
Citation: Yu, P.; Li, M.; Wang, Y.;

Chen, Z. Fuel Cell Hybrid Electric

Vehicles: A Review of Topologies and

Energy Management Strategies.

World Electr. Veh. J. 2022, 13, 172.

https://doi.org/10.3390/

wevj13090172

Academic Editor:

Kaushik Rajashekara

Received: 15 August 2022

Accepted: 14 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Fuel Cell Hybrid Electric Vehicles: A Review of Topologies and
Energy Management Strategies
Pengli Yu , Mince Li , Yujie Wang and Zonghai Chen *

Department of Automation, University of Science and Technology of China, Hefei 230027, China
* Correspondence: chenzh@ustc.edu.cn

Abstract: With the development of the global economy, the automobile industry is also developing
constantly. In recent years, due to the shortage of environmental energy and other problems, seeking
clean energy as the power source of vehicles to replace traditional fossil energy could be one of the
measures to reduce environmental pollution. Among them, fuel cell hybrid electric vehicles (FCHEVs)
have been widely studied by researchers for their advantages of high energy efficiency, environmental
protection, and long driving range. This paper first introduces the topology of common FCHEVs and
then classifies and introduces the latest energy management strategies (EMSs) for FCHEVs. Finally,
the future trends of EMSs for FCHEVs are discussed. This paper can be useful in helping researchers
better understand the recent research progress of EMSs for FCHEVs.
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1. Introduction

Currently, energy shortages and ecological protection are gaining widespread attention
in various countries, and the massive use of fossil fuels is further worsening environmental
problems. Among various energy sources and technologies to replace fossil fuels, hydro-
gen energy and fuel cells are considered promising solutions to achieve zero-pollution
emissions [1]. The automobile industry is an important industry in many countries, and
automobiles are also a necessity in people’s daily lives. At present, traditional fuel vehicles
still occupy a large share of the market, which will produce many air pollutants and green-
house gases in the driving process. Replacing fossil fuels as power sources for vehicles
with clean energy sources such as hydrogen and electricity can greatly reduce pollutant
and greenhouse gas emissions [2].

The fuel cells discussed in this paper are proton exchange membrane fuel cells (PEM-
FCs), which use hydrogen energy as the energy source to generate electricity. The PEMFC
directly converts the chemical energy contained in hydrogen into electricity, heat, and
water [3]. The fuel cell suffers from a slow dynamic response [4] and is difficult to adapt
to complex driving conditions [5]. The chemical reaction of the hydrogen in the fuel cell
which supplies electrical energy is often smaller than the rate of change of the load. At
the same time, rapid acceleration and deceleration and frequent start-stop operations dur-
ing driving will affect the durability of the fuel cell. Based on these characteristics, fuel
cells are often used in hybrid energy storage systems with other energy sources, such
as batteries and ultracapacitors, for power applications [6,7]. Additionally, fuel cells are
widely used in hybrid power systems with other energy sources. It is useful to reduce
the consumption of hydrogen, reduce the size of fuel cells and increase the economy of
hybrid power systems [8,9]. Fuel cell-based hybrid systems are widely used not only in
fuel cell hybrid vehicles but also in other transportation equipment, such as unmanned
aerial vehicles (UAVs) and trams [10]. This shows that hydrogen energy is playing an
increasingly important role in the transportation industry.

Fuel cell hybrid vehicles usually use fuel cells as the main power source and are
equipped with batteries or ultracapacitors as auxiliary energy sources. The working
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conditions of automobiles driving on the road are very complex. They often face various
emergencies, and the required power demand will also have large fluctuations and sudden
changes. However, if only fuel cells are used as the energy source, the output of large
fluctuations in power can reduce the life of the fuel cell [11]. Therefore, the role of the
auxiliary energy source is necessary. Batteries and ultracapacitors can play good roles
in auxiliary energy sources. Batteries can recover excess energy and provide power to
the system simultaneously with fuel cells when the load demand power is high. The
ultracapacitor has the characteristics of a fast dynamic response, fast energy recovery, and
high specific power, which can play the role of a timely response in the face of rapid changes
in load demand [12]. At present, there are three main system structures of fuel cell hybrid
vehicles. The first type is a hybrid system composed of fuel cells and batteries. The second
is a hybrid system composed of fuel cells and ultracapacitors. The final type is a hybrid
system composed of fuel cells, batteries, and ultracapacitors. The power system structure
has been studied and analyzed for different types of fuel cell hybrid vehicles [13].

EMSs play a significant role in the performance and efficiency of fuel cell hybrid
vehicles [14]. Its main objective is distributing power between different energy sources
while achieving two goals: first, reducing hydrogen consumption or minimizing equivalent
energy consumption [15]; and second, extending fuel cell life, which also means increasing
the economy of the hybrid system [16]. A large number of energy management strategies
are focused on these two optimization goals. The first type of EMSs is the rule-based
method. This usually requires obtaining the power map of the fuel cell to obtain the
highest efficiency operating point. It can also adjust the power distribution of the fuel cell
and the energy storage system (battery or ultracapacitor), according to the power system
state. However, it has many disadvantages, such as the parameters that are affected by
the test operating conditions, lacking adaptability to different operating conditions, and
the control results are not optimal. Optimization-based energy management strategies are
some of the most studied types and can be divided into two categories: online optimization
strategies; and offline optimization strategies. Among them, the real-time optimal energy
management strategy based on model predictive control (MPC) has been widely discussed
in the past two years. The third category are the learning-based energy management
strategies. Its basic idea is to use large data sets of real-time and historical information to
train the parameters of the strategy to obtain optimal control [17]. An energy management
strategy based on intelligent vehicle interconnection technology has also been recently
proposed by researchers and is discussed in this paper. The classification of common
energy management strategies for fuel cell hybrids is shown in Figure 1. Regardless of
the type of energy management strategy, the core of the optimization is represented by
two aspects: optimizing energy consumption; and extending the life of fuel cells and other
components [18].

This paper focuses on the following aspects. The first is to summarize the topologies
commonly used in fuel cell hybrid vehicles. The fuel cell can form a hybrid power system
with batteries or ultracapacitors, or with both batteries and ultracapacitors. These three
types of hybrid power systems are commonly used in FCHEVs. Then, the latest energy
management strategies for fuel cell hybrid vehicles are classified and summarized. The pur-
pose of this paper is to provide a reference and help researchers study energy management
strategies for fuel cell hybrid vehicles.

The rest of this paper is arranged as follows: The Section 2 gives the topology classifi-
cation of fuel cell hybrid vehicle systems. Then, the Section 3 summarizes and concludes
the energy management strategies. The Section 4 gives the conclusion and suggestions.
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Figure 1. Classification of common energy management strategies.

2. Typical Topologies of FCHEVs

Fuel cells are often combined with other auxiliary energy sources to form a hybrid
system to supply energy to hybrid electric vehicles. These auxiliary power sources are
batteries, ultracapacitors (UCs), superconducting magnetic energy storage (SMES), solar
photovoltaics (SPVs), and flywheels. The most commonly used auxiliary energy sources
are batteries and ultracapacitors [19]. Batteries are easy to install, low maintenance, and low
cost. Therefore, fuel cell/battery hybrid electric vehicles are widely used in production and
are the most common topology. An ultracapacitor is a storage unit to enhance the dynamic
response. It can be used to quickly provide load or recover energy when the load fluctuates
rapidly [20]. Compared with batteries and ultracapacitors, the application of other auxiliary
energy storage elements is not as extensive [21]. A SMES is an energy storage device with
high power output and low energy density. The working conditions required by SMES
are relatively severe. Due to the consideration of vehicle cost, the application in fuel cell
hybrid vehicles is also relatively rare. SPV is a sustainable, nonpolluting power generation
device, but its energy generation depends on sunlight irradiation with large uncertainty.
Therefore, it is not a very ideal auxiliary energy for automobiles. When torque is applied to
the flywheel, the flywheel will store energy in the form of mechanical energy. When the
system requires greater power, the flywheel can release the mechanical energy and convert
it into electrical energy to supply energy to the system. It requires high security and is often
used in power grid systems.

Commonly, there are five topological classifications of FCHEVs: fully FC; FC + battery
hybridization; FC + UC hybridization; FC + battery + UC hybridization; and FC + other
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hybridization. The advantages and disadvantages of common FCHEVs’ topologies are
listed in Table 1.

Table 1. Summary of common FCHEVs’ topologies.

Topological Classifications Main Advantages Main Disadvantages

Fully FCEV
• Simple structure
• Easy to implement control strategies • Unable to recover energy

FC + Battery hybridization • High energy density(battery)
• Ability to recover energy • Slow dynamic response

FC + UC hybridization • Fast dynamic response
• Ability to recover energy

• UC is more expensive than battery
• Low energy density(UC)

FC + battery + UC hybridization
• High energy density(battery)
• Fast dynamic response(UC)
• Ability to recover energy

• Control strategies are complex and
difficult to implement

2.1. Fully FCEV

Fuel cell electric vehicles only use fuel cells to power the transmission system, with
no auxiliary energy source. This topology is simple, as seen in Figure 2, and consists only
of a fuel cell stack, DC/DC converter, inverter, and electric motor. Because of its simple
structure, it has the characteristics of being easy to control and realize. Commonly used
applications are mainly in low-speed vehicles, such as forklifts, buses, aviation vehicles,
trams, and marine vehicles [22].

Figure 2. Full FCEV topology.

2.2. FC + Battery Hybridization

The hybrid power system composed of fuel cells and batteries is the most common
topology. Batteries have the advantages of high energy density, low maintenance and low
cost. The average life cycle of battery is 4–6 years. Therefore, this type of hybridization is
widely used in production and are the most common topology [23]. There are two common
topologies of FC + battery hybridization. The first is the battery directly connected to the
DC bus. In addition, the other is the battery connected to the DC bus after the DC/DC
converter, as shown in Figure 3. In this system, fuel cells are used as the main power source
to provide most of the power for the load. This system has the advantages of recovering
braking energy. However, its dynamic response is slower than FC + UC hybridization.
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Figure 3. Topologies of FC + battery: (a) batteries disconnected to the DC/DC converter; (b) batteries
connected to the DC/DC converter.

2.3. FC + UC Hybridization

Compared with the disadvantages of batteries, such as low energy density, large size,
and small instantaneous charge and discharge current, ultracapacitors have the advantages
of fast charge and discharge, and of being able to be used more times. Additionally, the
average life cycle of UC is 12–20 years [24]. According to whether the ultracapacitor is
connected to the DC bus through a DC/DC converter, the hybrid system can also be divided
into two types, as shown in Figure 4. Because the voltage fluctuation of the ultracapacitor
is too large, a fully active topology, as shown in Figure 4b, is generally adopted. This
system has the advantages of more efficient power recovery and better dynamic response
to instantaneous high-power demand. It also has the disadvantages of high economic cost
and low energy density; therefore, it is not as widely used as hybrid power systems with
fuel cells and batteries.

Figure 4. Cont.
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Figure 4. Topologies of FC + UC: (a) UC disconnected to the DC/DC converter; (b) UC connected to
the DC/DC converter.

2.4. FC + Battery + UC Hybridization

The topology of the fuel cell + battery + UC hybrid power system is shown in Figure 5.
The hybrid system still uses fuel cells as the main energy source to provide the average
power demand of the load. The characteristics of batteries and ultracapacitors are con-
sidered comprehensively so that they can work in different states. Ultracapacitors have
the characteristics that can charge and discharge rapidly with high current but have small
energy storage. Ultracapacitors can be used to provide instantaneous power or energy
recovery when the power required by the load has large sudden changes. However, due to
the complex structure of the hybrid system and the strong coupling between the power
sources, the control strategy of this system is complicated.

Figure 5. Topologies of FC + battery + UC: (a) battery disconnected to the DC/DC converter; (b)
battery connected to the DC/DC converter.
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2.5. FC + Other Hybridization

Hybrid power systems composed of fuel cells and other auxiliary energy sources are
still applied in a small range in the field of hybrid vehicles. Flywheels can replace batteries
as auxiliary energy sources. The energy stored in the flywheel is high-speed mechanical
energy, which is converted into electrical energy when the motor needs power. However,
because flywheel operation requires a high level of security, it is not widely used. Similarly,
SMES is not used on a large scale due to its high cost. SPVs are also not widely used
because of their dependence on solar energy and the large uncertainty of the energy supply.
This paper mainly focuses on hybrid power systems composed of fuel cells, batteries, and
ultracapacitors, and does not elaborate too much on other auxiliary energy sources.

3. Energy Management Strategies

To improve the performance of fuel cell hybrids, designing and developing efficient
energy management strategies is an urgent need for current automotive manufacturers.
Mainstream energy management strategies are currently used to improve the performance
of hybrid vehicles from both the energy consumption perspective and the durability of
the components. From the perspective of energy consumption, the main work is to re-
duce hydrogen consumption. From the perspective of improving component durability, it
focuses on preventing the degradation of fuel cells, batteries, and ultracapacitors. Main-
stream energy management strategies can be divided into rule-based energy management
strategies, optimization-based energy management strategies, and learning-based energy
management strategies. In recent years, energy management strategies based on intelligent
connected vehicle technology have also received extensive attention from researchers. The
advantages and disadvantages of common EMS are listed in Table 2.

Table 2. EMS summary.

EMS Type Main Advantages Main Disadvantages

Rule-based strategies • Simple to realize
• Good adaptability

• Deviate from the optimal solution
• Less effective in reducing hydrogen

consumption

Optimization-based strategies
(offline)

• The optimal solution can be
obtained to provide reference for
other strategies

• The amount of calculation is large
and cannot be applied online

Optimization-based strategies
(online)

• Good effective in reducing
hydrogen consumption

• Accurate estimation on energy
source status

• Complex mathematical operations
• High computing power

requirements

Learning-based strategies
• Close to the optimal solution
• Suitable for multi-objective

optimization problems

• Requires a large amount of real data
to train

• Large amount of calculation

EMS based on intelligent vehicle
interconnection technology

• High accuracy of speed prediction
• High Accuracy in Driving Pattern

Recognition

• Difficulty in obtaining real-time
road and surrounding environment
information

3.1. Rule-Based Energy Management Strategies

Rule-based energy management strategies have the advantage of facilitating inte-
gration in embedded controllers, which means that they can be more widely used in
engineering [25]. It has also been shown that sometimes simple rule-based controllers can
provide good control effects. For example, they can suppress the fuel cell stack and battery
degradation to minimize the cost [26,27]. They and can also play useful roles in reducing
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hydrogen consumption [28,29]. Researchers have conducted many studies on the effect of
different rule-based energy management strategies on the fuel economy of FCHEVs [30].

In recent years, researchers have combined rule-based methods with other methods
to form energy management strategies for FCHEVs [31]. Farrokhifar et al. [32] proposed
a rule-based online multilevel energy management system, which divided the vehicle
operation state into five states and the fuel cell operation mode into six. Then, different
energy management strategies were adopted according to different vehicle operation states,
which had a good control effect. Liu et al. [33] first used the Pontryagin minimum principle
to derive the optimal fuel cell power control sequence and the charging trajectory state of
the lithium-ion battery pack during driving. Then, they used repeated incremental pruning
to produce an error reduction algorithm. It can be used to learn and classify the underlying
rules to obtain an energy management strategy. This EMS can reduce energy consumption
and improve the economy. Wang et al. [10] proposed finite state machine strategies with
nine and nineteen states for energy management for the FC+B and FC+B+UC systems,
respectively. Li et al. [15] proposed a state machine strategy based on droop control,
which has shown good results in reducing hydrogen consumption. Rule-based energy
management strategies are easy to understand; however, these approaches do not always
lead to optimal goals [34].

Geng et al. [35] proposed an optimal on/off fuzzy power following an energy man-
agement strategy by combining various algorithms. The experimental results showed that
the strategy ensured the dynamic performance of the fuel cell vehicle. It also obtained
a good cruising range. Badji et al. [36] proposed a filtering-type strategy to decompose
the load power into high-frequency power and low-frequency power. The low-frequency
power was provided by the fuel cell, and the high-frequency power was provided by the
ultracapacitor. Decomposing the load power into high-frequency power and low-frequency
power enabled better output power distribution among energy sources.

Many researchers also use genetic algorithms to optimize rule-based energy manage-
ment strategies. Genetic algorithms are often used for optimization and search problems.
In the process of evolution, fitness is used to evaluate the objective function, which has a
prominent advantage in the iterative optimization of energy management strategies [37]. Fu
et al. [20] proposed a fuzzy logic-controlled energy management strategy. It used a genetic
algorithm to optimize the fuzzy controller under multiple constraints. Multiple constraints
considered fuel cell power fluctuations and hydrogen consumption. The simulation and
experimental results obtained show that it can limit fuel cell power fluctuations to within
300 W/s. Limiting fuel cell power fluctuations can prolong fuel cell life. Yue et al. [38]
proposed online fuzzy rules and used a genetic algorithm to optimize the fuzzy controller
under different degradation states. This method can also effectively reduce hydrogen
consumption and make a FC lifetime improvement of 56%. Genetic algorithms have good
convergence and reach good results in some application scenarios. However, Liu et al. [39]
found that the application of the teaching learning-based optimization method gives better
results to the optimization of the rule parameters. Additionally, this optimization algorithm
converges faster compared to the genetic algorithm.

Dynamic programming methods are one of the most effective strategies for solving
global optimization problems. Some researchers have combined dynamic programming
methods with rule-based methods to propose new energy management strategies. He
et al. [40] applied a dynamic programming approach to improve the rule-based energy
management strategy. Du et al. [41] proposed a method to combine dynamic programming
with the rule-based energy management strategy. They added a limit on the rate of change
of fuel cells’ output power to the rule. It can prevent sudden changes of the power output
of fuel cells and improve the durability of the fuel cells. Liu et al. [42] analyzed the optimal
control method using dynamic programming and extracted the three-segment control rule
from it. A functional relationship is established between the power splitting parameters
and load statistics. The proposed strategy has a stronger capability of battery protection
and energy savings under unknown load patterns. Dynamic programming methods can
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obtain globally optimal solutions; however, this method is computationally intensive. It is
difficult to implement real-time applications.

From the previous paper, it is clear that a rule-based energy management strategy can
no longer meet the needs of increasingly complex fuel cell hybrid systems. Researchers used
neural networks or genetic algorithms to optimize parameters for fuzzy rule control [21].
Additionally, the dynamic programming approach was used to obtain power allocation
schemes to improve the rule-based strategy [41]. In this way, researchers can form a better
rule-based energy management strategy.

3.2. Optimization-Based Energy Management Strategy

Optimization-based energy management strategies are one of the most studied types
of FCHEVs. Optimization-based energy management strategies can be divided into two
categories: online optimization strategies; and offline optimization strategies. The opti-
mization objectives selected by these strategies can often be quantified by a cost function
representing fuel economy and component durability. Common optimization strategies
include the dynamic programming algorithm, genetic algorithm, equivalent consump-
tion minimum strategy, the Pontryagin minimum principle, and model predictive control,
etc. To adapt to complex driving conditions, the real-time performance of the energy
management strategy is also an indicator that must be considered.

3.2.1. Offline Optimization-Based EMS

The most common optimization-based offline energy management strategies are the
dynamic programming method, and the Pontryagin minimum principle. They both rely on
pre-knowledge of the operating conditions, are computationally intensive to solve, and can
only be used offline.

Dynamic programming algorithms are mainly applied to solve optimal solutions and
are also often used in energy management strategies for FCHEVs to find the optimal energy
allocation method. Chen et al. [43] used dynamic programming to optimize the fuel cell
current to save hydrogen consumption and prolong the life of the fuel cell. Zhou et al. [44]
used a dynamic programming approach to derive the optimal power allocation strategy
for different degradation stages of fuel cells. They found that this strategy resulted in an
average reduction in operating cost of 14.17% and an average increase in fuel cell lifetime
of 8.48%, compared to the rule-based strategy. However, this approach only considered the
minimization of economic costs; it did not achieve the best results in terms of the reduction
of hydrogen consumption in fuel cells.

The Pontryagin minimum principle exists in the form of a set of optimization con-
ditions that constrain the state variables to a finite boundary. The optimization results
obtained are close to dynamic programming algorithms [45,46]. Song et al. [47] developed
a degradation model for fuel cells and lithium batteries. They added a fuel cell power
change limiting factor to the Pontryagin minimum principle to suppress sudden changes in
fuel cell power. They used this method to prolong the lives of fuel cells. Huangfu et al. [48]
proposed an improved energy management strategy based on the Pontryagin minimum
principle. They limited the fluctuation of fuel cell power and controlled the state of charge
(SOC) of the lithium battery within a certain range (0.4–0.8). This strategy reduced the FC
operating stress by 38.3% compared with the finite state machine strategy. The effectiveness
of the strategy was verified by hardware-in-the-loop tests. Unlike simulation experiments
that are performed only in the software, hardware-in-the-loop tests are more reflective of
the confidence of the control strategy.

Although offline optimization strategies can obtain global optimal solutions in most
cases, designing online energy management strategies that can be applied in real time is a
hot topic for researchers.
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3.2.2. Online Optimization-Based EMS

The adaptive control method has been widely studied by researchers in recent years.
The adaptive control method can adjust the control strategy with changes in external
parameters, such as changes in driver behavior, changes in vehicle driving conditions,
and changes in the degradation state of hybrid power systems [49]. Adaptive algorithms
have been widely studied by researchers for reducing fuel cell hydrogen consumption
and improving fuel cell durability. Combining adaptive methods with other methods into
hybrid energy management techniques has also been investigated [50].

In terms of improving fuel cell life, Yue et al. [51] proposed an online health man-
agement strategy for FCHEVs based on adaptive prediction. By monitoring the health
status of the fuel cell online, they proposed a prediction-based health management state to
improve the durability of the fuel cell. The strategy reached the best performance with the
fuel cell durability improved by 95.4%. compared with EMS without prognostics. Zhou
et al. [52] divided the driving modes into three by a Markov pattern recognizer. Then, they
obtained the ideal control strategy by a multimode predictive controller. Compared to the
single-mode benchmark strategy, the proposed multimode strategy can significantly reduce
over 87.00% fuel cell power transients. Li et al. [53] proposed an online adaptive equivalent
consumption minimization strategy, as well as a method for the online estimation of fuel
cell and battery health states. Then, they designed an adaptive energy management strategy.
It can adjust the equivalence factor and fuel cell dynamic current change rate with the
change in their health status. This strategy is verified to serve the purpose of reducing
hydrogen consumption and inhibiting fuel cell and battery degradation. There are many
advantages of adaptive strategies, however, sometimes the simple fuzzy processing of
information by the adaptive strategy will lead to a reduction in the control accuracy of the
system.

Adaptive energy management strategies are often associated with the Pontryagin
minimum principle [54]. Fu et al. [55] proposed a hierarchical energy management strategy.
The strategy incorporated adaptive regulation and optimization based on the Pontryagin
minimum principle. Li et al. [56] proposed an adaptive environmental control system based
on the Pontryagin minimum principle. The system used a particle swarm optimization
algorithm for online identification of drive modes. The simulation on a combined driving
cycle showed good results in reducing fuel cell hydrogen consumption. Iqbal et al. [57]
proposed an adaptive energy management strategy that minimizes the integrated cost
instantaneously and improves the economy of FCHEVs.

The idea of model predictive control is to transform the global optimization problem
into a series of local optimization problems. It is good at handling optimization problems
with multiple constraints, especially for systems with many internal coupling relationships.
Additionally, it can predict future changes by passing current values, dynamic states, and
process variables, etc. Its basic principle is shown in Figure 6.

Figure 6. Basic principles of model predictive control.

The fuel cell hybrid vehicle system is a complex system with strong internal coupling
relationships, which is suitable for its control by model predictive control. Additionally, the
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model predictive control-based approach is suitable for application in real-time application
scenarios [58]. Ma et al. [59] proposed a multi-objective predictive energy management
strategy with model predictive control. It can avoid frequent fuel cell start-stop. Addition-
ally, it can limit the fluctuation of fuel cell output power during rapid load changes and
suppresses fuel cell degradation. Yazdani et al. [60] investigated the effect of the prediction
horizon length of model predictive control on controller performance. They found that
model predictive control was comparable to dynamic programming methods in its ability
to reduce hydrogen consumption when prediction horizon lengths greater than seven
seconds. The multi-objective function designed by Anbarasu et al. [61] considered the
factors of hydrogen consumption, rate of change of fuel cell power, battery power, and
fuel cell efficiency, etc., to dynamically adjust each component’s weight online. This model
predictive control strategy plays a good role in extending the service life of each component.
Fu et al. [62] used neural networks to predict the power demand of hybrid vehicles in a
short period of time. Then, the local optimization problem was solved for each prediction
domain. This model predictive control strategy achieved good results in saving hydrogen
consumption in both World Light Vehicle Test Cycle (WLTC) conditions as well as China
light-duty vehicle test cycle (CLTC) conditions. Zhou et al. [63] used the Markov method
for speed prediction of vehicles. They designed a model predictive control-based energy
management strategy based on the predicted travel time and the predicted speed. The
simulation showed this strategy has good performance in reducing hydrogen consump-
tion. Although the energy management strategy based on model predictive control has
achieved good results, its prediction accuracy is affected by various parameters, such as
road conditions, dynamic traffic conditions, vehicle passing speed, and predicted speed. To
improve the prediction accuracy, additional information input is often needed, which leads
to an increase in computational cost and deteriorates the performance of real-time control.

Yuan et al. [64] proposed a globally optimal energy management strategy that first pre-
dicts the long-term average speed for each future trip. Then, they used a model averaging
method for short-term speed prediction. The method was validated using the collected real
driving conditions. This energy management strategy can reduce hydrogen consumption
and the number of fuel cell starts and stops. However, this method is computationally
intensive and requires accurate road information.

The extremum seeking method is mainly applied to improve fuel cell durability and
to make the operating point of a controlled PEMFC stack system in its maximum efficiency
region [65]. Zhou et al. [66] designed an extremum seeking controller to save hydrogen
consumption by maintaining the operating point of the fuel cell system in a high-efficiency
region. The experimental comparison results show that the performance of the proposed
extremum seeking controller is close to the offline benchmark dynamic programming.
However, the extremum seeking method has the disadvantage that the given results are
often not optimal solutions.

Zhou et al. [67] used a probabilistic support vector machine to classify the online
driving conditions. They calculated the final parameters of the online fuzzy controller
using a Dempster-Shafer evidence theory approach. This strategy can achieve stable
operation of the fuel cell hybrid system. Jia et al. [68] proposed an energy management
strategy to minimize the operating cost. It also reduces the energy management problem of
a fuel cell vehicle to a mixed integer nonlinear optimization problem. The optimal current
output of each energy source was obtained by solving this optimization problem online.
The simulation results show its good effect on reducing the operating cost. Other methods,
such as the game theory approach, believe that in actual vehicle driving it is impossible
to make a completely accurate prediction of future road conditions. It is better to use the
controller and future driving conditions as the two sides of the game, through game theory,
to achieve energy allocation between hybrid systems [69,70]. However, in the presence of
multiple information inputs, the game theory-based strategy does not necessarily lead to
better control results compared to other strategies.
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In addition to hydrogen consumption and system durability, the robustness of energy
management strategies under uncertain conditions is also a key performance criterion.
Koubaa et al. [71] proposed an energy management strategy based on robust optimization
for the uncertain events that may occur during the operation of the fuel cell hybrid electric
vehicle system. This algorithm adds uncertainty to the cost function and constraint set.
It protects system performance from feasibility and optimality issues. Wu et al. [72]
proposed a robust online energy management strategy, considering that the conventional
optimization-based energy management strategy ignores the uncertainty of driving cycles
due to various chance accidents. This strategy improves the robustness of the system. It
also has good performance in fuel economy and load change control of the fuel cell. The
robust optimization-based energy management strategy enhances the robustness of the
system. However, the enhanced robustness comes at the cost of weakening some of the
control effects.

3.3. Learning-Based EMS

Most of the current energy management strategy methods are based on prediction
algorithms or predefined rules. However, they have poor adaptability to real-time driving
conditions and they cannot provide the real optimal solution for real-time driving condi-
tions. The learning-based energy management strategy can make up for these deficiencies.
It also has the advantages of being model-free and being able to learn the optimal strategy
autonomously in real time [73]. The basic idea of this method is that according to the
current state St and reward Rt, the reinforcement learning controller gives the action at, and
after controlling the target, it obtains the state St+1 and reward Rt+1 for the next moment
and adjusts the action at+1 for the next moment according to the size of the reward to
continuously optimize the control effect. The basic principle of the method is shown in
Figure 7. Additionally, its computation time is greatly reduced compared to the dynamic
programming algorithm [74].

Figure 7. Basic principles of RL controller.

As a reinforcement learning method, q-learning has been extensively studied by
researchers on the energy management strategy of FCHEVs. The basic idea is to initialize
a q-table and continuously reward or punish the learned actions through the subsequent
learning process. To obtain a perfect q-table, this method helps to make the best decision.
Tao et al. [75] proposed a fuzzy energy management strategy based on improved q-learning
and a genetic algorithm for the power distribution between fuel cells and ultracapacitors
in FCHEVs. This method does not need to know the driving mode in advance. After
comparison with the adaptive strategy, it is found that this method reduces the current
fluctuation of the fuel cell and reduces the hydrogen consumption. For FCHEVs consisting
of fuel cells and lithium batteries, Guo et al. [76] used a q-learning approach to learn an
energy management strategy. It can be used to minimize hydrogen consumption and
extend the battery lifetime. Lin et al. [77] proposed an online correction predictive energy
management strategy. It used q-learning to optimize the parameters of the neural network.
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Then, they predicted the velocity through the neural network. It served to reduce hydrogen
consumption. Tang et al. [78] applied a deep Q-Network approach to incorporate the
degradation of the fuel cell hybrid power system energy source into the objective function.
Simulation results showed that the strategy can effectively improve the FCS lifetime with a
slight increase in fuel economy. It achieved 91.04% of the fuel economy based on the DP
benchmark in combined driving cycle. Zhang et al. [79] optimized the energy management
strategy through a q-learning approach, which can effectively improve the energy efficiency
of the system and slow down the degradation of the fuel cell. Q-learning also has these
disadvantages; it needs a Q table. In the case of many states, the Q table will be very large,
which consumes a lot of time and space to find and store.

Sun et al. [80] proposed an equivalent consumption minimization strategy based on
reinforcement learning. It used experimental data for reinforcement learning to obtain a
scheme for power allocation between the fuel cell, the cell, and the ultracapacitor. The
results showed that it allowed the fuel cells to maintain high efficiency, as well as low
hydrogen consumption. Fu et al. [81] used a similar idea but adopted a constraint on the
rapid fluctuation of fuel cell power to protect the fuel cell while improving the hydrogen
economy. Zhou et al. [82] proposed a long-term energy management strategy (LTEMS)
dedicated to the optimal distribution of power among the energy sources, while ensuring
the health of the hybrid system. This strategy obtained the state of the charge boundary
of the lithium battery due to decay by reinforcement learning. It achieved the control of
the fuel cell current based on the obtained state of the charge boundary. Compared with
thermostat EMS and power following EMS, LTEMS can reduce fuel cell voltage degradation
by 66.7% and 13.6%, respectively. Traditional reinforcement learning has the disadvantages
of high computational cost and long computation time. Li et al. [83] proposed a speedy
reinforcement learning method that can approach the optimal result with a fast convergence
rate. It can overcome these disadvantages, however, it requires a trained and initialized
framework. The simulation results of driving conditions show that it ensures good fuel
economy and is suitable for real-time applications. Kim et al. [84] considered the prediction
of short-time speed and power output without knowledge of future driving cycles as one
of the worthy research directions. However, most of the reinforcement learning algorithms
studied have the shortcomings of overestimating battery SOC and inappropriate ways of
limiting battery SOC. These shortcomings lead to poor control performance.

Neural network methods have received extensive attention from researchers in many
fields. Neural networks can be used to solve optimal problems for complex multi-variable
problems due to their unique nonlinear adaptive information processing capabilities [85]. Li
et al. [86] proposed a neural network-based equivalence factor predictor. It can predict the
equivalence factor in real time considering various operating conditions and vehicle states.
They designed a novel equivalence consumption minimization strategy. The strategy was
found to lead to a significant reduction in computation time. Min et al. [87] used a genetic
algorithm to train the neural network specifically. The trained neural network can make the
fuel cell avoid specific output to avoid unnecessary start and stop under the condition of
rapid fluctuation of load power. This energy management strategy effectively protects the
fuel cell. Zhang et al. [88] utilized a long- and short-term memory network to predict the
short-term future speed of a fuel cell hybrid vehicle. The specific method is to use the image
captured by the camera as the information of the environment. Additionally, the historical
speed of the vehicle operation is used as the motion information. The short-term future
speed of the vehicle is predicted by these two types of information through the neural
network. This method effectively improves the prediction accuracy and achieves lower
hydrogen consumption. However, the effect of neural network methods largely depends
on the amount of data, as well as the depth and complexity of the network. Sometimes, it
takes weeks to successfully train a neural network.
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3.4. EMS Based on Intelligent Vehicle Interconnection Technology

With the rapid development of vehicle networking, vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) information interactions have become possible with the help
of global positioning systems and intelligent transportation systems. The basic schematic is
shown in Figure 8. With the input of external environmental information, these data can
be used to develop advanced energy management. It also can improve vehicle operating
characteristics and provide strong support for energy management strategies for FCHEVs.
Recently, researchers have used additional environmental information input to improve
the accuracy of speed prediction of FCHEVs. It also can plan the speed more rationally and
obtain a better energy management strategy.

Figure 8. Schematic of the intelligent vehicle interconnection technology.

Liu et al. [89] investigated the problem of FCHEVs through multiple signalized inter-
sections and proposed a bi-level optimization method. The nonlinear traffic light waiting
time was transformed into a time-varying linear state constraint on the upper level. Addi-
tionally, the optimal future speed plan was derived, while the energy management problem
was optimized at the lower level. Experimental results showed that obtaining real-time
information of the traffic system can lead to better speed planning and energy management
strategies for vehicles. Nie et al. [90] used future driving conditions and signal status
information to derive the real-time safety optimal speed. They also designed an energy
management strategy based on MPC (considering both hydrogen consumption and hybrid
system durability) to achieve power distribution among hybrid power sources. The same
can be done by considering information about future travel conditions and the real-time
status of the vehicles in front and behind to plan the speed sequence [91]. Zhu et al. [92]
proposed an optimal following distance algorithm considering driving safety and traffic
throughput based on vehicle-to-vehicle and vehicle-to-infrastructure information. Based on
this, an energy management strategy based on the minimization of equivalent consumption
is proposed.

Taking traffic information into account in speed planning is a future trend in the
development of energy management strategies, but achieving V2V, V2I, and vehicle-to-
everything (V2X) information interaction, is a problem that needs to be solved.

4. Conclusions and Suggestions

This paper summarizes and concludes various energy management strategies at the
current stage and analyses the advantages and disadvantages, as well as the main roles
of various energy management strategies. A brief introduction to the latest energy man-
agement strategies based on intelligent vehicle interconnection technology is provided.
In the complex urban traffic environment, there are a variety of unexpected situations,
such as vehicle collisions, road gradients, dynamic changes in road coefficients, and traffic
congestion that occur at signalized intersections. If V2V and V2I interconnection technolo-
gies can be utilized, information about the current driving status of the vehicle can be
more accurately predicted. This leads to better optimization of the energy distribution of
the hybrid powertrain. Although researchers have conducted some research on fuel cell
hybrid power system structures and their energy management strategies, there is still much
research work to be carried out. The following is a discussion of future trends in energy
management strategies for FCHEVs:

• To achieve a synergistic optimization of hydrogen consumption as well as durability
of hybrid powertrain components, using a combination of multiple algorithms for
energy management strategies, will be helpful. The multi-algorithm combination of
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energy management strategies has outstanding advantages over single-method energy
management strategies in terms of real-time performance and level of optimization.
For example, genetic algorithms are used to optimize rule-based energy management
policies. The resulting new energy management strategy has the advantage of real-
time and optimization. Researchers extensively combine various algorithms to develop
better energy management strategies, which is a worthy research direction;

• Current V2V, V2I, and vehicle-to-everything (V2X) interconnected technologies, are
developing rapidly. V2V communication enables vehicles to wirelessly exchange
information about their speed, position, and heading, making vehicle speed predic-
tions more accurate. At the same time, the current road information can be obtained
in real time through V2I communication to make a more accurate judgment on the
driving state and driving mode recognition of the vehicle. With the additional input of
environmental information, the energy management strategy provides better real-time
and optimization performance for FCHEVs;

• An energy management strategy is the core issue of a fuel cell hybrid power system.
It is meaningful to ensure the efficiency of the energy management strategy in the
whole life cycle scale of the system. Energy management strategies that can coordinate
changes in internal parameters of energy storage components, and external multiple
load scenarios in different use phases, will be an important direction. It is of great
importance in the future health and safety of power battery systems, as well as efficient
management aspects.

Author Contributions: Conceptualization, P.Y. and M.L.; methodology, Z.C.; validation, P.Y., M.L.,
Y.W. and Z.C.; formal analysis, P.Y. and M.L.; investigation, P.Y. and M.L.; resources, Z.C.; writing—
original draft preparation, P.Y. and M.L.; writing—review and editing, Z.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 91848111.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Luderer, G.; Madeddu, S.; Merfort, L.; Ueckerdt, F.; Pehl, M.; Pietzcker, R.; Rottoli, M.; Schreyer, F.; Bauer, N.; Baumstark, L.; et al.

Impact of declining renewable energy costs on electrification in low-emission scenarios (vol 7, pg 32, 2022). Nat. Energy 2022, 7,
380–381. [CrossRef]

2. Chang, X.Y.; Ma, T.; Wu, R. Impact of urban development on residents’ public transportation travel energy consumption in China:
An analysis of hydrogen fuel cell vehicles alternatives. Int. J. Hydrogen Energy 2019, 44, 16015–16027. [CrossRef]

3. Pan, R.; Yang, D.; Wang, Y.J.; Chen, Z.H. Performance degradation prediction of proton exchange membrane fuel cell using a
hybrid prognostic approach. Int. J. Hydrogen Energy 2020, 45, 30994–31008. [CrossRef]

4. Pan, R.; Yang, D.; Wang, Y.J.; Chen, Z.H. Health degradation assessment of proton exchange membrane fuel cell based on an
analytical equivalent circuit model. Energy 2020, 207, 118185. [CrossRef]

5. Wang, Y.; Wang, L.; Li, M.; Chen, Z. A review of key issues for control and management in battery and ultra-capacitor hybrid
energy storage systems. Etransportation 2020, 4, 100064. [CrossRef]

6. Wang, L.; Li, M.C.; Chen, Z.H. An Energy Management Strategy for Hybrid Energy Storage Systems coordinate with state of
thermal and power. Control Eng. Pract. 2022, 122, 105122. [CrossRef]

7. Wang, Y.J.; Sun, Z.D.; Li, X.Y.; Yang, X.Y.; Chen, Z.H. A comparative study of power allocation strategies used in fuel cell and
ultracapacitor hybrid systems. Energy 2019, 189, 116142. [CrossRef]

8. Wang, L.; Li, M.C.; Wang, Y.J.; Chen, Z.H. Energy Management Strategy and Optimal Sizing for Hybrid Energy Storage Systems
Using an Evolutionary Algorithm. IEEE Trans. Intell. Transp. Syst. 2021, 1–11. [CrossRef]

9. Mince, L.; Li, W.; Yujie, W.; Zonghai, C. Sizing Optimization and Energy Management Strategy for Hybrid Energy Storage System
Using Multiobjective Optimization and Random Forests. IEEE Trans. Power Electron. 2021, 36, 11421–11430. [CrossRef]

10. Wang, Y.J.; Sun, Z.D.; Chen, Z.H. Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based
on finite state machine. Appl. Energy 2019, 254, 113707. [CrossRef]

11. Zhang, H.T.; Li, X.G.; Liu, X.Z.; Yan, J.Y. Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through
strategic power management. Appl. Energy 2019, 241, 483–490. [CrossRef]

http://doi.org/10.1038/s41560-022-01000-1
http://doi.org/10.1016/j.ijhydene.2018.09.099
http://doi.org/10.1016/j.ijhydene.2020.08.082
http://doi.org/10.1016/j.energy.2020.118185
http://doi.org/10.1016/j.etran.2020.100064
http://doi.org/10.1016/j.conengprac.2022.105122
http://doi.org/10.1016/j.energy.2019.116142
http://doi.org/10.1109/TITS.2021.3126324
http://doi.org/10.1109/tpel.2021.3070393
http://doi.org/10.1016/j.apenergy.2019.113707
http://doi.org/10.1016/j.apenergy.2019.02.040


World Electr. Veh. J. 2022, 13, 172 16 of 19

12. Kasimalla, V.K.; Srinivasulu, N.G.; Velisala, V. A review on energy allocation of fuel cell/battery/ultracapacitor for hybrid electric
vehicles. Int. J. Energy Res. 2018, 42, 4263–4283. [CrossRef]

13. Alcazar-Garcia, D.; Martinez, J.L.R. Model-based design validation and optimization of drive systems in electric, hybrid, plug-in
hybrid and fuel cell vehicles. Energy 2022, 254, 123719. [CrossRef]

14. Sulaiman, N.; Hannan, M.A.; Mohamed, A.; Ker, P.J.; Majlan, E.H.; Daud, W.R.W. Optimization of energy management system for
fuel-cell hybrid electric vehicles: Issues and recommendations. Appl. Energy 2018, 228, 2061–2079. [CrossRef]

15. Li, Q.; Yang, H.Q.; Han, Y.; Li, M.; Chen, W.R. A state machine strategy based on droop control for an energy management system
of PEMFC-battery-supercapacitor hybrid tramway. Int. J. Hydrogen Energy 2016, 41, 16148–16159. [CrossRef]

16. He, H.; Jia, C.; Li, J. A new cost-minimizing power-allocating strategy for the hybrid electric bus with fuel cell/battery health-
aware control. Int. J. Hydrogen Energy 2022, 47, 22147–22164. [CrossRef]

17. Pisal, P.S.; Vidyarthi, D.A. An optimal control for power management in super capacitors/battery of electric vehicles using Deep
Neural Network. J. Power Sources 2022, 542, 231696. [CrossRef]

18. Li, S.Q.; He, H.W.; Zhao, P.F. Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system
perspective. Energy 2021, 230, 120890. [CrossRef]

19. Iqbal, M.; Becherif, M.; Ramadan, H.S.; Badji, A. Dual-layer approach for systematic sizing and online energy management of fuel
cell hybrid vehicles. Appl. Energy 2021, 300, 117345. [CrossRef]

20. Fu, Z.; Zhu, L.; Tao, F.; Si, P.; Sun, L. Optimization based energy management strategy for fuel cell/battery/ultracapacitor hybrid
vehicle considering fuel economy and fuel cell lifespan. Int. J. Hydrogen Energy 2020, 45, 8875–8886. [CrossRef]

21. Luo, Y.; Wu, Y.; Li, B.; Qu, J.; Feng, S.-P.; Chu, P.K. Optimization and cutting-edge design of fuel-cell hybrid electric vehicles. Int. J.
Energy Res. 2021, 45, 18392–18423. [CrossRef]

22. Das, H.S.; Tan, C.W.; Yatim, A.H.M. Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies.
Renew. Sustain. Energy Rev. 2017, 76, 268–291. [CrossRef]

23. Lu, X.; Qu, Y.; Wang, Y.; Qin, C.; Liu, G. A comprehensive review on hybrid power system for PEMFC-HEV: Issues and strategies.
Energy Convers. Manag. 2018, 171, 1273–1291. [CrossRef]

24. Zhou, W.; Yang, L.; Cai, Y.S.; Ying, T.X. Dynamic programming for new energy vehicles based on their work modes Part II: Fuel
cell electric vehicles. J. Power Sources 2018, 407, 92–104. [CrossRef]

25. Ghavidel, H.F.; Mousavi, S.M.G. Modeling analysis, control, and type-2 fuzzy energy management strategy of hybrid fuel
cell-battery-supercapacitor systems. J. Energy Storage 2022, 51, 104456. [CrossRef]

26. Wang, Y.; Advani, S.G.; Prasad, A.K. A comparison of rule-based and model predictive controller-based power management
strategies for fuel cell/battery hybrid vehicles considering degradation. Int. J. Hydrogen Energy 2020, 45, 33948–33956. [CrossRef]

27. Chuanlong, J.; Liang, Q.; Zhiqiang, Z.; Yan, Z. Research on Energy Management Strategy of Vehicle Fuel Cell-Battery Hybrid
Energy System Based on GT-SUIT/Simulink. J. Phys. Conf. Ser. 2021, 1885, 042067. [CrossRef]

28. Zheng, C.H.; Oh, C.E.; Park, Y.I.; Cha, S.W. Fuel economy evaluation of fuel cell hybrid vehicles based on equivalent fuel
consumption. Int. J. Hydrogen Energy 2012, 37, 1790–1796. [CrossRef]

29. Wang, Y.J.; Sun, Z.D.; Chen, Z.H. Development of energy management system based on a rule-based power distribution strategy
for hybrid power sources. Energy 2019, 175, 1055–1066. [CrossRef]

30. Yu, S.; Kai, H.; Xiaolong, L. Study on the fuel economy of fuel cell electric vehicle based on rule-based energy management
strategies. Int. J. Powertrains 2021, 10, 266–292. [CrossRef]

31. Li, H.; Ravey, A.; N’Diaye, A.; Djerdir, A. A novel equivalent consumption minimization strategy for hybrid electric vehicle
powered by fuel cell, battery and supercapacitor. J. Power Sources 2018, 395, 262–270. [CrossRef]

32. Farhadi Gharibeh, H.; Farrokhifar, M. Online Multi-Level Energy Management Strategy Based on Rule-Based and Optimization-
Based Approaches for Fuel Cell Hybrid Electric Vehicles. Appl. Sci. 2021, 11, 3849. [CrossRef]

33. Liu, Y.; Liu, J.; Qin, D.; Li, G.; Chen, Z.; Zhang, Y. Online energy management strategy of fuel cell hybrid electric vehicles based
on rule learning. J. Clean. Prod. 2020, 260, 121017. [CrossRef]

34. Alloui, H.; Khoucha, F.; Rizoug, N.; Benbouzid, M.; Kheloui, A. Comparative study between rule-based and frequency separation
energy management strategies within fuel-cell/battery electric vehicle. In Proceedings of the 2017 IEEE International Conference
on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS
Europe), Milan, Italy, 6–9 June 2017. [CrossRef]

35. Geng, C.; Jin, X.; Zhang, X. Simulation research on a novel control strategy for fuel cell extended-range vehicles. Int. J. Hydrogen
Energy 2017 2019, 44, 408–420. [CrossRef]

36. Badji, A.; Abdeslam, D.O.; Chabane, D.; Benamrouche, N. Real-time implementation of improved power frequency approach
based energy management of fuel cell electric vehicle considering storage limitations. Energy 2022, 249, 123743. [CrossRef]

37. Lu, X.Q.; Wu, Y.B.; Lian, J.; Zhang, Y.Y.; Chen, C.; Wang, P.S.; Meng, L.Z. Energy management of hybrid electric vehicles: A review
of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Convers. Manag. 2020, 205, 112474.
[CrossRef]

38. Yue, M.; Jemei, S.; Zerhouni, N. Health-Conscious Energy Management for Fuel Cell Hybrid Electric Vehicles Based on Prognostics-
Enabled Decision-Making. IEEE Trans. Veh. Technol. 2019, 68, 11483–11491. [CrossRef]

http://doi.org/10.1002/er.4166
http://doi.org/10.1016/j.energy.2022.123719
http://doi.org/10.1016/j.apenergy.2018.07.087
http://doi.org/10.1016/j.ijhydene.2016.04.254
http://doi.org/10.1016/j.ijhydene.2022.04.297
http://doi.org/10.1016/j.jpowsour.2022.231696
http://doi.org/10.1016/j.energy.2021.120890
http://doi.org/10.1016/j.apenergy.2021.117345
http://doi.org/10.1016/j.ijhydene.2020.01.017
http://doi.org/10.1002/er.7094
http://doi.org/10.1016/j.rser.2017.03.056
http://doi.org/10.1016/j.enconman.2018.06.065
http://doi.org/10.1016/j.jpowsour.2018.10.048
http://doi.org/10.1016/j.est.2022.104456
http://doi.org/10.1016/j.ijhydene.2020.09.030
http://doi.org/10.1088/1742-6596/1885/4/042067
http://doi.org/10.1016/j.ijhydene.2011.09.147
http://doi.org/10.1016/j.energy.2019.03.155
http://doi.org/10.1504/ijpt.2021.120331
http://doi.org/10.1016/j.jpowsour.2018.05.078
http://doi.org/10.3390/app11093849
http://doi.org/10.1016/j.jclepro.2020.121017
http://doi.org/10.1109/eeeic.2017.7977524
http://doi.org/10.1016/j.ijhydene.2018.04.038
http://doi.org/10.1016/j.energy.2022.123743
http://doi.org/10.1016/j.enconman.2020.112474
http://doi.org/10.1109/TVT.2019.2937130


World Electr. Veh. J. 2022, 13, 172 17 of 19

39. Liu, H.; Chen, J.; Wu, C.; Chen, H. Multi-objective optimization for energy management of fuel cell hybrid electric vehicles.
In Proceedings of the 2018 American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; American Control
Conference: Milwaukee, WI, USA, 2018.

40. He, H.; Wang, X.; Chen, J.; Wang, Y.-X. Regenerative Fuel Cell-Battery-Supercapacitor Hybrid Power System Modeling and
Improved Rule-Based Energy Management for Vehicle Application. J. Energy Eng. 2020, 146, 04020060. [CrossRef]

41. Du, C.; Huang, S.; Jiang, Y.; Wu, D.; Li, Y. Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles
Based on Dynamic Programming. Energies 2022, 15, 4325. [CrossRef]

42. Liu, C.; Wang, Y.; Wang, L.; Chen, Z. Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid
energy storage system using dynamic programming optimization. J. Power Sources 2019, 438, 227024. [CrossRef]

43. Zheng, C.; Ningyuan, G.; Qiang, Z.; Jiangwei, S.; Renxin, X. An Optimized Rule Based Energy Management Strategy for a Fuel
Cell/Battery Vehicle. In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 11–14
December 2017. [CrossRef]

44. Zhou, Y.; Ravey, A.; Pera, M.-C. Real-time cost-minimization power-allocating strategy via model predictive control for fuel cell
hybrid electric vehicles. Energy Convers. Manag. 2021, 229, 113721. [CrossRef]

45. Sun, X.; Zhou, Y.; Zhang, X.; Huang, L.; Lian, J. Real-time optimal EMS of adaptive charge sustenance for fuel cell hybrid buses
based on driving characteristics recognition. Energy Convers. Manag. 2022, 254, 115192. [CrossRef]

46. Sun, X.; Zhou, Y.; Huang, L.; Lian, J. A real-time PMP energy management strategy for fuel cell hybrid buses based on driving
segment feature recognition. Int. J. Hydrogen Energy 2021, 46, 39983–40000. [CrossRef]

47. Song, K.; Wang, X.; Li, F.; Sorrentino, M.; Zheng, B. Pontryagin’s minimum principle-based real-time energy management
strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability. Energy 2020, 205, 118064.
[CrossRef]

48. Huangfu, Y.; Li, P.; Pang, S.; Tian, C.; Quan, S.; Zhang, Y.; Wei, J. An Improved Energy Management Strategy for Fuel Cell Hybrid
Vehicles Based on Pontryagin’s Minimum Principle. IEEE Trans. Ind. Appl. 2022, 58, 4086–4097. [CrossRef]

49. Meng, X.; Li, Q.; Wang, X.; Gan, R.; Zhang, G.; Chen, W. A Fuel Cell Vehicle Power Distribution Strategy based on PEMFC Online
Identification and ESS Equivalent Consumption Calculation. In Proceedings of the 2020 IEEE Transportation Electrification
Conference and Expo (ITEC), Chicago, IL, USA, 23–26 June 2020.

50. Mounica, V.; Obulesu, Y.P. Hybrid Power Management Strategy with Fuel Cell, Battery, and Supercapacitor for Fuel Economy in
Hybrid Electric Vehicle Application. Energies 2022, 15, 4185. [CrossRef]

51. Yue, M.L.; Al Masry, Z.; Jemei, S.; Zerhouni, N. An online prognostics-based health management strategy for fuel cell hybrid
electric vehicles. Int. J. Hydrogen Energy 2021, 46, 13206–13218. [CrossRef]

52. Zhou, Y.; Ravey, A.; Pera, M.C. Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov
driving pattern recognizer. Appl. Energy 2020, 258, 114057. [CrossRef]

53. Li, H.; Ravey, A.; N’Diaye, A.; Djerdir, A. Online adaptive equivalent consumption minimization strategy for fuel cell hybrid
electric vehicle considering power sources degradation. Energy Convers. Manag. 2019, 192, 133–149. [CrossRef]

54. Ou, K.; Yuan, W.-W.; Choi, M.; Yang, S.; Jung, S.; Kim, Y.-B. Optimized power management based on adaptive-PMP algorithm for
a stationary PEM fuel cell/battery hybrid system. Int. J. Hydrogen Energy 2018, 43, 15433–15444. [CrossRef]

55. Fu, J.; Fu, Z.; Song, S. Energy management strategy integrating self-adaptive adjustment and Pontryagin’s minimum principle-
based optimization for fuel-cell hybrid electric vehicle. Optim. Control Appl. Methods 2022, 43, 1059–1075. [CrossRef]

56. Li, X.; Wang, Y.; Yang, D.; Chen, Z. Adaptive energy management strategy for fuel cell/battery hybrid vehicles using Pontryagin’s
Minimal Principle. J. Power Sources 2019, 440, 227105. [CrossRef]

57. Iqbal, M.; Laurent, J.; Benmouna, A.; Becherif, M.; Ramadan, H.S.; Claude, F. Ageing-aware load following control for composite-
cost optimal energy management of fuel cell hybrid electric vehicle. Energy 2022, 254, 124233. [CrossRef]

58. Zhang, Y.J.; Huang, Y.J.; Chen, Z.; Li, G.; Liu, Y.G. A Novel Learning-Based Model Predictive Control Strategy for Plug-In Hybrid
Electric Vehicle. IEEE Trans. Transp. Electrif. 2022, 8, 23–35. [CrossRef]

59. Ma, Y.; Li, C.; Wang, S. Multi-objective energy management strategy for fuel cell hybrid electric vehicle based on stochastic model
predictive control. ISA Trans. 2022, in press. [CrossRef] [PubMed]

60. Yazdani, A.; Bidarvatan, M. Real-Time Optimal Control of Power Management in a Fuel Cell Hybrid Electric Vehicle: A
Comparative Analysis. SAE Int. J. Altern. Powertrains 2018, 7, 43–53. [CrossRef]

61. Anbarasu, A.; Dinh, T.Q.; Sengupta, S. Novel enhancement of energy management in fuel cell hybrid electric vehicle by an
advanced dynamic model predictive control. Energy Convers. Manag. 2022, 267, 115883. [CrossRef]

62. Fu, J.; Zeng, L.; Lei, J.; Deng, Z.; Fu, X.; Li, X.; Wang, Y. A Real-Time Load Prediction Control for Fuel Cell Hybrid Vehicle. Energies
2022, 15, 3700. [CrossRef]

63. Zhou, Y.; Ravey, A.; Pera, M.C. Multi-objective energy management for fuel cell electric vehicles using online-learning enhanced
Markov speed predictor. Energy Convers. Manag. 2020, 213, 112821. [CrossRef]

64. Yuan, J.; Yang, L.; Chen, Q. Intelligent energy management strategy based on hierarchical approximate global optimization for
plug-in fuel cell hybrid electric vehicles. Int. J. Hydrogen Energy 2018, 43, 8063–8078. [CrossRef]

65. Zhou, D.; Al-Durra, A.; Ravey, A.; Matraji, I.; Gao, F. Online Energy Management Strategy of Fuel Cell Hybrid Electric Vehicles: A
Fractional-Order Extremum Seeking Method. IEEE Trans. Ind. Electron. 2018, 65, 6787–6799. [CrossRef]

http://doi.org/10.1061/(ASCE)EY.1943-7897.0000708
http://doi.org/10.3390/en15124325
http://doi.org/10.1016/j.jpowsour.2019.227024
http://doi.org/10.1109/vppc.2017.8330991
http://doi.org/10.1016/j.enconman.2020.113721
http://doi.org/10.1016/j.enconman.2021.115192
http://doi.org/10.1016/j.ijhydene.2021.09.204
http://doi.org/10.1016/j.energy.2020.118064
http://doi.org/10.1109/TIA.2022.3157252
http://doi.org/10.3390/en15124185
http://doi.org/10.1016/j.ijhydene.2021.01.095
http://doi.org/10.1016/j.apenergy.2019.114057
http://doi.org/10.1016/j.enconman.2019.03.090
http://doi.org/10.1016/j.ijhydene.2018.06.072
http://doi.org/10.1002/oca.2876
http://doi.org/10.1016/j.jpowsour.2019.227105
http://doi.org/10.1016/j.energy.2022.124233
http://doi.org/10.1109/TTE.2021.3069924
http://doi.org/10.1016/j.isatra.2022.04.045
http://www.ncbi.nlm.nih.gov/pubmed/35581024
http://doi.org/10.4271/08-07-01-0003
http://doi.org/10.1016/j.enconman.2022.115883
http://doi.org/10.3390/en15103700
http://doi.org/10.1016/j.enconman.2020.112821
http://doi.org/10.1016/j.ijhydene.2018.03.033
http://doi.org/10.1109/TIE.2018.2803723


World Electr. Veh. J. 2022, 13, 172 18 of 19

66. Zhou, D.M.; Ravey, A.; Al-Durra, A.; Gao, F. A comparative study of extremum seeking methods applied to online energy
management strategy of fuel cell hybrid electric vehicles. Energy Convers. Manag. 2017, 151, 778–790. [CrossRef]

67. Zhou, D.M.; Al-Durra, A.; Gao, F.; Ravey, A.; Matraji, I.; Simoes, M.G. Online energy management strategy of fuel cell hybrid
electric vehicles based on data fusion approach. J. Power Sources 2017, 366, 278–291. [CrossRef]

68. Jia, C.; Cui, J.; Qiao, W.; Qu, L. A Real-time Operational Cost Minimization Strategy for Energy Management of Fuel Cell Electric
Vehicles. In Proceedings of the 2021 13th IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada,
10–14 October 2021.

69. Sun, Z.; Wang, Y.; Chen, Z.; Li, X. Min-max game based energy management strategy for fuel cell/supercapacitor hybrid electric
vehicles. Appl. Energy 2020, 267, 115086. [CrossRef]

70. Ghaderi, R.; Kandidayeni, M.; Soleymani, M.; Boulon, L.; Trovao, J.P.F. Online Health-Conscious Energy Management Strategy
for a Hybrid Multi-Stack Fuel Cell Vehicle Based on Game Theory. IEEE Trans. Veh. Technol. 2022, 71, 5704–5714. [CrossRef]

71. Koubaa, R.; Bacha, S.; Smaoui, M.; Krichen, L. Robust optimization based energy management of a fuel cell/ ultra-capacitor
hybrid electric vehicle under uncertainty. Energy 2020, 200, 117530. [CrossRef]

72. Wu, J.; Zhang, N.; Tan, D.; Chang, J.; Shi, W. A robust online energy management strategy for fuel cell/battery hybrid electric
vehicles. Int. J. Hydrogen Energy 2020, 45, 14093–14107. [CrossRef]

73. Li, Q.; Meng, X.; Gao, F.; Zhang, G.; Chen, W. Approximate Cost-Optimal Energy Management of Hydrogen Electric Multiple
Unit Trains Using Double Q-Learning Algorithm. IEEE Trans. Ind. Electron. 2022, 69, 9099–9110. [CrossRef]

74. Bo, L.; Han, L.; Xiang, C.; Liu, H.; Ma, T. A Q-learning fuzzy inference system based online energy management strategy for
off-road hybrid electric vehicles. Energy 2022, 252, 123976. [CrossRef]

75. Tao, J.; Zhang, R.; Qiao, Z.; Ma, L. Q-Learning-based fuzzy energy management for fuel cell/supercapacitor HEV. Trans. Inst.
Meas. Control. 2022, 44, 1939–1949. [CrossRef]

76. Guo, L.; Li, Z.; Outbib, R. Reinforcement Learning based Energy Management for Fuel Cell Hybrid Electric Vehicles. In
Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16
October 2021. [CrossRef]

77. Lin, X.; Zeng, S.; Li, X. Online correction predictive energy management strategy using the Q-learning based swarm optimization
with fuzzy neural network. Energy 2021, 223, 120071. [CrossRef]

78. Tang, X.L.; Zhou, H.T.; Wang, F.; Wang, W.D.; Lin, X.K. Longevity-conscious energy management strategy of fuel cell hybrid
electric Vehicle Based on deep reinforcement learning. Energy 2022, 238, 121593. [CrossRef]

79. Zhang, Y.X.; Ma, R.; Zhao, D.D.; Huangfu, Y.G.; Liu, W.G. A Novel Energy Management Strategy Based on Dual Reward Function
Q-learning for Fuel Cell Hybrid Electric Vehicle. IEEE Trans. Ind. Electron. 2022, 69, 1537–1547. [CrossRef]

80. Sun, H.; Fu, Z.; Tao, F.; Zhu, L.; Si, P. Data-driven reinforcement-learning-based hierarchical energy management strategy for fuel
cell/battery/ultracapacitor hybrid electric vehicles. J. Power Sources 2020, 455, 227964. [CrossRef]

81. Fu, Z.; Wang, H.; Tao, F.; Ji, B.; Dong, Y.; Song, S. Energy Management Strategy for Fuel Cell/Battery/Ultracapacitor Hybrid
Electric Vehicles Using Deep Reinforcement Learning With Action Trimming. IEEE Trans. Veh. Technol. 2022, 71, 7171–7185.
[CrossRef]

82. Zhou, Y.F.; Huang, L.J.; Sun, X.X.; Li, L.H.; Lian, J. A Long-term Energy Management Strategy for Fuel Cell Electric Vehicles Using
Reinforcement Learning. Fuel Cells 2020, 20, 753–761. [CrossRef]

83. Li, W.; Ye, J.Y.; Cui, Y.N.; Kim, N.; Cha, S.W.; Zheng, C.H. A Speedy Reinforcement Learning-Based Energy Management Strategy
for Fuel Cell Hybrid Vehicles Considering Fuel Cell System Lifetime. Int. J. Precis. Eng. Manuf.-Green Technol. 2022, 9, 859–872.
[CrossRef]

84. Kim, D.; Hong, S.; Cui, S.; Joe, I. Deep Reinforcement Learning-Based Real-Time Joint Optimal Power Split for Battery-
Ultracapacitor-Fuel Cell Hybrid Electric Vehicles. Electronics 2022, 11, 1850. [CrossRef]

85. Ali, A.M.; Yacoub, M.I. Optimal predictive power management strategy for fuel cell electric vehicles using neural networks in
real-time. In Proceedings of the 2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijón, Spain, 26–29 October 2020.
[CrossRef]

86. Li, C.; Hu, G.; Zhu, Z.; Wang, X.; Jiang, W. Adaptive equivalent consumption minimization strategy and its fast implementation
of energy management for fuel cell electric vehicles. Int. J. Energy Res. 2022, 46, 16005–16018. [CrossRef]

87. Min, D.H.; Song, Z.; Chen, H.C.; Wang, T.X.; Zhang, T. Genetic algorithm optimized neural network based fuel cell hybrid electric
vehicle energy management strategy under start-stop condition. Appl. Energy 2022, 306, 118036. [CrossRef]

88. Zhang, Y.; Huang, Z.; Zhang, C.; Lv, C.; Deng, C.; Hao, D.; Chen, J.; Ran, H. Improved Short-Term Speed Prediction Using
Spatiotemporal-Vision-Based Deep Neural Network for Intelligent Fuel Cell Vehicles. IEEE Trans. Ind. Inform. 2021, 17, 6004–6013.
[CrossRef]

89. Liu, B.; Sun, C.; Wang, B.; Liang, W.; Ren, Q.; Li, J.; Sun, F. Bilevel convex optimization of eco-driving for connected Fuel Cell
Hybrid Electric Vehicles through signalized intersections. Energy 2022, 252, 123956. [CrossRef]

90. Nie, Z.; Jia, Y.; Wang, W.; Outbib, R. Eco-Co-Optimization strategy for connected and automated fuel cell hybrid vehicles in
dynamic urban traffic settings. Energy Convers. Manag. 2022, 263, 115690. [CrossRef]

http://doi.org/10.1016/j.enconman.2017.08.079
http://doi.org/10.1016/j.jpowsour.2017.08.107
http://doi.org/10.1016/j.apenergy.2020.115086
http://doi.org/10.1109/TVT.2022.3167319
http://doi.org/10.1016/j.energy.2020.117530
http://doi.org/10.1016/j.ijhydene.2020.03.091
http://doi.org/10.1109/TIE.2021.3113021
http://doi.org/10.1016/j.energy.2022.123976
http://doi.org/10.1177/01423312211069488
http://doi.org/10.1109/iecon48115.2021.9589725
http://doi.org/10.1016/j.energy.2021.120071
http://doi.org/10.1016/j.energy.2021.121593
http://doi.org/10.1109/TIE.2021.3062273
http://doi.org/10.1016/j.jpowsour.2020.227964
http://doi.org/10.1109/TVT.2022.3168870
http://doi.org/10.1002/fuce.202000095
http://doi.org/10.1007/s40684-021-00379-8
http://doi.org/10.3390/electronics11121850
http://doi.org/10.1109/vppc49601.2020.9330931
http://doi.org/10.1002/er.8296
http://doi.org/10.1016/j.apenergy.2021.118036
http://doi.org/10.1109/TII.2020.3033980
http://doi.org/10.1016/j.energy.2022.123956
http://doi.org/10.1016/j.enconman.2022.115690


World Electr. Veh. J. 2022, 13, 172 19 of 19

91. Nie, Z.; Jia, Y.; Wang, W.; Chen, Z.; Outbib, R. Co-optimization of speed planning and energy management for intelligent fuel cell
hybrid vehicle considering complex traffic conditions. Energy 2022, 247, 123476. [CrossRef]

92. Zhu, L.; Tao, F.; Fu, Z.; Wang, N.; Ji, B.; Dong, Y. Optimization Based Adaptive Cruise Control and Energy Management Strategy
for Connected and Automated FCHEV. IEEE Trans. Intell. Transp. Syst. 2022, 1–10. [CrossRef]

http://doi.org/10.1016/j.energy.2022.123476
http://doi.org/10.1109/TITS.2022.3178151

	Introduction 
	Typical Topologies of FCHEVs 
	Fully FCEV 
	FC + Battery Hybridization 
	FC + UC Hybridization 
	FC + Battery + UC Hybridization 
	FC + Other Hybridization 

	Energy Management Strategies 
	Rule-Based Energy Management Strategies 
	Optimization-Based Energy Management Strategy 
	Offline Optimization-Based EMS 
	Online Optimization-Based EMS 

	Learning-Based EMS 
	EMS Based on Intelligent Vehicle Interconnection Technology 

	Conclusions and Suggestions 
	References

