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Abstract: In this paper, an improved particle filter (Improved Particle Swarm Optimized Particle
Filter, IPSO-PF) algorithm is proposed to estimate the state of charge (SOC) of lithium-ion batteries.
It solves the problem of inaccurate posterior estimation due to particle degradation. The algorithm
divides the particle population into three parts and designs different updating methods to realize
self-variation and mutual learning of particles, which effectively promotes global development and
avoids falling into local optimum. Firstly, a second-order RC equivalent circuit model is established.
Secondly, the model parameters are identified by the particle swarm optimization algorithm. Finally,
the proposed algorithm is verified under four different driving conditions. The results show that the
root mean square error (RMSE) of the proposed algorithm is within 0.4% under different driving
conditions, and the maximum error (ME) is less than 1%, showing good generalization. Compared
with the EKF, PF, and PSO-PF algorithms, the IPSO-PF algorithm significantly improves the estimation
accuracy of SOC, which verifies the superiority of the proposed algorithm.

Keywords: lithium-ion battery; state of charge; particle filter; particle swarm optimization

1. Introduction

Replacing traditional fuel vehicles with new energy vehicles is an effective way to deal
with the energy crisis and environmental pollution [1]. Lithium-ion batteries have become
the main source of power for electric vehicles owing to their low cost and low pollution.
The state of charge (SOC) estimation is one of the core functions of battery management
systems of electric vehicles, which can avoid overcharge and over-discharge of batteries,
achieve balanced management of battery packs, and effectively guide users to charge the
batteries. Accurate estimation of the SOC can improve battery working efficiency, prolong
battery life, and play an important role in ensuring the stable and safe operation of battery
packs [2].

At present, the SOC estimation methods mainly include the ampere-hour integration
(Ah) method, open-circuit voltage (OCV) method, model-based method, and data-driven
method [3]. Despite the Ah integration method being widely used in practical applications
as its simple principle, its error will increase with the accumulation of errors as it is an
open-loop form of estimation method, which leads to the deterioration of estimation
accuracy [4,5]. The OCV method obtains the relationship between the open circuit voltage
and the SOC through the discharge experiments and then estimates the SOC based on the
relationship above. However, this method requires a long battery resting time, which is
time-consuming and difficult to apply to online estimation [6–8]. The data-driven method
achieves accurate state estimation by obtaining a black-box model through training a
large amount of data. But its internal algorithm is complex, which leads to excessive
computation, and its accuracy will be significantly reduced when the amount of data is
small [9–11]. It is widely used for model-based methods as it has low complexity, high
precision, and easy parameter identification complexity [12,13]. Model-based filtering
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algorithms include the Kalman filter (KF) and Particle filter (PF). For the reason of the
traditional KF algorithm can only deal with linear problems, many improved KF algorithms
are derived. Qiu et al. [14] used the least squares method to identify the parameters of the
battery model and then combined it with the extended Kalman filter (EKF) algorithm to
estimate the SOC. The results show that the method could accurately estimate the SOC.
Tan et al. [15] proposed an improved unscented Kalman filter (UKF) algorithm for the
problem that the voltage observation data is susceptible to environmental interference,
which could cause a decrease in the accuracy. The results show that the algorithm has
strong robustness and high precision. Liu et al. [16] proposed a Drift-Ah integration method
for the influence of drift current on SOC estimation and used the volumetric Kalman filter
(CKF) algorithm to estimate the SOC. The results show that the method can effectively
reduce the influence of drift current and improve estimation accuracy. Li et al. [17] proposed
an improved CKF algorithm for the noise in the CKF algorithm that cannot satisfy the
real-time dynamic characteristics during the iterative process. The experimental results
show that the proposed method has higher estimation accuracy and better stability than
the EKF algorithm. Tang et al. [18] proposed a method that fuses the EKF algorithm,
HIF algorithm, and AEKF algorithm to estimate SOC estimation, which shows a lower
computational burden.

However, the improved KF algorithms are still limited to the Gaussian noise envi-
ronment and difficult to apply in practical scenarios, while the PF algorithm [19–21] has a
greater application prospect for it is not limited by Gaussian noise. Wu et al. [22] proposed
an adaptive PF algorithm based on a multi-model to solve the problem of accuracy degra-
dation of the multi-target tracking problem with unknown noise statistics when solved by
the traditional filter. The results show that the algorithm has strong anti-interference ability
and high accuracy. Li et al. [23] used the PF algorithm to process underwater acoustic
signals under non-Gaussian conditions. The simulation results show that the PF algorithm
has significantly improved tracking performance compared with the EKF algorithm. Shao
et al. [24] used the PF algorithm to estimate the SOC and validated the accuracy under
electric vehicle driving conditions in Beijing. The results show that the PF algorithm has
better estimation performance and has the same computational complexity compared with
the EKF algorithm and UKF algorithm. Aiming at the problem that the reduction of the
SOC estimation accuracy due to errors introduced by drift current when the current sensor
collected the current, Liu et al. [25] used the drift current as a parameter of the temperature
compensation model. Then a two-particle filter estimator was designed to estimate the
SOC and the drift current at the same time. The results showed that the algorithm has high
SOC estimation accuracy and good robustness. After several iterations of the conventional
particle filter algorithm, the particle diversity decreases, and the weight difference becomes
larger. Since the likelihood function used in particle update is a normal distribution, only a
small part of the particles will increase in weight after the update, while most particles will
degenerate. Eventually, only a small number of particles can represent the posterior proba-
bility distribution, resulting in a significant decrease in estimation accuracy. To improve
the particle diversity, Zhao et al. [26] used the EKF as the proposed distribution of the PF
algorithm. The simulation experiments showed that the algorithm significantly improves
the accuracy of SOC, but the method is computationally intensive. Wu et al. [27] proposed
an unscented particle filter (UPF) algorithm by improving the PF algorithm with the UKF
algorithm. The results showed that the algorithm is more stable and has better performance
than the PF algorithm, but the method lacks practicality. Bi et al. [28] optimized the update
process of the PF algorithm by using an artificial immune algorithm to increase the diversity
of particles. The results showed that the estimation accuracy was improved by about 40%
compared with that before optimization, but the method caused an excessive computation
as a large number of particles were adopted.

As the research listed above, some algorithms have complex update processes and
an excessive number of particles, which lead to poor practicality and degradation of SOC
estimation accuracy. This paper proposes an improved particle swarm-optimized particle
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filter (IPSO-PF). It uses a particle swarm algorithm to effectively overcome the problem of
decreasing particle diversity in the PF algorithm. The overall framework of the article is
rough as follows. Section 2 will establish a second-order RC equivalent circuit model. The
proposed IPSO-PF algorithm will be introduced in Section 3. Section 4 will use the particle
swarm algorithm to identify the parameters offline and compare the SOC estimation results
with the EKF, PF, PSO-PF, and IPSO-PF algorithms. Then the estimation accuracy of the
proposed algorithm is verified by experiments. Specifically, the contributions are presented
as follows.

(1) The PSO algorithm is used to identify the parameters of the second-order RC model
to obtain a battery model with high accuracy.

(2) This paper designs self-mutation and mutual learning of particles to drive particles
to high-likelihood regions, which effectively suppresses the degradation of particle
weights without increasing the number of particles and increasing particle diversity.

(3) Compared with the PF algorithm, the IPSO-PF algorithm has better particle diversity and
much higher estimation accuracy in any SOC stage under different driving conditions.

2. Battery Modeling and Parameter Identification
2.1. Battery Modeling

The battery SOC reflects the remaining charge inside the battery and is usually calculated
by the ampere-hour integration method [29]. The discretized expression is shown below:

SOCk = SOCk−1 + η
∆T · Ik

Cn
(1)

where SOCk represents the SOC value at time k, SOCk−1 represents the SOC value at
time k−1, η represents the charge/discharge efficiency which is taken as 1 in this paper,
Cn represents the rated capacity of the battery, Ik represents the current value at time k
(positive for charging and negative for discharging).

Accurate SOC estimation requires an accurate battery model, and the equivalent circuit
model requires fewer parameters to be identified and is the most widely used in practical
applications compared to electrochemical models. The second-order RC equivalent circuit
model uses two RC networks to simulate the concentration polarization characteristics and
electrochemical polarization characteristics inside the battery, respectively. It has higher
accuracy compared with the first-order model and lower complexity compared with models
that have more orders. Therefore, the second-order RC equivalent circuit model is selected
in this paper for SOC estimation, as shown in Figure 1.

Figure 1. Second-Order RC Equivalent Circuit Model.
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Where Ut is the terminal voltage of the battery, R0 is the internal resistance of the
battery, Rp and Rd are the polarization resistance, Cp and Cd are the polarization capaci-
tance, OCV is the open circuit voltage of the battery. There has a relatively stable nonlinear
relationship between OCV and SOC, which can be expressed as OCV = f (SOC). The open
circuit voltage can be approximated by the terminal voltage after a certain period of battery
resting. In this paper, the terminal voltage obtained after each 10% SOC change is selected
as the open-circuit voltage through the small current condition. Then the data points were
curve-fitted to obtain the following sixth-order polynomial relationship:

OCV = 9.04SOC6 − 21.29SOC5 + 13.02SOC4 + 3.92SOC3 − 5.87SOC2 + 2.02SOC + 3.34 (2)

The following functional relationship can be obtained using the above model according
to Kirchhoff’s law: 

I = Up
Rp

+ Cp
dUp
dt

I = Ud
Rd

+ Cd
dUd
dt

OCV = Ut + Up + Ud + IR0

(3)

where Up and Ud represent the concentration polarization voltage and the electrochemical
polarization voltage, respectively. The following state space model can be obtained by
discretizing Equation (3) and then combining Equation (1).

SOCk
Up,k
Ud,k

 =


1 0 0

0 e
− ∆T

RpCp 0

0 0 e
− ∆T

RdCd


SOCk−1

Up,k−1
Ud,k−1

+


η ∆T

Cn

Rp

(
1− e

− ∆T
RpCp

)
Rd

(
1− e

− ∆T
RdCd

)
Ik + ωk (4)

Ut,k = OCVk + Up,k + Ud,k + IkR0 + υk (5)

where ωk is the process noise and υk is the measurement noise.

2.2. Parameter Identification

The accuracy of battery model parameters greatly affects the SOC estimation accuracy,
so it is necessary to accurately identify the parameters, R0, Rp, Cp, Rd, and Cd in the battery
model. Since the calculational effort of online identification is greater compared to that of
offline identification, this paper uses the particle swarm optimization algorithm for offline
identification of the model under incremental current conditions. The current and voltage
of the incremental current condition are shown in Figures 2 and 3, respectively.
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The particle swarm optimization algorithm obtains the optimal solution by evaluating
the results of the fitness function and has a higher identification accuracy than the least
squares algorithm [30]. The algorithm treats every feasible solution in the D-dimensional
target search space as a particle, and each particle has its velocity and position. In parameter
identification, that is, the set of five parameters is treated as a basic particle. During the
iterative search process, the particle measures the quality of the current position based
on its fitness and then updates it according to the global optimal position Gbest and the
individual optimal position Pbest. Finally obtains the optimal solution. The specific steps of
the PSO algorithm are shown as follows.

Step 1. Initialize the population.{
x(i)
}m

i=1
=
{

R0(i), Rp(i), Rd(i), Cp(i), Cd(i)

}m

i=1
(6)

{
v(i)
}m

i=1
=
{

v0(i), vp(i), vd(i), vp(i), vd(i)

}m

i=1
(7){

Pbest(i)

}m

i=1
=
{

R0best(i), Rpbest(i), Rdbest(i), Cpbest(i), Cdbest(i)

}m

i=1
(8)

Gbest =
{

R0best, Rpbest, Rdbest, Cpbest, Cdbest

}m

i=1
(9)

Step 2. Set the fitness function.

f itness(i) =

√√√√ T

∑
k=1

[
Ut(k)−Up(k)

]2 (10)

where Ut(k) is the actual voltage at the current moment, Up(k) is the predicted voltage
at the current moment, iternow represents the current number of iterations, and itermax
represents the maximum number of iterations.

Step 3. Update the speed and position.
While iternow < itermax:

vD
i = wvD

i + c1r1

(
PD

best(i) − xD
i

)
+ c2r2

(
GD

best − xD
i

)
(11)

x(i) = x(i) + v(i) (12)

where w is the inertial weight that can balance the global search and local development, c1
and c2 are the learning factors that indicate the individual cognition and social cognition of
the particles, respectively r1 and r2 are the random numbers generated on (0,1).

Step 4. Output the optimal value GD
best.



World Electr. Veh. J. 2023, 14, 8 6 of 18

3. SOC Estimation Based on IPSO-PF Algorithm

The core idea of the IPSO-PF algorithm is to iteratively optimize the prior state sets
of particle filtering by using an improved particle swarm optimization algorithm and
then update and resample it with the latest observations to obtain more accurate posterior
state sets, thus realizing an improvement of the particle filtering algorithm. This section
introduces the basic principles of the PF algorithm and the IPSO algorithms, respectively,
and applies the IPSO-PF algorithm to the SOC estimation.

3.1. PF Algorithm

Particle filtering is a recursive Bayesian filter based on Monte Carlo sampling, and
the core idea is to achieve integrated operations with weighted sums by using discrete
random samples. Assume that the state space model of the nonlinear system is represented
as follows: {

xk = f (xk−1, uk) + ωk
yk = h(xk, uk) + vk

(13)

where uk is the input, yk is the output. The PF algorithm uses the system model prediction to
obtain the prior probability density, then get the posterior probability density by correcting
the prior probability density through the latest observations, and finally achieve the state
estimation. The specific steps of the PF algorithm are shown as follows:

Step 1. k = 0, initialize the particle sets:
{

x(i)0

}N

i=1
,
{

w(i)
0

}N

i=1
= 1/N.

Step 2. k = 1, 2, . . . , T, execute the following steps:

1. Prediction: {
x̃(i)k

}N

i=1
= f

({
x(i)k−1

}N

i=1
, uk

)
(14)

{
ỹ(i)k

}N

i=1
= h

({
x̃(i)k

}N

i=1
, uk

)
(15)

2. Update:

w(i)
k =

(
1√

2πRk

)
e
−

(yk−ỹ(i)k )
2

2Rk (16)

w̃(i)
k =

w(i)
k

N
∑

i=1
w(i)

k

(17)

3. Resample: obtain the posterior state sets
{

x(i)k

}N

i=1
,
{

w(i)
k

}N

i=1
= 1/N after resampling

the particle sets
{

x̃(i)k , w̃(i)
k

}N

i=1
.

4. Estimation:

x̂k =
N

∑
i=1

w(i)
k x(i)k (18)

3.2. IPSO Algorithm

The likelihood function used by the PF algorithm is a normal distribution type, which
is prone to excessive differences between particles, then causes degradation of particles,
and finally leads to the reduction of the estimation accuracy. For the defects of the PF, this
paper uses an improved particle swarm algorithm [31] to optimize the sampling process
before the particle filtering update period. Traditional particle swarm algorithm is prone
to fall into local optimal solutions in the iterative search process, so this paper makes the
following improvements: the particle population is divided into three parts, and different
update strategies are used to realize the self-mutation and mutual learning of particles so
that the algorithm can jump out of the local optimum, accelerate convergence and improve
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the estimation accuracy. The size of the fitness value reflects the distance of the particle
from the real state. The fitness values of the particle population are sorted from small to
large and then divided into three parts according to the mean value f and the standard
deviation σ, as shown in Figure 4.

Figure 4. Population Division.

The mean value f and the standard deviation σ are defined as follows:

f =

N
∑

i=1
f itness(i)

N
(19)

σ =

√√√√√ N
∑

i=1
f itness(i)− f

N
(20)

Particles with a smaller portion of the fitness values (population S) are far from the
true state and need to accelerate closer to the global optimal state. The updated rule is
as follows:

x(S) = x(S) + c2

(
Gbest − x(S)

)
+ c3

(
x− x(S)

)
(21)

where c3 is the learning factor, x is the particle at the average fitness position. The right side
of Equation (21) consists of three parts: the first item indicates the ability of the particle to
maintain its position, the second item indicates that the particle learns from particles close
to the true state, the third item indicates that the particle is pulled by the particles located
in the intermediate states and can avoid particle degradation.

Particles with a middle portion of the fitness values (population M) are in the intermediate
state that plays a role in balancing global search and local development, therefore adopting the
standard update rule, namely the Equation (11). The nonlinear differential decreasing strategy
is used to update the inertia weights. In the early stage of the iteration, the inertia weight is
large, and the particle can perform a large range of global searches. In the late stage of the
iteration, the inertia weight is small, and the particle has a strong local development ability.

Particles with a large portion of the fitness values (population L) are close to the true
state, therefore using self-variation updates to avoid falling into local optimum:

x(L) = x(L) · (1 + α · C(0, 1)) (22)

α =
itermax − iternow

iternow
(23)

where α indicates the adaptive factor, C(0, 1) indicates the Cauchy random number. Equa-
tion (22) is the adaptive Cauchy formula which controls the particles to carry out the global
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search in the early stage of the iteration and accelerates the convergence in the late stage of
the iteration.

3.3. SOC Estimation

The IPSO-PF algorithm can be obtained by introducing the IPSO algorithm into the
sampling process of the PF algorithm. The IPSO algorithm takes the set of prior particles
computed by the PF algorithm as the elementary particles, yielding sets closer to the truly
distributed states through the self-variation of the particles themselves and the mutual
learning between the populations. Then the PF algorithm updates this set to obtain the
posterior set. The specific steps of the IPSO-PF algorithm are shown as follows.

Step 1. k = 0, initialize the particle sets:
{

x(i)0

}N

i=1
,
{

w(i)
0

}N

i=1
= 1/N.

Step 2. k = 1, 2, . . . , T, execute the following steps:

1. Prediction. {
x̃(i)k

}N

i=1
= f

({
x(i)k−1

}N

i=1
, uk

)
(24)

{
ỹ(i)k

}N

i=1
= h

({
x̃(i)k

}N

i=1
, uk

)
(25)

2. IPSO optimization.

a. Initialize the population. {
x(i)
}N

i=1
=
{

ỹ(i)k

}N

i=1
(26)

{
v(i)
}N

i=1
= rand (27){

Pbest(i)

}N

i=1
= { f itness(i)}N

i=1 (28)

Gbest = max
(
{ f itness(i)}N

i=1

)
(29)

b. Set the fitness function.

f itness(i) = e
− 1

2Rk
(xt−xp(i))2 (30)

c. Update the speed and position.

v(i) = wv(i) + c1r1

(
Pbest(i) − x(i)

)
+ c2r2

(
Gbest − x(i)

)
(31)

x(i) = x(i) + v(i) (32)

d. Output the optimal value. {
ỹ(i)k

}N

i=1
=
{

x(i)
}N

i=1
(33)

3. Update:

w(i)
k =

(
1√

2πRk

)
e
−

(yk−ỹ(i)k )
2

2Rk (34)

w̃(i)
k =

w(i)
k

N
∑

i=1
w(i)

k

(35)
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4. Resample: obtain the posterior state sets
{

x(i)k

}N

i=1
,
{

w(i)
k

}N

i=1
= 1/N after resampling

the particle sets
{

x̃(i)k , w̃(i)
k

}N

i=1
.

5. Estimation:

x̂k =
N

∑
i=1

w(i)
k x(i)k (36)

Then, the SOC estimation is performed using the proposed IPSO-PF algorithm. The
flowchart of SOC estimation is shown in Figure 5. Firstly, the battery model parameters
are obtained by the particle swarm algorithm offline. Secondly, the prior state sets of the
current moment are generated by sampling the estimation state of the previous moment
through the system model. Thirdly, the prior state sets are divided into three subsets
according to fitness, and different strategies are used to realize the update of the sets. Then,
the weights of the optimized particle state sets are normalized, and the posterior state sets
of the current moment are obtained after resampling. Finally, the state can be estimated.

1 
 

 

Figure 5. Flow Chart of the SOC Estimation.

4. Experimental Results and Analysis

In this paper, a LiNiMnCo/Graphite lithium-ion battery is selected as the research
object, and its basic information is shown in Table 1. The experimental temperature is set to
25 ◦C, and the sampling period is set to 1s. The number of particles of the PF algorithm
and PSO algorithm are both set to 100, the number of iterations of the PSO and IPSO-PF
algorithm is set to 200, the maximum and minimum inertia weights are set to 0.9 and 0.4,
respectively, and the learning factors c1, c2 and c3 are set as 2.

Table 1. Basic Information about the Battery.

Type Normal Voltage Normal Capacity Cutoff Voltage

INR 18650-20R 3.6 V 2.0 Ah 2.5 V/4.2 V

In order to validate the accuracy of the model and the SOC estimation. The Dynamic
Street Test (DST), the Federal Urban Driving Schedule (FUDS), the Intense Driving Schedule
(US06 Supplemental FTP Driving Schedule, US06), and the Beijing Dynamic Stress Test
(BJDST) from the University of Maryland battery data [32] are selected for the experiment.
All tests were performed for 80% battery level and 50% battery level at 0 ◦C, 25 ◦C and
45 ◦C. We chose the data that the battery tests were performed for 80% initial SOC at 25 ◦C



World Electr. Veh. J. 2023, 14, 8 10 of 18

as they are the most commonly used data. Firstly, the battery is discharged to 80% SOC,
then the battery is discharged according to the four working conditions, and the current
and voltage are recorded. The current curves are obtained as shown in Figures 6–9. It
can be seen that the current fluctuation frequency of the four conditions is high, and the
charge/discharge ratio is large, which is relatively close to the actual usage.
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4.1. Model Verification

The root mean square error of terminal voltage is used as an index to evaluate the
accuracy of the model, and the parameters of the charging process and the discharging
process are identified respectively, then the average values are taken as the model param-
eters. The fitness curve and parameter identification results are shown in Figure 10 and
Table 2, respectively. It can be seen from Figure 10 that the fitness converges to 0.83% after
only 50 iterations, which shows the fast convergence speed of the particle swarm algorithm.
Meanwhile, we also compare the computation costs and accuracy of the first-order, second-
order, and third-order RC models. The results are shown in Table 3. It can be seen from
the RMSE of Table 3 that the third order has little improvement in accuracy compared to
the second order, while the first order has poor accuracy compared to the second order.
Since the parameters are identified offline and the time difference is not significant, the
computation time can be neglected. Therefore, it can be considered that the second-order
RC model is the optimal choice. In addition, the model parameter identification results are
consistent with our theoretical expectations, and we need to verify further whether it is in
line with the practical application under different driving conditions.
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Table 2. Model Parameters.

R0/Ω Rp/Ω Rd/Ω Cp/F Cd/F

0.0687 0.0131 0.0035 1359.7 432.6

Table 3. Model Comparison.

Model Computation Cost RMSE (%)

first-order 3.55 0.8351

second-order 8.24 0.8337

third-order 15.88 0.8338

In order to verify the accuracy of the second-order RC model, the four driving condi-
tion data are selected for verification. Since electric vehicles that drive under extreme loads
during actual driving are relatively rare, the battery data from 80% to 10% SOC are selected
for experiments in this paper. The battery is discharged according to the current shown in
Figures 6 and 7, and the terminal voltage and SOC of the battery are recorded. The above
currents are used to simulate the model, and the terminal voltage of the battery model
is obtained. The error curves of the model terminal voltage are shown in Figures 11–14.
As can be seen, the errors of the voltage of the battery model are controlled within 20 mV
overall, and the fluctuation range is small. The maximum errors are only 34.4 mV, 29.9 mV,
35.7 mV, and 21.6 mV, respectively, which shows that the second-order RC equivalent cir-
cuit model built in this paper has high accuracy and can well reflect the dynamic working
characteristics of the battery.
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4.2. SOC Estimation Verification

In order to verify the superiority of the algorithm proposed in this paper, the algorithm
is verified using the DST driving condition, and the experimental results are shown in
Figures 15–17. As can be seen from Figures 15 and 16, the difference in particle weights
of the PF algorithm is big, and the number of particles with large weights is gradually
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reduced while the particles with small weights are gradually degraded. Therefore, the sets
of particles will gradually deviate from the true state and eventually leads to a decrease in
the estimation accuracy. In contrast, the particle weights of the IPSO-PF algorithm have
smaller differences and are more uniformly distributed, which can effectively guarantee
the diversity of particles and prevent particle degradation, thus improving the estimation
accuracy. It can be further illustrated by Figure 17 that the SOC estimation results of
the IPSO-PF algorithm are closer to the true value. The EKF algorithm has the worst
performance, and it gradually diverges at the end of the estimation phase, resulting in a
maximum error approaching 2%. The estimation error of the PF algorithm dissipates with
the increase of time, and the maximum error of the PSO-PF algorithm is too large due to
the population falling into the local optimal solution, while the IPSO-PF algorithm controls
the error within a certain range.
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To intuitively compare the estimation performance of the different algorithms under
DST driving conditions, three evaluation indexes of Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and Max Error (ME) are given in this paper, and the results
are shown in Table 4. It can be further seen from the error results that the errors of EKF are
larger than that of PF because it is not suitable for non-Gaussian noise environments. The
RMSE of IPSO-PF decreases by 0.7% compared with EKF and decreases by 0.41% compared
with PF, and the error is controlled within 1%, while the other three algorithms are more
than 1%, which proves that the proposed algorithm has good estimation accuracy.

Table 4. Errors of DST Driving Condition.

Method RMSE/% MAE/% ME/%

EKF 1.09 1.74 1.99
PF 0.80 0.76 1.37

PSO-PF 0.56 0.47 1.47
IPSO-PF 0.39 0.33 0.99

Theoretically, the computational complexity of the IPSO-PF algorithm increases com-
pared to the PF algorithm due to the inclusion of the PSO algorithm, but it is not much
different from that of the PSO-PF algorithm. We ran all the algorithms on the MATLAB
2016b platform of an AMD I7-6500U processor with 3.20 GHz and 16 GB memory and
calculated the computational complexity. The EKF, PF, PSO-PF, and IPSO-PF algorithms
take 0.89 s, 6.32 s, 8.16 s, and 8.73 s, respectively. Although the EKF algorithm has the lowest
complexity, it has poor estimation accuracy in non-Gaussian scenarios. The complexity of
the proposed algorithm is almost the same as that of the PSO-PF algorithm and slightly
inferior to the PF algorithm, but with a significant improvement in accuracy. Therefore, it
further demonstrates the superiority of the IPSO-PF algorithm.

In order to verify the generalizability of the proposed algorithm under different
driving conditions, the FUDS, US06, and BJDST data are used for SOC estimation, and
then compare the estimation results with the PF and PSO-PF algorithm. The experimental
results and errors are shown in Figure 18. As is shown in Figure 18a,c,e, the PF algorithm,
the PSO-PF algorithm, and the IPSO-PF algorithm can effectively estimate the SOC, and
the estimation results of the IPSO-PF algorithm are closer to the true value. It can be seen
from Figure 18b,d,f that the estimation errors of the IPSO-PF algorithm are significantly
lower and fluctuate less under different driving conditions compared with the EKF, PF,
and PSO-PF algorithms. The three error evaluation indexes are shown in Tables 5–7.
According to the results, the ME of the IPSO-PF algorithm is limited to 0.9%, and the MAE
is limited to 0.28%, which is less than the ME and MAE of the PF algorithm and the PSO-PF
algorithm. The experimental results show that the proposed algorithm effectively solves the
problem of estimation error increase due to particle degradation and has good estimation
performance. The RMSEs of the IPSO-PF algorithm in FUDS, US06, and BJDST conditions
are 0.25%, 0.34%, and 0.33%, respectively, which are at least 55% lower than those of the
EKF algorithm, 45% lower than those of the PF algorithm and 22% lower than those of the
PSO-PF algorithm, effectively improving the estimation accuracy of the SOC, indicating
that the IPSO-PF algorithm has good generalizability and superiority.

Table 5. Errors of FUDS Driving Condition.

Method RMSE/% MAE/% ME/%

EKF 1.13 0.94 2.65
PF 0.71 0.67 1.23

PSO-PF 0.64 0.52 1.54
IPSO-PF 0.25 0.21 0.68
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Table 6. Errors of US06 Driving Condition.

Method RMSE/% MAE/% ME/%

EKF 0.89 0.73 1.88
PF 0.62 0.57 1.11

PSO-PF 0.44 0.36 0.95
IPSO-PF 0.34 0.26 0.90

Table 7. Errors of BJDST Driving Condition.

Method RMSE/% MAE/% ME/%

EKF 0.92 0.75 2.04
PF 0.74 0.70 1.39

PSO-PF 0.49 0.41 1.07
IPSO-PF 0.33 0.28 0.86
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The experimental results show that the PF algorithm has an inaccurate posterior
estimation accuracy due to particle weight degradation. In contrast, the IPSO-PF algorithm
improves the estimation accuracy and shows good generalization by driving all particles
closer to the true state.

5. Conclusions

Considering the problem that the PF algorithm adopts the normal distribution type
likelihood function in the updating stage, which leads to particle degradation caused by the
large difference of weights between particles, this paper proposes an IPSO-PF algorithm.
The algorithm introduces the particle swarm optimization algorithm into the sampling
process before the update of the PF algorithm, and through the self-variation and mutual
learning of the particles, the particles with smaller weights tend to the true state by learning,
which suppresses the weight degradation. The particles with larger weights avoid falling
into the local optimum by self-variation, which promotes global development. Finally,
it makes all particles closer to the true state distribution and improves the estimation
performance of the PF algorithm.

The experimental results show that the algorithm proposed in this paper has good
estimation accuracy under four actual driving conditions, with the root mean square error
within 0.4% and the maximum error within 0.9%, and all of them are smaller than the PF
algorithm, and PSO-PF algorithm, which fully verifies the superiority and generalization
of the algorithm proposed in this paper.

This paper does not consider the convergence speed of a wrong initial SOC, and
the experiments are performed at 25 ◦C. Therefore, we will make improvements to the
convergence of the algorithm and increase the experiments under different temperature
conditions to increase the reliability of the algorithm in the future.
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Abbreviations

SOC state of charge
PF particle filter
PSO particle swarm optimization
IPSO improved particle swarm optimization
KF Kalman filter
EKF extended Kalman filter
UKF unscented Kalman filter
RMSE root mean squared error
MAE mean absolute error
ME max error

https://calce.umd.edu/data
https://calce.umd.edu/data


World Electr. Veh. J. 2023, 14, 8 17 of 18

OCV open circuit voltage
DST dynamic street test
FUDS federal urban driving schedule
US06 intense Driving Schedule
BJDST Beijing dynamic stress test

References
1. Chu, S.; Majumda, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [CrossRef]

[PubMed]
2. Yang, S.; Ma, C. SOC Estimation Algorithm Based on Improved PNGV Model. Automot. Eng. 2015, 37, 582–586+598.
3. Gregory, L.P. Review and Some Perspectives on Different Methods to Estimate State of Charge of Lithium-Ion Batteries. J. Automot.

Saf. Energy 2019, 10, 249–272.
4. Yang, N.; Zhang, X.; Li, G. State of charge estimation for pulse discharge of a LiFePO4 battery by a revised Ah counting.

Electrochim. Acta 2015, 151, 63–71. [CrossRef]
5. Lu, R.; Wang, T.; Feng, F.; Zhu, C. SOC Estimation Based on the Model of Ni-MH Battery Dynamic Hysteresis Characteristic.

World Electr. Veh. J. 2010, 4, 259–265. [CrossRef]
6. Huang, S.-J.; Huang, B.-G.; Pai, F.-S. An approach to measurements of electrical characteristics of lithium-ion battery with

open-circuit voltage function. IET Power Electron 2012, 5, 1968–1975. [CrossRef]
7. Meng, J.; Stroe, D.-I.; Ricco, M.; Luo, G.; Swierczynski, M.; Teodorescu, R. A Novel Multiple Correction Approach for Fast Open

Circuit Voltage Prediction of Lithium-ion Battery. IEEE Trans. Energy Convers. 2018, 34, 1115–1123. [CrossRef]
8. Lee, S.; Kim, J.; Lee, J.; Cho, B.H. State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage

versus state-of-charge. J. Power Sources 2008, 185, 1367–1373. [CrossRef]
9. Guo, Y.; Zhao, Z.; Huang, L. SOC estimation of Lithium battery based on improved BP neural network. Energy Procedia 2017, 105,

4153–4158. [CrossRef]
10. Guo, N.; Fang, Y.; Tian, Z.; Cao, S. Research on SOC fuzzy weighted algorithm based on GA-BP neural network and ampere

integral method. J. Eng. 2019, 19, 576–580. [CrossRef]
11. Cheng, B.; Bai, Z.; Cao, B. State of charge estimation based on evolutionary neural network. Energy Convers. Manag. 2008, 49,

2788–2794.
12. Liu, X.; Li, K.; Wu, J.; He, Y.; Liu, X. State of Charge Estimation for Traction Battery Based on EKF-SVM Algorithm. Automot. Eng.

2020, 42, 1522–1528+1544.
13. Zhang, L.; Li, K.; Du, D.; Zhu, C.; Zheng, M. A sparse least squares support vector machine used for SOC estimation of Li-ion

Batteries. IFAC-Pap. 2019, 52, 256–261.
14. Qiu, Y.; Liu, X.; Chen, W.; Wei, D.; Duan, Z.M. Vanadium redox battery SOC estimation based on RLS and EKF Algorithm. Control.

Decis. 2018, 33, 37–44.
15. Tan, F.; Zhao, J.; Wang, Q. A Novel Robust UKF Algorithm for SOC Estimation of Traction Battery. Automot. Eng. 2019, 41,

944–952.
16. Liu, X.; Li, H.; Wei, Z.; He, Y.; Zeng, G. CKF estimation Li-ion battery SOC based on Drift-Ah integral method. Control. Decis.

2019, 34, 535–541.
17. Li, W.; Luo, M.; Tan, Y.; Cui, X. Online Parameters Identification and State of Charge Estimation for Lithium-Ion Battery Using

Adaptive Cubature Kalman Filter. World Electr. Veh. J. 2021, 12, 123. [CrossRef]
18. Tang, A.; Gong, P.; Li, J.; Zhang, K.; Zhou, Y.; Zhang, Z. A State-of-Charge Estimation Method Based on Multi-Algorithm Fusion.

World Electr. Veh. J. 2022, 13, 70. [CrossRef]
19. Ye, M.; Guo, H.; Xiong, R.; Yang, R. Model-based State-of-charge Estimation Approach of the Lithium-ion Battery Using an

Improved Adaptive Particle Filter. Energy Procedia 2016, 103, 394–399. [CrossRef]
20. Zuo, J.; Zhang, Y.-Z.; Liang, Y. Particle Filter Based on Adaptive Part Resampling. Acta Autom. Sin. 2012, 38, 647–652. [CrossRef]
21. Wang, F.; Lu, M.; Zhao, Q.; Yuan, Z. Particle Filtering Algorithm. Chin. J. Comput. 2014, 37, 1679–1694.
22. Wu, X.; Huang, G.; Gao, J. Multiple-model probability hypothesis density filter for multi-target tracking without the statistic.

Control. Decis. 2014, 29, 475–480.
23. Li, X.; Li, Y.; Shang, J.; Dai, Q. Performance Analysis of Underwater Acoustic Signal for Non-Gaussian System Using Particle

Filter Algorithm. Fire Control. Command. Control. 2014, 39, 34–37+41.
24. Shao, S.; Bi, J.; Yang, F.; Guan, W. On-line estimation of state-of-charge of Li-ion batteries in the electric vehicle using the

resampling particle filter. Transp. Res. Part D Transp. Environ. 2013, 32, 207–217. [CrossRef]
25. Liu, X.; Chen, Z.; Zhang, C.; Wu, J. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter

state of charge estimation. Appl. Energy 2014, 123, 263–272. [CrossRef]
26. Zhao, Y.; Zhou, X.; Liu, Y. SOC Estimation for Li-Ion Battery Based on Extended Kaman Particle Filter. China Mech. Eng. 2015, 26,

394–397.
27. Wu, T.; Liu, K.; Du, X. SOC estimation of lithium-ion battery based on UKPF algorithm. Chin. J. Power Sources 2021, 45,

602–605+625.

http://doi.org/10.1038/nature11475
http://www.ncbi.nlm.nih.gov/pubmed/22895334
http://doi.org/10.1016/j.electacta.2014.11.011
http://doi.org/10.3390/wevj4020259
http://doi.org/10.1049/iet-pel.2012.0070
http://doi.org/10.1109/TEC.2018.2880561
http://doi.org/10.1016/j.jpowsour.2008.08.103
http://doi.org/10.1016/j.egypro.2017.03.881
http://doi.org/10.1049/joe.2018.9385
http://doi.org/10.3390/wevj12030123
http://doi.org/10.3390/wevj13040070
http://doi.org/10.1016/j.egypro.2016.11.305
http://doi.org/10.3724/SP.J.1004.2012.00647
http://doi.org/10.1016/j.trd.2014.07.013
http://doi.org/10.1016/j.apenergy.2014.02.072


World Electr. Veh. J. 2023, 14, 8 18 of 18

28. Bi, J.; Zhang, D.; Chang, H.-T.; Shao, S. Estimation for SOC of PEV Battery Based on Artificial Immune Particle Filter. J. Transp.
Syst. Eng. Inf. Technol. 2015, 15, 103–108.

29. Ahmed, M.S.; Raihan, S.A.; Balasingam, B. A scaling approach for improved state of charge representation in rechargeable
batteries. Appl. Energy 2020, 267, 114880. [CrossRef]

30. Mao, Q.; Zhu, Q.; Xu, Z.J.; Xu, S.F. Parameter Identification of Battery Model Based on the Particle Swarm Optimization. Electr.
Eng. 2021, 12, 156–157.

31. Zhang, Y.; Wang, L.; Zhou, H.; Zhao, H. Design and Applications of Particle Swarm Optimization Based on Competitive Learning.
Comput. Meas. Control. 2021, 29, 182–189.

32. Zheng, F.; Xing, Y.; Jiang, J.; Sun, B.; Kim, J.; Pecht, M. Influence of different open circuit voltage tests on state of charge online
estimation for lithium-ion batteries. Appl. Energy 2016, 183, 513–525. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.apenergy.2020.114880
http://doi.org/10.1016/j.apenergy.2016.09.010

	Introduction 
	Battery Modeling and Parameter Identification 
	Battery Modeling 
	Parameter Identification 

	SOC Estimation Based on IPSO-PF Algorithm 
	PF Algorithm 
	IPSO Algorithm 
	SOC Estimation 

	Experimental Results and Analysis 
	Model Verification 
	SOC Estimation Verification 

	Conclusions 
	References

