAM,t and π−DAM,t are the power purchase and sale prices issued by the power

trading center to the VPP in time period t, respectively, while Pbuy
DAM,t and Pdis

DAM,t are the
purchased and sold power of the VPP in the DAM in time period t, respectively.

3.2. Constraints on the Upper-Level Problem of the Stackelberg Game Model

(1) Constraints related to the price of electricity sold by VPP operators:

λl ≤ λt ≤ λu (6)

T

∑
t=1

λt/T = cav (7)

where λu and λl are the upper and lower bounds of the electricity sales price of the VPP
operators, respectively, while cav is the average value of the electricity sales price of the VPP
operators. Meanwhile, Equation (7) provides the mean value constraint of the electricity
sales price, mainly to prevent the malicious pricing of VPP operators.

(2) Constraints related to wind turbines:

0 ≤ PW,t ≤ PW,t (8)

where PW,t is the output power of wind turbines in the energy market in VPP in time period
t, while PW,t is the day-ahead predicted output of wind turbines in time period t.

(3) Constraints related to energy storage devices:

0 ≤ Pch
ESS,t ≤ utPmax

ESS (9)

0 ≤ Pdis
ESS,t ≤ (1− ut)Pmax

ESS (10)

0 ≤ EESS,t = EESS,(t−1) + ηch
ESSPch

ESS,t − Pdis
ESS,t/ηdis

ESS ≤ Emax
ESS (11)

EESS,0 = EESS,T (12)

where ut is a Boolean variable introduced to indicate the charging and discharging state
of the energy storage device in time period t, Pmax

ESS is the maximum value of the charging
and discharging power of the energy storage equipment, EESS,t is the power of the energy
storage device in time period t, Emax

ESS is the maximum capacity of the energy storage device,
EESS,0 is the initial power of the energy storage device, and EESS,T is the power of the energy
storage device at time T. Equations (11)–(12) represent the power state equations of the
energy storage equipment, and in order to ensure the energy storage equipment’s recycling,
the power of the energy storage equipment should be equal to the initial power.

(4) Demand-response-related constraints:
T

∑
t=1

PDR,t∆t = Etotal
DR (13)

Emin
DR ≤ PDR,t∆t ≤ Emax

DR (14)

where Etotal
DR is the total electricity consumption sum of the demand response load in one

cycle, while Emin
DR and Emax

DR are the minimum and maximum electricity demand of the
demand response load in time period t, respectively.
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In addition, since auxiliary variables are introduced in the process of converting
Equation (3) to Equation (4), the corresponding constraints need to be added as follows:

PDR,t − PDR,t + Pa
DR,t − Pb

DR,t = 0 (15)

Pa
DR,t ≥ 0 (16)

Pb
DR,t ≥ 0 (17)

(5) Constraints related to the VPP’s purchase and sale of electricity:

0 ≤ Pbuy
DAM,t ≤ Mzt (18)

0 ≤ Psell
DAM,t ≤ M(1− zt) (19)

where M is a large enough positive number, while zt is a Boolean variable introduced to
indicate the state of the VPP’s power purchase and sales in the day-ahead market.

(6) Constraints related to power balance:

Pbuy
DAM,t − Psell

DAM,t =
N

∑
i=1

PEV,i,t + Pch
ESS,t − Pdis

ESS,t + PDR,t − PW,t (20)

3.3. The Objective Function and Constraints of the Lower-Level Problem of the Stackelberg
Game Model

The lower layer of the model describes the optimization problem of the EV users’
charging strategy as follows:

{PEV,i,t} = arg min∑
t

λtPEV,i,t (21)

s.t. ∑
t∈Tp

PEV,i,t = τiEmax
EV,i − EEV,i,0 (22)

0 ≤ PEV,i,t ≤ Pmax
EV,i , ∀t ∈ Tp (23)

PEV,i,t = 0, ∀t /∈ Tp and t ∈ T, ∀i (24)

where τi is the ratio of the minimum power required for the i-th EV trip to the maximum
capacity of the onboard battery, Emax

EV,i is the maximum capacity of the onboard battery of
the i-th EV, E0

EV,i is the initial power of the onboard battery when the i-th EV is on the
network, Pmax

EV,i is the maximum charging power of the i-th EV, and Tp is the charging period
of the EV.

In the above equations, the objective function Equation (21) indicates that the EV users
should minimize their charging costs at the tariff given by the VPP operator. Equation (22)
indicates that the EV should charge to the travel demand power at the off-grid moment.
Equation (23) indicates that the charging power of the EV after going off-grid is 0.

Because in Equations (1)–(24) EV users will actively choose charging periods according
to the charging prices provided by the VPP operators for each period, and the VPP operators
will also optimize the charging tariffs for each period according to the EV users’ charging
periods, the pricing strategy of the VPP operators’ and EV users’ charging strategies form a
Stackelberg game relationship. Therefore, {λt} and {PEV,i,t} in Equation are both variables.
In addition, the VPP will face the influence of many random factors in actual operation;
in particular, the prediction accuracy of wind power output is difficult to guarantee, and
the VPP scheduling scheme obtained by the deterministic wind power prediction output
value

{
PW,t

}
will often appear risky, so

{
PW,t

}
should be a random variable rather than a

deterministic value.
Therefore, the Stackelberg model with random variables established in this section is

neither linear nor convex and cannot be solved directly by the solver. The focus of the next
section is to transform the two-level nonlinear programming problem with random vari-
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ables shown in Equations (1)–(24) into a robust mixed-integer linear programming (RMILP)
problem that can be solved by using the KKT condition and strong dyadic theory, thereby
finding the equilibrium point between the interests of both sides of the Stackelberg game.

4. Solving Method
4.1. Equivalent Nonlinear Programming Transformation of Stackelberg Game Models

For the lower-level problem in the Stackelberg game model, since the EV receives
a charging price that is already set by the VPP at the time of decision-making, it is first
necessary to replace Equations (21)–(24) by the KKT condition [26] to obtain the constraint
relations of variables {PEV,i,t} and {λt}. Assuming that the pairwise variables correspond-
ing to Equations (21)–(24) are {µi}, {ϑ−i,t, ϑ+

i,t}, and {σi,t}, respectively, their corresponding
KKT conditions are as follows:

λt − µi − ϑ−i,t − ϑ+
i,t − σi,t = 0, ∀i, ∀t (25)

∑
t∈Tp

PEV,i,t = τiEmax
EV,i − E0

EV,i, ∀i (26)

ϑ−i,t · PEV,i,t = 0, ϑ−i,t ≥ 0, ∀t ∈ Tp, ∀i (27)

ϑ+
i,t · (PEV,i,t − Pmax

EV,i ) = 0, ϑ+
i,t ≥ 0, ∀t ∈ Tp, ∀i (28)

0 ≤ PEV,i,t ≤ Pmax
EV,i , ∀t ∈ Tp (29)

σi,t = 0, t ∈ Tp, ∀i (30)

PEV,i,t = 0, ∀t ∈ Tp, ∀i (31)

The above Equations (30) and (31) represent the complementary relaxation conditions
of the original constraint and its dual variables, which need to be linearized in order to be
solved because they are nonlinear.

Next is the linearization of the complementary relaxation conditions. Referring to the
Big-M method in the literature [27], Equations (30) and (31) can be transformed into the
following linear inequalities by introducing the Boolean variable {ϕ+

i,t, ϕ−i,t}:

0 ≤ ϑ−i,t ≤ Mϕ−i,t, ∀t ∈ Tp, ∀i (32)

0 ≤ PEV,i,t ≤ M(1− ϕ−i,t), ∀t ∈ Tp, ∀i (33)

0 ≤ Pmax
EV,i − PEV,i,t ≤ Mϕ+

i,t, ∀t ∈ Tp, ∀i (34)

−M(1− ϕ+
i,t) ≤ ϑ+

i,t ≤ 0, ∀t ∈ Tp, ∀i (35)

After transformation, Equations (32)–(35) are equivalent to the original Equations (30) and (31).
Furthermore, the objective function Equation (1) needs to be linearized. Since both {λt}
and {PEV,i,t} are independent variables in Equation,

{
λtPEV,i,t

}
is a nonlinear composite

variable and cannot be solved directly. The strong dyadic theory shows that in the event
that the original problem has an optimal solution, the value of the objective function at its
optimal solution is equal to that of the dyadic problem, so the following equation holds:

T

∑
t=1

λtPEV,i,t = µi(τiEmax
EV,i − EEV,i,0) +

T

∑
t=1

ϑ+
i,tP

max
EV,i (36)

Thus, the nonlinear part of Equation (1) has been linearized by equivalent substitution,
and the Stackelberg game model of the VPP and EVs has been reduced to a mixed-integer
linear programming (MILP) problem that can be solved directly.
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4.2. Robust Transformation of Deterministic Stackelberg Game Models

Furthermore, this paper considers that the predicted values of wind turbine output
should be in the uncertainty interval Z:

Z = [PW,t − ∆Pmax
W,t , PW,t + ∆Pmax

W,t ] (37)

where ∆Pmax
W,t is the maximum deviation of wind turbine output in the VPP in time period t.

Thus, the wind power output prediction PW,t in the inequality of Equation (8) should
be a random variable and no longer a set of definite values. According to the robust
optimization principle introduced in the appendix of the literature [28], the original MILP
problem can be transformed into the RMILP problem shown in the following equations:

max
{

N
∑

i=1

[
µi(τiEmax

EV,i − EEV,i,0) +
T
∑

t=1
ϑ+

i,tP
max
EV,i

]
∆t− (CESS,t + CDR,t + CDAM,t)

}
s.t. Eqs. (6)-(20), (25)-(26), (29)-(35)

PW,t + PW,t − PW,t + ztβ + wt ≤ 0
zt + wt ≥ ∆Pmax

W,t y
wt ≥ 0
zt ≥ 0
y ≥ 1

(38)

where zt and wt are auxiliary decision variables introduced to describe the range of variation
of uncertain parameters PW,t, and y is also an auxiliary variable introduced, but not a
decision variable. β is the robust adjustment factor, and β ∈ [0, 1]. When β = 0, the
VPP operator is not concerned about the impact of wind power output uncertainty on the
system’s operation. When β > 0, the larger the value of β, the more sensitive the VPP
operator is to changes in uncertainty, and the more conservative the operation strategy is.

Therefore, the VPP operator can control the risk of system operation due to the devia-
tion of wind power output forecast by adjusting the coefficient to balance the robustness
and economy of the VPP’s operation.

5. Case Study
5.1. Basic Parameters of the Algorithm

The calculations in this paper set the EVs after equivalence aggregation into three
groups, with 50, 100, and 350 EVs, respectively, for a total of 500 EVs. The charging time
slots for each group of EVs are shown in Table 1 (where “1” means that EVs are charged
in that time slot, and “0” means that they are not charged in that time slot). According
to the driving characteristics and charging behaviors of the EVs, in order to simulate all
possible EV charging preferences, Group 1 EVs are set as “early departure and late return”,
Group 2 EVs are set as “regular work and rest”, and Group 3 EVs are set as “late night
work”. The basic parameters of the three groups of EVs are shown in Table 2. The electricity
market purchase prices set in reference [29] are shown in Table 3. To prevent the VPP from
arbitrage from the market, the VPP sells electricity to the day-ahead market at the price
π−DAM,t = π+

DAM,t/1.2. The upper limit of retail tariff pricing for EV users λu
t = 1.2π+

DAM,t,
and the lower limit λl

t = 0.8π+
DAM,t; the average price cav = 0.5 (CNY/kW ·h). The operating

parameters of the remaining resources within the VPP system are shown in Table 4. In this
paper, the maximum deviation of wind power output fluctuation is considered to be 15%
of the predicted value [30], and the predicted values of wind power output are shown in
Table 5.
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Table 1. Electric vehicles’ charging time.

Period EV1 EV2 EV3 Period EV1 EV2 EV3

1 1 1 0 13 0 0 1
2 1 1 0 14 0 0 1
3 1 1 0 15 0 0 1
4 1 1 0 16 0 0 1
5 1 1 0 17 0 0 1
6 0 1 0 18 0 1 1
7 0 1 0 19 0 1 1
8 0 1 0 20 0 1 0
9 0 0 1 21 0 1 0
10 0 0 1 22 1 1 0
11 0 0 1 23 1 1 0
12 0 0 1 24 1 1 0

Table 2. Electric vehicle parameters.

Parameters EV1 EV2 EV3

Emax
EV,i /(kW · h) 63 63 63

EEV,i,0/(kW · h) 18.9 37.8 31.5
δi 0.95 0.85 0.90

Pmax
EV,i /(kW) 7 7 7

Table 3. Time-of-use period and price parameters.

Period Valley Period
1:00–8:00

Normal Period
13:00–17:00
22:00–24:00

Peak Period
9:00–12:00

18:00–21:00

Price/(CNY/(kW·h)) 0.3167 0.5315 0.7463

Table 4. Operating parameters of the VPP.

Elements Parameters Values

Energy storage devices

Pch,max
ESS /kW 500

Pdis,max
ESS /kW 500

Emax
ESS /(kW · h) 3500

EESS,0/(kW · h) 1000
κESS 0.25
ηch

ESS 0.92
ηdis

ESS 0.90

Demand response load

κESS/(CNY/(kW · h)) 0.25
Etotal

DR /(kW · h) 5500
Emax

DR /(kW · h) 300
Emin

DR /(kW · h) 50

Power interaction with the grid Pmax
DAM/kW 1500

Table 5. Predicted values of wind turbine output.

Periods Values/kW Periods Values/kW Periods Values/kW

1 1650 9 891 17 1023
2 1782 10 858 18 1237.5
3 1716 11 874.5 19 1171.5
4 1782 12 891 20 1237.5
5 1633.5 13 891 21 1353
6 1501.5 14 792 22 1303.5
7 1138.5 15 825 23 1237.5
8 676.5 16 1122 24 1518



World Electr. Veh. J. 2023, 14, 72 11 of 17

5.2. Optimal Solution with Standard Parameters

Based on the nominal parameters in Section 5.1, taking β = 0.5, the optimal operating
revenue of the VPP operator is CNY 5744.3, and the minimum charging cost to the EV user
is CNY 7197.6. The optimal power sales pricing of the VPP, the optimal charging strategy
of the EV users, the wind turbine output power, the charging and discharging power of the
energy storage devices, the actual and desired power of the demand response load, and the
purchased and sold power of the VPP are shown in Figures 3–8, respectively.
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Figure 8. Power purchased and sold by the VPP.

In Figures 3 and 4, since the number of EVs in the “early departure and late return”
group is significantly higher than the other two groups, the VPP operators always set the
tariff to the upper limit of the baseline electricity price for that period during the period
when Group 1 EVs are charging, and they lower the tariff during the period when Group
1 EVs are not charging, in order to meet the average price constraint for the whole day.
In addition, the electricity sales tariff drawn up by the VPP does not theoretically fully
satisfy the charging benefit needs of Group 1 EV users; however, from a macro business
perspective, this pricing strategy meets the VPP’s benefit needs and minimizes the charging
cost for all EV users while meeting the travel electricity demand.

In Figures 5–8, the power required to charge EVs and energy storage devices in the VPP
from 1:00 to 8:00 mainly comes from clean electricity from wind turbines, and the shortage
is purchased uniformly by the VPP from the market. From 9:00 to 12:00, with the increase in
the grid’s time-of-use tariff, the VPP operator will arrange for the output of energy storage
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devices and load shedding through demand response as much as possible, in order to gain
additional revenue while meeting the basic charging needs of EVs. Since 13:00 to 17:00 is
the “flat tariff” period, the VPP operator will adjust some of the demand response load
from the “peak tariff” period to this period so that the actual demand response load is the
same as the expected load value. From 18:00 to 20:00 is the “peak tariff” period, where the
VPP operator will set a higher charging price to guide the EV users to choose the charging
period reasonably, while at the same time releasing the stored power in the energy storage
equipment to gain as much revenue as possible. From 21:00 to 24:00 is the “normal tariff”
period, and the wind power resources are richer during this period, so the VPP will give
priority to selling the electricity generated by wind turbines to EV users, and the surplus
electricity will be stored in the energy storage equipment to achieve a balance between
supply and demand and avoid the “abandoned wind” phenomenon.

5.3. Influence of EV Proportion on the Optimal Solution

With the total number of EVs and the robust adjustment factor unchanged, the optimal
pricing strategy for VPP operators with different EV ratios is obtained by varying the
ratio of each type of EV, and the optimal pricing strategy of the VPP operator for different
EV ratios is obtained by taking N = [350, 100, 50], [150, 150, 200], [500, 0, 0], [0, 500, 0], and
[0, 0, 500] (as shown in Figure 9) and the revenue of the VPP operator and the charging cost
for the EV users (as shown in Figure 10).
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Figure 10. Optimization results of VPP operating benefits and EV power purchase costs.

In Figure 9, the optimal pricing strategy of the VPP is adjusted when the proportion
of EVs changes, subject to a certain total number of EVs, which is mainly influenced
by the number of EVs of each charging type. For example, when the ratio of EVs is
[350, 100, 50]—i.e., there are more “early morning and late evening” vehicles in the EV
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group—the nighttime pricing of VPP sales will be relatively higher because of the high
demand for nighttime charging of these EVs; when the ratio of EVs is [0, 0, 500]—i.e., there
are only “late-night working” vehicles in the EV group—the nighttime pricing of the VPP
will be relatively higher. When the proportion of EVs is “late-night working”, the nighttime
pricing of the VPP is set to the base price, while the daytime pricing is set to a higher level.

In Figure 10, the operating revenue of the VPP and the charging cost for EV users are
higher when N = [500, 0, 0] or [0, 0, 500], while the operating revenue and charging cost
of the VPP are lowest when N = [0, 500, 0]. This is mainly determined by the acceptable
charging periods for each group of EVs, as Group 2 EVs have more acceptable charging
periods and a larger timespan, so they can choose to complete charging during the “valley
tariff” hours to avoid excessive charging costs. However, the actual charging cost is still
lower than the cost of purchasing electricity directly from the real-time market, and from
this point of view all EV users save on charging costs.

Furthermore, the profitability of the VPP operator is slightly lower when the ratio of
EVs of the three types is more even. This is because the VPP cannot set the charging price
too high for each time slot in order to meet the demand for multiple charging slots, leading
in turn to a reduction in total profitability. However, when the EV charging type in the VPP
is too homogeneous, the operator will raise the price for that type of EV charging session to
maximize profitability.

5.4. Impact of Robust Adjustment Factors on the VPP’s Operating Income

In order to compare the effects of different robust adjustment factors (β) on the VPP’s
operating revenue, Table 6 below shows the variation in the VPP’s operating revenue with
different robust adjustment coefficients.

Table 6. Predicted value of wind turbine output.

Robust Adjustment Coefficient (β) VPP’s Operating Income (CNY) Charging Cost of EV (CNY)

0 5961.7

7197.6

0.1 5913.7
0.2 5866.3
0.3 5825.7
0.4 5785.0
0.5 5744.3
0.6 5701.8
0.7 5653.1
0.8 5604.4
0.9 5555.7
1 5506.7

In Table 6, as β increases, the operator’s use of wind power output becomes gradually
more conservative, which then leads to a gradual decrease in the VPP’s operating revenue.
When β changes from 0 to 1, it indicates that the VPP’s attitude toward wind power usage
gradually changes from proactive to pessimistic and conservative. However, the charging
cost of EV users does not change during this process. This indicates that when the VPP’s
use of wind turbine output changes, the operator will always prioritize the interests of EV
users and will not transfer the risk cost to the charging cost of EV users, but will rely on the
energy storage within the VPP, the regulated capacity of the demand response load, or the
purchase and sale of electricity in the market to maintain the stable operation of the system.

5.5. Influence of Energy Storage Equipment Capacity on the Optimal Solution

For a given robust adjustment coefficient, assuming that the maximum capacity of
the energy storage equipment varies from 2000 kW · h to 5000 kW · h, the change step
is 100 kW · h, and the corresponding trend of operating revenue of the VPP operators is
shown in Figure 11 below.
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In Figure 11, regardless of the value of the robust adjustment coefficient (β) set by
the VPP operator, the operating revenue of the VPP gradually increases and then stabi-
lizes as the maximum capacity of energy storage (Smax

ESS ) increases. For example, when
β = 0.5, as long as the maximum energy storage capacity (Smax

ESS ) is greater than or equal
to 3400 (kW · h), the VPP operator can obtain a stable operating revenue of CNY 5744.3.
This is because the larger the storage capacity, the more power the VPP can store during
the “valley tariff” hours, and then the VPP can obtain higher additional revenue from the
sale of electricity during the “peak tariff” hours. However, when the capacity increases to a
certain level, the capacity may be wasted due to the limitation of the storage power itself,
so the revenue of the VPP will eventually stabilize.

In addition, in order for the VPP operators to obtain stable operating revenue with
any robust adjustment factor, the above figure shows that the maximum capacity of energy
storage should be set at 3500 (kW·h) for the VPP system.

6. Conclusions

(1) In this paper, we propose a Stackelberg game model in which the VPP operator
participates in the orderly charging management of EVs as the main objective of
electricity market reform in China, with the opening up of the electricity sales side as
the background. In the model, the VPP operator does not need to directly intervene
in the charging behavior of EV customers but only issues charging tariffs, and EV
customers are no longer just passive “price takers” but can freely choose charging
periods according to their charging preferences. This optimal management idea takes
into account both the response of EV users’ charging strategies to the VPP price and
the influence of the pricing scheme on EV users’ charging behavior. The optimization
result of the Stackelberg game achieves a win–win situation for both sides of the VPP
and EV game.

(2) In this paper, the nonlinear master–slave game model is transformed into a solvable
robust mixed-integer linear programming problem by KKT conditions and strong
dyadic theory, and the optimal pricing strategy for the VPP operator and the opti-
mal charging scheme for the EV user are accurately derived. Under the nominal
parameters, the optimal operating revenue of the VPP operator is CNY 5744.3, and
the minimum charging cost to the EV user is CNY 7197.6.

(3) The results of the algorithm can truly and reasonably reflect the change in the VPP
operator’s revenue when the robust adjustment factor changes. Therefore, the operator
can flexibly measure the relationship between risk and return according to the attitude
towards the use of wind power output and the output characteristics of controllable
resources in the VPP, while adjusting the robust adjustment factor to maximize its
operating return in the energy market.
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(4) The results show that increasing the maximum capacity of the energy storage device
within a certain range is an important way for the VPP operator to steadily increase
their operating profit. By varying the maximum capacity of energy storage with
different robust adjustment coefficients, the optimal maximum capacity of energy
storage adapted to this VPP system is 3500 (kW · h).
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