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Abstract: Range anxiety is a significant contributor to consumer reticence when purchasing electric
vehicles (EVs). To alleviate this concern, new commercial EVs readily achieve over 200 miles of
range, as found by the United States Environmental Protection Agency (EPA). However, this range,
measured under idealized conditions, is often not encountered in real-world conditions. As a result,
this effort describes the simplest model that incorporates all key factors that affect the range of an EV.
Calibration of the model to EPA tests found an average deviation of 0.45 and 0.57 miles for highway
and city ranges, respectively, among seven commercial EVs. Subsequent predictions found significant
losses based on the impact of road grade, wind, and vehicle speed over a Kansas interstate highway.
For cabin conditioning, up to 57.8% and 37.5% losses in range were found when simulating vehicles
at 20 ◦F and 95 ◦F, respectively. Simulated aging of the vehicle battery pack showed range losses
up to 53.1% at 100,000 miles. Model extensions to rain and snow illustrated corresponding losses
based on the level of precipitation on the road. All model outcomes were translated into an Excel
spreadsheet that can be used to predict the range of a generic EV over Kansas-centric roads.

Keywords: electric vehicle; modeling; range prediction; real-world; air conditioning; heating; aging

1. Introduction

While battery technology has improved significantly over the last decade, range
anxiety is still a primary consideration for consumers when contemplating the purchase
of an electric vehicle (EV) [1]. A recent survey by Autolist found that EV range tops
consumers’ list of priorities [2], with one of their earlier surveys indicating that the majority
of respondents considered 300 miles of range to be sufficient [3]. While most commercially
available EVs are now able to achieve greater than a 200-mile range, with the Tesla Model 3
sporting a 353-mile range according to the Environmental Protection Agency (EPA), the
actual on-road range of EVs must overcome a variety of factors (e.g., weather, weight, road
grade, and cabin conditioning). This distance can be significantly different than the ideal
conditions employed by the EPA during the Society of Automotive Engineers (SAE) J1634
test at 77 ◦F using a chassis dynamometer with the cabin conditioning system turned off [4].
Driving conditions and individual drivers can also experience dissimilar ranges, with
Hu et al. finding a 15.6% higher energy consumption during congested traffic conditions
and up to 32.4% and 30.0% in energy consumption between drivers during peak hours and
off-peak times, respectively [5]. Hao et al. similarly found that the energy consumption of
EVs exceeds New European Driving Cycle (NEDC) test conditions by 7–10%, along with
significant losses in winter, with EVs only achieving 64% of the expected NEDC range [6].
Thus, the varying range experienced by EV drivers can be problematic when designing
a charging infrastructure to handle their range anxiety while considering the travel route
and weather conditions [7]. This is especially true in Kansas when considering the wide
range of conditions encountered. Kansas is the second windiest state in the union [8] and
encounters all four seasons with potentially significant rainfall and snow levels [9].
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Additional factors that can cause EPA vehicle range tests to misrepresent real-world
driving include greater passenger and cargo loads, which will increase energy consump-
tion [10]. Furthermore, EPA tests also do not consider road grade, which can result in
increased or decreased range, depending on the slope gradient [11]. Al-Wreikat et al. found
that a 3% road grade could increase energy consumption by 50% or more [12]. However, a
downward grade can be beneficial, as gravity reduces the traction force needed to support
a certain speed while also potentially recharging the battery pack through regenerative
braking. This ability to recharge the battery pack while braking is one reason that EVs
typically demonstrate a greater range in the city than on the highway, counter to more
traditional internal combustion engine vehicles.

Other significant impacts on EV range are the rolling resistance and aerodynamic drag.
At low speeds, when road grade is negligible, rolling resistance and drag make up the total
forces acting on the vehicle that must be overcome [13]. While the EPA test does include a
joint factor for both components, the impact of wind speed and direction on drag is not
considered [14,15]. In addition, the increased rolling resistance due to underinflated tires
can lead to EV range losses of a few percent [16]. Weather can also play a substantial role
in rolling resistance, as rain can increase this resistance by up to 10% [17]. Analogously,
snow can increase rolling resistance by 6–9%, depending on whether it is old or freshly
fallen [18]. Thus, researchers should incorporate these effects into their models [19].

Weather further contributes to decreases in EV range when ambient temperature is
considered. This is primarily due to energy being used for cabin conditioning and thermal
conditioning of the battery pack. Higher temperatures typically accelerate the fading
of the battery or decrease the efficiency of the motor, as Hao et al. found that electrical
consumption increased by 2.3 kWh/100 km with every 5 ◦C over 28 ◦C [6]. Furthermore,
Samadani et al. showed that the air conditioning system can reduce range by 14%, 20%,
and 22% for the HWFET, US06, and UDDS standard drive cycles, respectively, while also
increasing battery degradation [20]. Here, the impact of higher temperatures on range
is not as significant as the influence of colder temperatures. Without a heater in use,
the average range from different driving cycles will decrease by up to 20–30% in cold
weather [18]. Conversely, when full cabin heating is in use, the range may be reduced by as
much as 60% [21,22].

Apart from mechanical or electrical losses, the driving method and behavior of the
driver can influence the range of an EV. Faster accelerations have been found to increase the
energy intensity by 4% over the slowest acceleration simulated (1.389 m s−2 vs. 0.386 m s−2)
for a 1000 kg EV [23]. In general, aggressive driving increases energy consumption by
between 16% and 43% when compared to passive driving [12,18]. This is caused by the
inefficient use of the vehicle’s acceleration and braking mechanisms [18].

Given this wide variance in energy usage and corresponding EV range, it is important
for local municipalities and state agencies to have a simulation tool that can estimate the
range of commercial EVs in their local environment. This can then be used to help the
process planning of effective charging station infrastructure. While extensive models exist
for motors, batteries, air conditioning, and other aspects of EVs, this effort endeavors to
generate a simple overarching model that includes all necessary variables to estimate the
range of EVs on local roads based on the time of year. Six commercial EVs, with their
parameters provided in Table A1, were calibrated to their EPA-stated range as per the SAE
J1634 test method. Parametric studies were completed to understand the various aspects
that influence range over the following Kansas roads: I-70, I-35, US-54, and I-135. The
interstate roads were chosen since they are the primary corridors through Kansas where
EV charging stations are planned. A relatively lower-speed highway was selected for
comparative purposes, and vehicle speed as a function of distance is shown in Figure 1 for
one direction of these routes. In addition, the model was employed to predict the range
of an EV that is not commercially available yet as an exercise to understand how the real
range of the vehicle in Kansas compares to the EPA-stated range. The subsequent sections
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of this work include a description of the model developed, followed by a summary of the
resulting parametric studies.
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Figure 1. Vehicle speed as a function of distance for the simulated roads. 
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2. Modeling

A previous effort by one of the authors included the estimation of battery electric
heavy-duty tractor trailers using a model based on the conservation of momentum [24]. This
work used a similar model including additions to handle wind direction based on travel
direction and electrical power requirements. The resultant acceleration or deceleration
force (Fx) was found from the tractive (FT), aerodynamic drag (FD), rolling resistance (FR),
and gradation forces (FG) as follows:

Fx = FT − FD − FR − FG (1)

However, when simulating the SAE J1634 test to determine the highway and city
mileage range [4], the drag and rolling resistance forces are combined and accounted for
by a chassis dynamometer via a polynomial function [25] with the coefficients published
online by the EPA [26]:

FD + FR = aEPA + bEPAV + cEPAV2 (2)

where V is the average velocity of the vehicle between two successive input data points
(velocity is a specified input parameter) represented by the superscript n:

V =
Vn+1 + Vn

2
(3)

Otherwise, independent forces are seen with the drag force, indicated as:

FD =
1
2

ρA f CD(Ve f f cosϕ)2 (4)

where air density (ρ) is calculated from the ideal gas law, and the drag coefficient (CD) is
utilized. The vehicle’s frontal area (Af) was determined using a computer program that
digitized the vehicle front view, which was calibrated to a reference value for the overall
width of the vehicle [27].
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2.1. Wind Speed and Direction

The actual vehicle velocity (Veff) includes its yaw angle (ϕ) along with the speed of the
wind (Vwind):

Ve f f cosϕ = V −Vwindcosϑ (5)

Yaw was assumed to be negligible since it cannot be found accurately over route
length. The wind angle corresponding to the direction of motion (ϑ) included the use of
latitude (lat) and longitude (lon) coordinates, which were obtained from Global Positioning
System (GPS) data. The GPS data also supplied elevation (E) data. This choice of GPS data
generalizes the model so that it can be applied for other roads through a standard method
of data input.

Between two successive GPS data points, the change in distance (d) was calculated as:

dn+1 − dn = REarthc (6)

where REarth is Earth’s radius (6378.1 × 103 m) [28], and c is determined by [29]:

c = 2× atan2
(√

a,
√

1− a
)

(7)

a = sin2
(

∆ f
2

)
+ cos(latn)cos

(
latn+1

)
sin2

(
∆l
2

)
(8)

∆ f = latn+1 − latn (9)

∆l = lonn+1 − lonn (10)

The bearing angle of the vehicle (βbr) was also obtained from GPS data and altered to
correspond to a 360◦ North (N)–South (S)/East (E)–West (W) map driving direction (qdr):

qdr =

{
450− βbr, x< 0 and y >0

90− βbr, else
(11)

βbr = atan2(y, x) (12)

which outputs an angle from 0 to π or 0 to –π. Thus, qdr was obtained through a piecewise
function that accounts for the quadrant of the resulting vector and converts the computed
angle from the “unit circle” frame to the N-S/E-W frame. The x and y components were
found, respectively, as:

x = cos
(

latn+1
)

sin(∆l) (13)

y = cos(latn)sin
(

latn+1
)
− sin(latn)cos

(
latn+1

)
cos(∆l) (14)

The angle and speed of the wind were determined similarly from their corresponding
x- and y-directions, Uw and Vw, respectively:

qwind =

{
450− atan2(Vw, Uw), Uw< 0 and Vw >0

90− atan2(Vw, Uw), else
(15)

Vwind =
√

Uw2 + Vw2 (16)

This was then combined with the driving direction to find the wind angle correspond-
ing to the direction of motion:

ϑ = qwind − qdr (17)

Twenty years (2000–2020) of wind speed information delineated by month for the state
of Kansas was captured from National Oceanic and Atmospheric Administration data [30].
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2.2. Rolling Resistance

The force due to rolling resistance in Equation (1) can be found using a single rolling
resistance coefficient (µr) times the vehicle (m) mass and gravitational acceleration (g):

FR = µrmg (18)

A more detailed option includes tire pressure (ptire) and the velocity of the vehicle [31]:

FR =

(
ptire
pre f

)α(
mg
Zre f

)β(
arr + brrV + crrV2

)
(19)

including reference parameters (pref = 1 kPa, Zref = 1 N). Since the model was initially
calibrated to match EPA data (discussed in Section 2.7) using chassis dynamometer infor-
mation (Equation (2)), this allowed for the calibration of this rolling resistance function
to find the constants (arr, brr, and crr). For the parameters α and β, the values reported by
Grover were utilized for a P195/70R14 tire: −0.345 and 0.929, respectively [32]. Ideally,
these values should be found for each tire used by the EVs; however, this information was
not available. Therefore, simulating different tire pressures and vehicle weights other than
the EPA test values will incur some error. The respective trends will be informative and
provide a better representation rather than the use of a singular rolling resistance coefficient.
One oversight not considered with this model is that tire pressure will change based on
ambient temperatures (e.g., 0.108–0.140 bar/10 ◦C [33]); however, this could be added in
the future.

To account for inclement weather conditions, rolling resistance coefficients (µr) as a
function of water film thickness (i.e., rain) for a standard reference test tire [34] and rolling
resistance forces (FR) based on snow thickness [35] were found, as shown in Figure 2. Using
the available weights and tire pressures provided in these references, the values of the
constants for Equation (19) without rain or snow were first found using the MATLAB
fmincon function while minimizing the difference between the calculated µr or FR based
on the corresponding data:

• Rain: arr = 9.493 × 10−2 N, brr = 2.111× 10−3 N s m−1, and crr =−5.115× 10−5 N s2 m−2;
• Snow: arr =−1.262× 10−1 N, brr = 4.577× 10−2 N·s·m−1, and crr =−1.217× 10−3 N s2 m−2
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Subsequently, a revised rolling resistance force model was generated to account for
the respective thickness of the rain or snow (trt), respectively:

FR =

(
ptire
pre f

)α(
mg
Zre f

)β(
arr + brrV + crrV2

)(
art + brttrt + crtVtrt

)
(20)

Given the respective scatter of the data, a linear fit was initially chosen, as higher-order
fits caused the rolling resistance to decrease at the highest water film level, which is erro-
neous. Since the data also show a velocity dependency, the last term in the added model
components includes its influence. This model was then calibrated using the MATLAB fmin-
con function to minimize the difference between the calculated values and experimental
data with the following results:

• Rain: art = 1, brt = 4.535 × 102 m−1, crt = 4.681 s m−2;
• Snow: art = 1; brt = −4.087 × 10−1 m−1, crt = 1.081 s m−2

Overall, the results in Figure 2 show an acceptable fit with R2 values between 0.744
and 0.924. Generally, as vehicle speed increases, the rolling resistance force increases
due to hysteresis losses as the tire goes through a cyclic deformation process [36]. When
precipitation is present, the tire must displace the water or snow, leading to an increase
in rolling resistance [37]. Thus, as shown in Figure 2, rolling resistance grows with both
vehicle speed and the depth of the water or snow on the ground, as larger displacement
forces are needed.

2.3. Gradation, Acceleration, and Deceleration Forces

The gradation force in Equation (1) involves the current slope of the roadway (θ):

FG = mgsinθ (21)

which was found using the elevation change over the distance traveled:

θ = tan−1
(

En+1 − En

dn+1 − dn

)
(22)

Highways are required to have a maximum gradient (GP) of 7% [38]. Thus, the
model limits the grade experienced to this maximum, which results in about a 4-degree
slope angle:

θ = tan−1(GP/100) (23)

The net vehicle force that accounts for both deceleration and acceleration in the
direction of travel equals:

Fx = m
dV
dt

(24)

The derivative of velocity in this expression can be differentiated using the Euler
Explicit method, thus resulting in:

dV
dt

=
Vn+1 −Vn

∆t
(25)

The average vehicle speed and the distance change in travel by the vehicle are then
used to find the time step in Equation (25):

∆t =
dn+1 − dn

V
(26)
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2.4. Torques, Engine Speed, and Power

At each time step, the tractive force was calculated using Equation (1), allowing for
the determination of the resulting wheel (τw) and brake torques (τb), respectively:

τw = FT × rd (27)

τb =
τw

i0igηt
(28)

where rd, i0, ig, and ηt are the radius of the tire, the ratios of the final drive gear and
transmission, and the efficiency of the driveline, respectively. The influence of driveline
efficiency was incorporated through an auxiliary power draw, as discussed in Section 2.5;
hence, for this expression, it was given a value of one.

Next, the average velocity was used to find the speed of the motor (N):

N =
Vi0ig

2πrd
(29)

In combination with the brake torque, this value was used to determine the brake power
(Pb), which was used to find the power of the motor (Pm) using the motor efficiency (ηm):

Pb = 2πτbN (30)

Pm =
Pb
ηm

(31)

This efficiency comes from a three-dimensional map of the motor that is a function
of its motor torque and speed. For simplicity, the regenerative braking map was equated
to the motor map. In addition, regenerative braking power (Pr) was determined slightly
differently; i.e., the power used by the motor during acceleration should be more than the
braking power, whereas the power recovered by the motor during braking/regeneration
should be less than the braking power:

Pr = ηmPb (32)

Three motor maps were found to account for two different permanent magnet syn-
chronous motors (A-[39] and B-[40]) and an induction motor [41]), as provided in Figure 3.
Unfortunately, the need to digitize these maps required estimating a few values near the
origin and out of the maximum power area. In addition, if the maximum torque and
maximum speed of the vehicle’s motor were greater than the corresponding map chosen,
then the map was scaled by these respective parameters to ensure that it captured the
entire operating range. As a result, there is some error in this estimation of motor and
regeneration efficiency, and it would be preferred to use the exact motor map data. Another
simulation approach could be to employ the model of Larsson, which estimates motor
efficiency based on torque and rotational speed, and then calibrate the constants to available
map data [42]. This would provide quicker simulation results and potentially handle data
near zero torque and zero motor speed more effectively.
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Subsequently, the battery pack amperage draw
(

Ipack

)
was determined using a look-

up table to determine the voltage from the current state of charge (SOC) under different
discharge currents, as indicated in Section 2.6:

Ipack =
Pm + Paux

Vpack
(33)

where the average voltage of the pack over the time step was used in an iterative procedure;
i.e., Vn

pack was known, and a new value (Vn+1
pack ) was found based on an updated SOCn+1. The

Paux parameter includes all auxiliary system draws, as discussed in the next section. When
the tractive force (FT) is negative, the value of Pm is replaced by that of Pr in Equation (32),
which also has a negative value. Based on its magnitude in comparison to Paux, this acts
to either decrease the current draw from the battery pack or add energy to the pack using
the capacity model provided in Section 2.6, thus functioning as regenerative braking and
extending the range of the vehicle.
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2.5. Auxiliary Power

With respect to driveline efficiency, there are losses resulting from the conversion of
battery energy into useful torque. Other systems, such as the inverter, lights, windows, etc.,
also consume energy during operation and must be considered when estimating the range
of an EV. Evtimov et al. characterized these specific energy consumptions by polynomials
up to the sixth order as a function of vehicle speed [43]. For the scenario in which heating
or air conditioning is not needed, this power draw was estimated using a second-order
polynomial while additionally including a temperature factor:

Paux,HVACo f f = (aaux + bauxV + cauxV2
)

(
1 +

∣∣∣∣Tamb − 298.15K
298.15K

∣∣∣∣)αaux

(34)

The relatively simplistic temperature factor expression was based on findings from
the American Automobile Association (AAA), which found small reductions in the driving
range of commercial EVs in hot and cold ambient conditions when the heating, ventilation,
or air conditioning (HVAC) system was not engaged [44]. Here, three parameters (aaux,
baux, and caux) were used for calibration for the model to match the SAE J1634 test for the
EPA City and Highway range values (discussed in Section 2.7) at 25 ◦C (77 ◦F) with the
HVAC system off [45]. The temperature factor (αaux) considers the relative losses found
during testing by AAA at 20 ◦F and 95 ◦F from their standard data state of 75 ◦F.

For the scenario in which the HVAC system is engaged, Yuksel and Michalek [46] fit
the energy consumption per unit distance (Eaux) in [kWh mi−1] to a polynomial based on
the ambient temperature in [◦F]:

Eaux = aYM + bYMTamb + cYMT2
amb + dYMT3

amb + eYMT4
amb + fYMT5

amb (35)

This model includes the effects of battery efficiency and cabin conditioning as a
function of ambient conditions while isolating location-specific influences, such as driving
conditions, from the effects of temperature. Similar to a prior effort [24], Eaux was multiplied
by the velocity to obtain the power draw from the battery pack due to the HVAC system
operating. However, analogous to Equation (34), a second-order polynomial was used for
the velocity:

Paux,HVACon =
(

aaux + bauxV + cauxV2
)

Eaux (36)

All constants in Equations (35) and (36) were calibrated using the MATLAB fmincon
function to minimize differences between experimental data and the model to account for
the losses found from the AAA tests at 20 ◦F and 95 ◦F when the HVAC system was engaged,
again away from their standard state of 75 ◦F. Note that temperature in Equation (35) was
left in degrees Fahrenheit to be consistent with Yuksel and Michalek’s formulation, and the
use of kelvin provided less model fidelity; i.e., using kelvin with a sixth-order temperature
term causes the value of Eaux to change dramatically over a 1-kelvin temperature difference.

2.6. Batteries

To calculate capacity losses or gains of the battery pack (∆Ah) as power is required or
regenerated, the Hausmann and Depcik model was implemented to describe the battery
capacity offset using constants γ, χ, and δ [47,48]:

∆Ah = γ

(
It

Ire f

)χ(Tre f

Tt

)δ

∆t (37)

The reference temperature (Tre f ) and reference amperage draw (Ire f ) are 298 K and
1 A, respectively. Based on the chemistry specifications of each battery for the EVs, represen-
tative singular battery voltage versus depth of discharge data were found and are provided
in Figures 4–7. Unfortunately, for a few chemistries, temperature-specific data were not
found; hence, the δ parameter was set to zero. Overall, data for LiNi1/3Co1/3Mn1/3O2
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(NCM333) [49], LiNi0.5Co0.2Mn0.3O2 (NCM523) [50], LiNi0.6Co0.2Mn0.2O2 (NCM622) [50],
and two nickel cobalt aluminum oxide (NCA1 and NCA2) [51,52] batteries were found. For
simulation purposes, the temperature of the battery (Tt) was set to the reference tempera-
ture since it is assumed that the battery management system endeavors to maintain the
chemistry at its ideal level.
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Figure 7. Experimental data and model results of a representative NCM333 battery during
(a) discharging and (b) charging events.

The calibration of the capacity offset parameters in Equation (37) follows the efforts
of O’Malley et al. [48]. This model employs an absolute capacity parameter (Ah0) that
(a) replaces the arbitrariness of 20 h rate nominal capacity values, (b) includes the fact that
batteries experiencing high discharge rates have remaining capacity if the discharge rate is
decreased, and (c) allows for simple integration of battery aging through the degradation of
the absolute capacity. The model results in Figure 4 through Figure 7 show good accuracy
for all batteries, as the model is able to dynamically adjust to different currents with the ab-
solute capacity term (equal to Cr,mult times the nominal capacity) and parameter γ, helping
to equate the energy potential to the discharge rate. The current capacity offset factor χ re-
sponds to the effective energy change and modifies the overall slope of the curve, whereas δ
factors in the additional loss of capacity (or gain) as the temperature decreases (or increases).
Model fidelity falters near 100% depth of discharge and at relatively low temperatures;
however, these conditions should be rarely encountered by battery packs in EVs.
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The simulations assume that all batteries act similarly. Therefore, the pack amperage
draw was reduced by the number of batteries in parallel (Npar) to find the amperage
required by a singular battery (It):

It =
Ipack

Npar
(38)

Starting with the absolute battery pack capacity (Ah0), the capacity of the next step
(Ahn+1) is determined from the capacity of the current time step (Ahn):

Ahn+1 = Ahn − ∆Ah (39)

From this information, the initial capacity is used to determine the SOC of the batteries:

SOCn+1 =
Ahn+1

Ah0 (40)

Overall, by employing the known power draws and the simulation’s time step, the
energy required by the battery pack is found in watt-hours (Wh):

∆Wh = ∆t(Pm + Paux) (41)

It has been shown that as EVs age, their range also decreases [53]. To account for this
facet, polynomial curve-fits were incorporated that estimate the percentage of capacity
remaining (cm) in the battery pack after several cycles (cy) at 25 ◦C:

NCM622 : cm = 100− 7.525× 10−3cy − 1.784× 10−5cy
2 + 9.003× 10−9cy

3 − 1.507× 10−12cy
4 (42)

NCM523 : cm = 100 + 7.313× 10−3cy − 1.764× 10−5cy
2 + 9.312× 10−9cy

3 − 1.559× 10−12cy
4 (43)

NCA : cm = 100− 9.312× 10−2cy + 7.497× 10−5cy
2 − 3.233× 10−8cy

3 + 4.745× 10−12cy
4 (44)

NCM333 : cm = 100− 3.269× 10−3cy − 3.223× 10−6cy
2 + 1.878× 10−9cy

3 − 3.380× 10−13cy
4 (45)

This percentage capacity remaining was then multiplied by the initial capacity (Ah0)
to determine the pack capacity as a function of the initial starting cycle. The coefficients
were determined by matching the polynomials to experimental data in Figure 8 (NCM622
and NCM523 [50], NCA [51], and NCM333 [49]) with an average R2 value equal to 0.996.
Note that the NCA data were linearly extrapolated from the last two data points until 3000
cycles, and the model was fit to these data for completeness.
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Figure 8. Loss in capacity of representative batteries based on cycle life. 

2.7. SAE J1634 Calculations and Considerations 
The initial calibration of the model was accomplished according to the EPA data de-

termined from the SAE J1634 standard [4]. In this standard, the equations needed to find 
vehicle city and highway ranges are provided as part of a Multi-Cycle Test (MCT) proce-
dure. The general form for the range of a given cycle type �𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� is as follows: 

𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
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 (46) 

where the total usable battery energy from the entire test (𝑈𝑈𝑈𝑈𝑈𝑈) in Wh (i.e., sum of Equa-
tion (41) over the entire test) is divided by the total energy consumption per unit distance 
(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) of a given cycle type (i.e., highway or city: Wh m−1). To find 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , the 
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where 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖  is found using the DC energy consumption (𝐸𝐸𝐸𝐸𝐸𝐸𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 ) and distance 
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2.7. SAE J1634 Calculations and Considerations

The initial calibration of the model was accomplished according to the EPA data
determined from the SAE J1634 standard [4]. In this standard, the equations needed to
find vehicle city and highway ranges are provided as part of a Multi-Cycle Test (MCT)
procedure. The general form for the range of a given cycle type

(
Rcycle

)
is as follows:

Rcycle =
UBE

ECdccycle
(46)

where the total usable battery energy from the entire test (UBE) in Wh (i.e., sum of
Equation (41) over the entire test) is divided by the total energy consumption per unit
distance (ECdccycle) of a given cycle type (i.e., highway or city: Wh m−1). To find ECdccycle,
the phase scaling factor (Kphasei

) is used in conjunction with the energy consumption per
unit distance of a given phase (ECdcphasei

):

ECdccycle = ∑
(

Kphasei
× ECdcphasei

)
(47)

where ECdcphasei
is found using the DC energy consumption (Edcphasei

) and distance trav-
eled of a given phase (Dphasei

):

ECdcphasei
=

Edcphasei

Dphasei

(48)

and Kphasei
is found for each phase of the test using the total number of phases of a certain

cycle (nUDDS = 4, nHWFET = 2):

Kcyclei
=

1
ncycle

(49)

Kphasei
is equal to Kcyclei

for both phases of the HWFET (highway) cycle, but the UDDS
(city) cycle requires an additional consideration. As a result of cold-start regenerative
braking limitations during the first phase of the UDDS cycle that occurs during the MCT
test, there is overall increased energy consumption for the UDDS cycle. To counter this
effect, an equivalent phase scaling factor (KUDDSie ) is used for each UDDS phase:

KUDDS1e =
EdcUDDS1

UBE
(50)

KUDDS2e = KUDDS3e = KUDDS4e =
1− KUDDS1e

3
(51)

Two further considerations are needed regarding the SAE J1634 standard: (1) the
vehicle must be aged at least 1000 miles, and (2) the Constant Speed Cycle (CSC) at the end
of the MCT must be 20% or less of the total driving distance. Regarding aging, it states
that battery aging may be performed either with the vehicle [54] or by using an equivalent
bench test procedure [55]. Since it was not readily apparent how to translate the bench test
procedure to vehicle miles, the methodology to age the vehicle using the durability driving
schedule (UDDS) was employed [54]. The UDDS cycle was simulated for 1000 miles to
determine the respective number of cycles (cy) the battery pack underwent. Then, the
capacity-remaining polynomials in Section 2.6 were used to determine the respective value
of cm to be applied to the pack prior to simulating the SAE J1634 standard.

To properly model this driving cycle, values for maximum acceleration, normal accel-
eration, light acceleration, normal deceleration, and light deceleration had to be found from
the literature. Taking the average value from various sources, 3.17 m s−2 and 1.01 m s−2

were obtained for maximum acceleration and normal acceleration, respectively [56–58].
As for light acceleration, a rate of 0.505 m s−2 corresponds to half of the normal acceler-
ation value and falls within the low-to-medium range of acceleration seen in the UDDS
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drive cycle. For normal deceleration, an average of 2.53 m s−2 was found when stopping
from a maximum speed ranging from 40 to 90 kph [56,59–62]. Average deceleration from
maximum speeds ranging from 91 to 100 kph was significantly lower in magnitude, at an
average of 1.205 m s−2 [62], and thus was used to model light deceleration.

As a result of these considerations, the following method was applied when calibrating
the model to EPA data:

(a) Estimated a certain number of cycles based on the EPA-stated range (i.e.,
cycles = 1000 mi/EPA range and rounded up) to find the corresponding capacity loss
from Section 2.6.

(b) Simulated the SAE J1634 test procedure and found the model parameters (e.g., auxil-
iary power draw and maximum SOC) that fit the EPA City and Highway range and
miles per gallon equivalent (MPGe) while ensuring that the 20% or less requirement
for the CSC at the end (CSCend) was met (note: additional code was generated to
dynamically create the MCT profile as indicated in Figure 9).

(c) Using the EPA combined drag and rolling resistance model in Equation (2) from 0 to
100 miles per hour while calculating the individual drag force via Equation (4), the
rolling resistance coefficients (arr, brr, and crr) in Equation (19) are calibrated. Like
other calibration efforts, the MATLAB fmincon optimization routine was utilized to
minimize the difference between the two models.

(d) Ran with the calibrated rolling resistance and drag information through the durability
driving cycle routine over 1000 simulated miles to see if it altered the number of
cycles from (a).

(e) If it did change, (b) was performed again using the new number of cycles, and the
procedure was repeated.
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At this point, the model was fully calibrated to the SAE J1634 test procedure.

3. Results

In Table A1, all EV specifications and model parameters that were found (or estimated)
are provided. In the following sections, the results of the model are described according to
the influence of different parameters that affect their range.

3.1. SAE J1634 Results including Vehicle Mass and Tire Pressure

Since the authors are not privy to the exact specifications of each vehicle and drivetrain,
when trying to match the EPA-stated ranges, it was decided to let the maximum SOC of
the battery pack be a calibration parameter. Investigating the representative batteries in
Figure 4 through Figure 7, it was assumed that most EVs would not want to operate at a
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greater than 90% depth of discharge (10% SOC) since the voltage falls dramatically and
the battery’s chemistry can be damaged. For similar reasons, operating at greater than
80% SOC might not be preferred, with Kostopoulos et al. finding that most researchers
suggest a 20–80% SOC range for reduced capacity degradation while maintaining a good
cyclical performance [63]. This assumption worked relatively well, with five of the vehicles
demonstrating an SOC range from 0.1 to ~0.85. For the VW e-Golf, the SOC range had
to be expanded to nearly the maximum to match EPA data. While this outcome is not
realistic, concessions must be made when not all information is readily available. Overall,
on average, the model deviates from the EPA highway and city range by 0.45 and 0.57 miles,
respectively, for the six simulated vehicles listed in Table A1.

Figure 10 illustrates the influence of increased vehicle mass and tire pressure during a
representative EPA test of the Chevy Bolt. As expected, adding vehicle mass reduces the
range of the vehicle with around a 1–2% loss in range after doubling the added vehicle
mass (300 lbs is added as required in the SAE J1634 test procedure). Similarly, reducing
the tire pressure shows a small corresponding loss in range of around 1% when the tire
pressure is decreased by 2 psi. As stated previously, the EPA test procedure is accomplished
using a chassis dynamometer and does not include the influence of wind or road grade.
In addition, it is carried out without employing an HVAC system or even operating at
most highway speed limits (i.e., its maximum speed is 65 mph, as indicated in Figure 9);
thus, it does not generally stress the battery pack. The relatively small losses according
to added vehicle mass and tire pressure indicated in Figure 10 are likely underpredicting
what would be experienced in a real-world scenario.
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3.2. Road Grade, Wind, and Vehicle Speed

As a test of real-world conditions, the Nissan Leaf model was simulated driving from
Kansas City, MO, USA (222.77 m elevation), to the Colorado border (1172.80 m elevation)
along I-70 West at EPA test ambient conditions. Since the EPA test is performed at a
maximum speed of 65 mph, immediately upon simulation of true highway speeds (note:
GPS location data were correlated to the posted speed limit), a Nissan Leaf loses 36.2% of
its range without considering road grade and wind conditions, as indicated in Figure 11.
Subsequently, since traveling to the Colorado border has a relatively uphill grade, the
vehicle now loses 37.2% of its EPA-stated range when considering road elevation. In
addition, in most months, traveling West on I-70 meets a wind force counter to vehicle
motion; thus, adding the negative impact of wind from June 2020 shows a 40.1% total range
decrease. Finally, since a significant majority of drivers often drive faster than the posted
speed limit [64–66], increasing the maximum speed of the vehicle to 80 mph (in the posted
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75 mph speed limit zones) while factoring in wind and road grade demonstrates an overall
43.2% loss in the EPA-stated range.
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3.3. Ambient Temperature Conditions

To account for just the effect of different ambient temperatures, as discussed in
Section 2.5, the αaux parameter of Equation (34) was calibrated to the AAA data, which led
to reductions in driving range with the HVAC system off. Of note, AAA performed their
tests according to the SAE J1634 method while including an additional driving cycle. This
effort ignored the influence of this additional driving cycle and simply used the respective
losses in city and highway mileage as a function of the two temperatures tested (20 ◦F
and 95 ◦F) from AAA’s base temperature data (75 ◦F). This was applied for all vehicles
where AAA data existed, and the other vehicles used an average value of αaux. Overall,
the model deviated from the experimental data by 1.90/3.53 and 4.78/3.03 miles for the
city and highway ranges at 20 ◦F and 95 ◦F, respectively. Obviously, the losses due to ambi-
ent temperature conditions are more complex than what a single parameter can estimate;
however, without more information about the vehicles, this simplistic model provides a
reasonable result.

Continuing the examination of the Nissan Leaf from the prior section, the respective
range of this vehicle over the I-70 highway heading West was explored at the posted speed
limits based on the ambient temperature. In Figure 12, the range of the vehicle is indicated
before recharging is required when the HVAC system is not engaged; thus, each “leg” of
the journey is provided based on the month of travel. Interestingly, a wide variance is seen
as the wind direction changes from helping (December to February) to hurting (March to
November). Overall, it would take five recharging stops to reach the Colorado border and
six when the wind direction is negatively influencing drag on the vehicle. In comparison,
the EPA-stated highway range predicts that only three recharging events would be needed;
thus, up to 2 × the number of charging events might be encountered by the driver.

To account for the influence of the engaged HVAC system, the AAA data includ-
ing the added effect of HVAC was utilized to determine the power draw parameters of
Equations (35) and (36). Similarly, model calibration using the MATLAB fmincon func-
tion utilized the respective losses in city and highway mileage as a function of the two
temperatures tested from their base temperature data. On average, at 20 ◦F, the model
deviates by 8.68 and 7.35 miles for the city and highway ranges, respectively, whereas, at
95 ◦F, the model deviates by 2.83 and 2.90 miles, respectively, for the city and highway
predictions. Ideally, more data points beyond two temperatures should be used to help
calibrate the model or fabricate a better model. However, the present model should still
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generate a relatively more realistic outcome under real-world conditions than the SAE
J1634 test procedure.
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Figure 12. Traveling from Kansas City, MO, to the Colorado border on I-70 West with the respective 
range shown before charging is necessary. HVAC system is not engaged. 

To account for the influence of the engaged HVAC system, the AAA data including 
the added effect of HVAC was utilized to determine the power draw parameters of Equa-
tions (35) and (36). Similarly, model calibration using the MATLAB fmincon function uti-
lized the respective losses in city and highway mileage as a function of the two tempera-
tures tested from their base temperature data. On average, at 20 °F, the model deviates by 
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Figure 12. Traveling from Kansas City, MO, to the Colorado border on I-70 West with the respective
range shown before charging is necessary. HVAC system is not engaged.

Figure 13 shows the influence of engaging the HVAC system of the same vehicle
(Nissan Leaf), but now driving from the Colorado border to Kansas City, MO, on I-70 East.
Interestingly, using the January 2020 data shows that the vehicle now needs seven recharg-
ing events when the HVAC system is engaged. For this month, the relatively wintry
weather increases the requirements of the heating system, with the greater density of air
and the negative impact of wind now increasing vehicle drag. On average, for each leg
that used the full SOC of the battery pack, turning on the HVAC system lost around an
additional 4.4 miles of range over the entire year. Compared to the EPA-stated range of
132.4 miles, complete legs heading East on I-70, with its beneficial road grade, had an
average range of 75.1 miles (43.3% less) over the course of the year.
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Figure 13. Traveling from the Colorado border to Kansas City, MO, on I-70 East with the (a) HVAC 
system off and (b) HVAC system on for the Nissan Leaf. 

 

Figure 13. Traveling from the Colorado border to Kansas City, MO, on I-70 East with the (a) HVAC
system off and (b) HVAC system on for the Nissan Leaf.

Figure 14 provides the modeled range of the vehicles for the SAE J1634 test procedure
simulated as a function of ambient temperature with the engagement of the HVAC system.
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Given the sparseness of data used for calibration, caution should be employed when using
these models; however, the overall trend of range with ambient temperature follows the
respective trend predicted by EV data [67]. The Tesla Model 3 and Jaguar I-Pace HVAC
models were generated by scaling the respective average Paux in Equation (36) using the
vehicle cabin sizes (Vcabin) between the corresponding resistance heating (Chevy Bolt and
Tesla Model S) and heat pump (Nissan Leaf and VW e-Golf) vehicles:

Paux,Model 3 = F·average
(

Paux,Bolt

Vcabin,Bolt
,

Paux,Model S

Vcabin,Model S

)
VCabin,Model 3 (52)

while additionally finding a factor (F) that ensures the HVAC-on model predicts at least 5%
lower city and highway range than the corresponding HVAC-off model for that vehicle
at each temperature. The values in Table A1 are the resulting parameters from these
estimations.
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Figure 14. Range of the different modeled vehicles based on ambient temperature with the HVAC 
system off (solid symbols) and HVAC system on (open symbols) for the SAE J1634 test procedure. 
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the relative inefficiency of resistance heaters with heat pumps for EVs, showing Coeffi-
cients of Performance of around 2 [68]. Thus, more companies are investigating the po-
tential of heat pumps while factoring in the additional cost required for this technology 
[69]. Based on the Nissan Leaf and VW e-Golf losses, the use of scaling via Equation (52) 
first appears to overpredict the range loss for the Jaguar I-Pace. However, given the lower 
EPA range of these vehicles in comparison to the I-Pace, when normalized, the percentage 
loss is relatively consistent: at 20 °F. The Leaf and e-Golf lose 30.4% and 38.5% of their 
range, whereas the I-Pace is predicted to lose 38.8% of its range. Interestingly, Christen et 
al. found that battery electric vehicles lose about 30–50% of their range at 20 °F and around 
20% of their range at 95 °F [69]. The model predictions here indicate losses (city or high-
way) from 24.9–57.8% at 20 °F to 8.1–37.5% at 95 °F; thus, it appears that the models gen-
erated here provide reasonable values. 

3.4. Vehicle Aging 
As EVs age and the number of battery cycles undergone increases, Figure 8 demon-

strates that the overall capacity of the battery pack will decrease. This could exacerbate 
the range anxiety of the consumer and possibly lead to the consumer returning to a petro-
leum-based vehicle. Interestingly, the accuracy of the predicted range of the vehicle was 
shown to account for around 20% of the satisfaction of an EV owner [70]. Thus, it is im-
portant to understand how the range of an EV will change based on the driving location 
and the vehicle mileage.  

Figure 15a shows the range of the Jaguar I-Pace driving North on I-35 at various times 
in the year 2020 as the vehicle ages. The age of the vehicle was estimated by taking odom-
eter mileage and dividing by the EPA-stated combined range to determine the cycle to 

Figure 14. Range of the different modeled vehicles based on ambient temperature with the HVAC
system off (solid symbols) and HVAC system on (open symbols) for the SAE J1634 test procedure.

As shown, the vehicles that employ a heat pump lose less range as a function of
ambient temperature than the vehicles using resistance heaters. This is to be expected given
the relative inefficiency of resistance heaters with heat pumps for EVs, showing Coefficients
of Performance of around 2 [68]. Thus, more companies are investigating the potential of
heat pumps while factoring in the additional cost required for this technology [69]. Based
on the Nissan Leaf and VW e-Golf losses, the use of scaling via Equation (52) first appears
to overpredict the range loss for the Jaguar I-Pace. However, given the lower EPA range
of these vehicles in comparison to the I-Pace, when normalized, the percentage loss is
relatively consistent: at 20 ◦F. The Leaf and e-Golf lose 30.4% and 38.5% of their range,
whereas the I-Pace is predicted to lose 38.8% of its range. Interestingly, Christen et al. found
that battery electric vehicles lose about 30–50% of their range at 20 ◦F and around 20% of
their range at 95 ◦F [69]. The model predictions here indicate losses (city or highway) from
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24.9–57.8% at 20 ◦F to 8.1–37.5% at 95 ◦F; thus, it appears that the models generated here
provide reasonable values.

3.4. Vehicle Aging

As EVs age and the number of battery cycles undergone increases, Figure 8 demon-
strates that the overall capacity of the battery pack will decrease. This could exacerbate the
range anxiety of the consumer and possibly lead to the consumer returning to a petroleum-
based vehicle. Interestingly, the accuracy of the predicted range of the vehicle was shown
to account for around 20% of the satisfaction of an EV owner [70]. Thus, it is important
to understand how the range of an EV will change based on the driving location and the
vehicle mileage.

Figure 15a shows the range of the Jaguar I-Pace driving North on I-35 at various
times in the year 2020 as the vehicle ages. The age of the vehicle was estimated by taking
odometer mileage and dividing by the EPA-stated combined range to determine the cycle
to use with the models developed for Figure 8. This is an underestimation of the number of
cycles but should provide sufficient insight. Again, each month shows a different range of
the EV, with the respective temperature and wind direction playing a role. Since the Jaguar
was simulated using the NCM622 battery, which has a relatively linear decrease in capacity
with cycle usage, the range generally drops linearly with odometer mileage (shown here
on a logarithmic x-axis). At around 90,000 miles, the vehicle has lost 5% of its range for that
month, and with subsequent driving, the loss continues up to around 15% at 200,000 miles.
At 100,000 miles, the Jaguar averages 124.4 miles of range over the year, a 43.7% decrease
from its EPA-estimated 220.8 highway mile range, but only a 5.7% loss in range from its
predicted range at 1000 miles.
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Figure 15. (a) Range of Jaguar I-Pace on I-35 N starting from the Oklahoma border as a function of
the time of year and number of miles on the odometer with the HVAC system turned on. (b) The
respective stopping points of the first leg indicated by symbols * as the vehicle ages using January
2020 as the month.

Figure 15b demonstrates where the consumer would need to stop during the month
of January as a function of vehicle age. As the odometer mileage increases, stops closer
to Wichita, KS, would be needed. This could be problematic for the consumer if they are
used to a particular stop location and do not pay attention to their EV losing range as
it ages. It is also unknown whether each EV has its own factor in range projection that
considers odometer mileage. If not, it is possible that the satisfaction of the consumer
would subsequently decrease as the vehicle ages.

In comparison, Figure 16a illustrates that it only takes the Tesla Model S around
15,000 miles to lose 5% of its range, and at 100,000 miles, it has lost on average 28.1% of its
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initial range for that month. This result is due to the chosen NCA battery aging curve in
Figure 8 having a more drastic loss in battery capacity with the number of battery cycles.
This is assumed to be a function of the respective nickel level in the perceived battery
chemistries. Adding nickel improves the overall capacity of the battery but leads to a
proportional decrease in its performance during cycling [71]. Note that NCA batteries
generally have LiNi0.8Co0.15Al0.05O2 chemistry, and this also explains why the NCM523
battery performs better cyclically than the NCM622 battery in Figure 8.
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Figure 16. (a) Range of Tesla Model S on I-35 S starting from Kansas City, MO, as a function of the time
of year and number of miles on the odometer with the HVAC system turned on. (b) The respective
stopping points of the first leg indicated by the symbols * as the vehicle ages using November 2020 as
the month.

Now, at 100,000 miles, the average range over the year is 124.1 miles, which is a
53.1% decrease from its EPA-estimated 264.6 highway mile range. Furthermore, Figure 16b
demonstrates a significant difference in stopping locations based on odometer mileage.
In general, the layered ternary cathode materials of NCM and NCA batteries have a
significantly high storage capacity and voltage potential, making them suitable for long-
range EVs; however, they can have a poor rate capacity [72]. Thus, as shown here, the
impact of battery aging can lead to significant losses in EV range, potentially worsening
the range anxiety of the driver.

3.5. Rain and Snow

As indicated in the introduction, both rain and snow can lead to a respective increase
in rolling resistance, subsequently impacting the range of an EV. In addition, the prior
sections investigated high-speed corridors through the state of Kansas. Given the squared
factor of velocity impacting drag in Equation (4), this will result in a greater loss in range in
comparison to a lower-speed route. Thus, Figure 17a demonstrates the impact of rain on
the range of a Tesla Model 3 during a lower-speed route (US-54 East). As indicated, the
range of the vehicle generally falls linearly with the amount of rain on the road during July
of 2020. Reviewing the stopping locations in Figure 17b shows, like age, that earlier stops
are needed, and at the highest rain level on the road (0.10 inches), a third stop would be
required before reaching the Missouri border.
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Figure 17. (a) Range of Tesla Model 3 in July 2020 heading East on US-54 as a function of rain on 
road. (b) Stopping locations indicated by the symbols * based on rain level with sooner stops needed 
heading out of Liberal, KS. Vehicle mileage = 1000 miles, HVAC system on. 
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Figure 18. (a) Range of Tesla Model 3 in February 2020 heading West on US-54 as a function of snow 
on road. (b) Stopping locations indicated by the symbols * based on snow level with sooner stops 
needed heading from the Missouri border. Vehicle mileage = 1000 miles, HVAC system on. 

3.6. Model Exploration 
The constructed model is believed to be the simplest version that captures all perti-

nent facets that impact EV driving range. As a final demonstration of its use, a vehicle 
comparison of the final state of charge driving on I-135 North and South is provided in 
Figure 19 for August of 2020 with the HVAC system engaged and the vehicle aged 50,000 
miles. The total distance on this relatively short interstate route is 95.9 miles; hence, all 
vehicles, as indicated by the EPA, should be able to traverse this route without needing to 
stop. Furthermore, an illustration of the predictive capability of the model is provided by 
simulating the 2021 VW ID.4, for which only EPA data currently exist with the estimated 
parameters provided in Table A2. Like earlier efforts, the calibration procedure of the VW 
ID.4 with the HVAC system off was performed to try to match the MCT test results from 
the EPA (see Figure 20). Then, the same procedure as that used for the Tesla Model 3 was 
conducted to estimate the mileage of the vehicle as a function of ambient temperature 
with the HVAC system off and on. Like the VW Golf, the SOCmin and SOCmax had to be 
expanded to their maximum values to achieve close to the EPA-stated ranges and MPGe. 
The values do deviate more than the other models due to the fact that it employs newer 

Figure 17. (a) Range of Tesla Model 3 in July 2020 heading East on US-54 as a function of rain on
road. (b) Stopping locations indicated by the symbols * based on rain level with sooner stops needed
heading out of Liberal, KS. Vehicle mileage = 1000 miles, HVAC system on.

With respect to snow, Figure 18a demonstrates the range of the Tesla Model 3 heading
West on US-54 with varying levels of fresh snow on the ground in February 2020. Like
rain, the range of the EV drops linearly with the amount of snow cover. Now, three stops
are needed for all scenarios to make it from the Missouri border to Liberal, KS, with snow
having a significant impact on range, as shown in Figure 18b. Both the rain and snow results
show that EVs might consider linking to local weather stations to obtain rainfall/snowfall
data and modify their range predictions accordingly.
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Figure 18. (a) Range of Tesla Model 3 in February 2020 heading West on US-54 as a function of snow 
on road. (b) Stopping locations indicated by the symbols * based on snow level with sooner stops 
needed heading from the Missouri border. Vehicle mileage = 1000 miles, HVAC system on. 
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The constructed model is believed to be the simplest version that captures all perti-

nent facets that impact EV driving range. As a final demonstration of its use, a vehicle 
comparison of the final state of charge driving on I-135 North and South is provided in 
Figure 19 for August of 2020 with the HVAC system engaged and the vehicle aged 50,000 
miles. The total distance on this relatively short interstate route is 95.9 miles; hence, all 
vehicles, as indicated by the EPA, should be able to traverse this route without needing to 
stop. Furthermore, an illustration of the predictive capability of the model is provided by 
simulating the 2021 VW ID.4, for which only EPA data currently exist with the estimated 
parameters provided in Table A2. Like earlier efforts, the calibration procedure of the VW 
ID.4 with the HVAC system off was performed to try to match the MCT test results from 
the EPA (see Figure 20). Then, the same procedure as that used for the Tesla Model 3 was 
conducted to estimate the mileage of the vehicle as a function of ambient temperature 
with the HVAC system off and on. Like the VW Golf, the SOCmin and SOCmax had to be 
expanded to their maximum values to achieve close to the EPA-stated ranges and MPGe. 
The values do deviate more than the other models due to the fact that it employs newer 

Figure 18. (a) Range of Tesla Model 3 in February 2020 heading West on US-54 as a function of snow
on road. (b) Stopping locations indicated by the symbols * based on snow level with sooner stops
needed heading from the Missouri border. Vehicle mileage = 1000 miles, HVAC system on.

3.6. Model Exploration

The constructed model is believed to be the simplest version that captures all pertinent
facets that impact EV driving range. As a final demonstration of its use, a vehicle compari-
son of the final state of charge driving on I-135 North and South is provided in Figure 19 for
August of 2020 with the HVAC system engaged and the vehicle aged 50,000 miles. The total
distance on this relatively short interstate route is 95.9 miles; hence, all vehicles, as indicated
by the EPA, should be able to traverse this route without needing to stop. Furthermore,
an illustration of the predictive capability of the model is provided by simulating the 2021
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VW ID.4, for which only EPA data currently exist with the estimated parameters provided
in Table A2. Like earlier efforts, the calibration procedure of the VW ID.4 with the HVAC
system off was performed to try to match the MCT test results from the EPA (see Figure 20).
Then, the same procedure as that used for the Tesla Model 3 was conducted to estimate
the mileage of the vehicle as a function of ambient temperature with the HVAC system off
and on. Like the VW Golf, the SOCmin and SOCmax had to be expanded to their maximum
values to achieve close to the EPA-stated ranges and MPGe. The values do deviate more
than the other models due to the fact that it employs newer battery technology (NCM712),
but it was assumed here to have the NCM622 battery profiles, given the unavailability of
literature data.
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Figure 19. Final state of charge of each vehicle or the vehicle range when driving from (a) Wichita, 
KS, to Salina, KS, or (b) Salina, KS, to Wichita, KS, on I-135 North and South, respectively, during 
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with newer battery chemistry. Thus, while battery technology continues to improve, it 
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the HVAC system off and on. 

As indicated in Figure 19, not all vehicles can make the I-135 trip without recharging. 
All vehicles will need recharging in Wichita, KS, to make the 191.8-mile roundtrip journey. 
Interestingly, the VW ID.4 has the best range, likely due to the fact that it was estimated 
with newer battery chemistry. Thus, while battery technology continues to improve, it 
does seem that significant improvements are still needed to achieve the 300-mile range 
that has often been discussed as one barrier to commercial success [73]. Finally, it would 
be interesting to check the predictability of the VW ID.4 model once more data are avail-
able.  

3.7. Predictive Spreadsheet 
Given the relative complexity of the model for others to use and the need to translate 

the findings for widespread usage as part of planning, it was decided to extrapolate the 
findings into an Excel spreadsheet. To generate the spreadsheet, the six vehicles in Table 
A1 were simulated over the routes I-I35, US-54, I-70, and I-35 in both directions for each 
month in the year 2020. In addition, the influences of vehicle age (through mileage: 𝑚𝑚𝑖𝑖), 
the HVAC system (off and on), and the amount of rain on the road (𝑡𝑡𝑟𝑟𝑟𝑟) were included as 
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As indicated in Figure 19, not all vehicles can make the I-135 trip without recharging.
All vehicles will need recharging in Wichita, KS, to make the 191.8-mile roundtrip journey.
Interestingly, the VW ID.4 has the best range, likely due to the fact that it was estimated
with newer battery chemistry. Thus, while battery technology continues to improve, it
does seem that significant improvements are still needed to achieve the 300-mile range that
has often been discussed as one barrier to commercial success [73]. Finally, it would be
interesting to check the predictability of the VW ID.4 model once more data are available.
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3.7. Predictive Spreadsheet

Given the relative complexity of the model for others to use and the need to translate
the findings for widespread usage as part of planning, it was decided to extrapolate the
findings into an Excel spreadsheet. To generate the spreadsheet, the six vehicles in Table A1
were simulated over the routes I-I35, US-54, I-70, and I-35 in both directions for each month
in the year 2020. In addition, the influences of vehicle age (through mileage: mi), the HVAC
system (off and on), and the amount of rain on the road (trt) were included as variable
parameters. From this information, an average range multiplier (Rmult) across all vehicles
was determined, which can be used to modify the EPA-stated range of the vehicle. It was
realized that the data for Rmult could be coalesced into a curve fit:

Rmult = (A + B·trt)
(

C + D·mi + E·m2
i + F·mi·trt

)
(53)

Using Matlab’s fmincon function, the values of A, B, C, D, E, and F were fit to each
route, whether the HVAC system was on or off, and the month of the year. In comparison to
the model results, the curve fit had around a 0.2% difference in Rmult. Figure 21 illustrates
the input to the spreadsheet along with the model results. All the user must accomplish is
to provide the EPA-stated range of the vehicle, the level of charge of the battery pack, the
current mileage of the vehicle, whether the HVAC system is engaged, and whether there is
rain on the road. The calibrated curve fit will then tell the user what the estimated range of
that vehicle will be over the routes provided.
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Sept. 107.1 84.0 112.2 112.7 90.9 99.0 97.0 93.5
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Estimated Electric Vehicle Range in Miles based on Road Speed, Direction, and Ambient Conditions

Figure 21. Inputs to the predictive spreadsheet and corresponding estimated range based on route
and month of the year.

4. Discussion and Recommendations

The findings illustrate that the EPA should reconsider how they generate the range
of EVs since range anxiety is a significant issue for the consumer. As illustrated, weather,
speed, the age of the vehicle, and heating and air conditioning all play a significant role
in decreasing the range of EVs. Thus, data should be taken at different temperatures to
demonstrate the impact of the HVAC system. Moreover, a new driving profile more indica-
tive of the speeds seen during highway driving is needed. Furthermore, estimates of the
loss of range based on whether it is raining or snowing and the age of the vehicle should be
provided to the consumer. It is critical that these advances in knowledge be portrayed to the
consumer; otherwise, their attitudes towards EVs will change, and they will revert to using
petroleum-based vehicles. For example, about 20% of early adopters in California have
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switched back, with their dissatisfaction with home charging being a primary factor [74].
The data illustrated here show that more charging events will be needed given current
battery technology, thus potentially worsening the dissatisfaction of consumers.

5. Conclusions

Range anxiety continues to be a primary factor for consumers when considering the
purchase of an EV. While numerous EVs now boast ranges greater than 200 miles based on
EPA data generated from the SAE J1634 testing procedure, the actual range of the EV on
the road can be significantly less. Weather, weight, road conditions and grade, and cabin
conditioning all play a significant role in decreasing actual driving distance. To account
for these facets, this effort endeavored to create the simplest model that accounts for all
pertinent factors to generate a more realistic outcome of EV range.

The initial calibration of six commercial vehicles to the EPA-stated range data shows
good accuracy, with the model deviating by only 0.45 and 0.57 miles for highway and city
ranges, respectively. Of the six vehicles, five were estimated to have SOC ranges deemed
suitable within research findings. Subsequently, predicting a Chevy Bolt using simulated
chassis dynamometer tests shows only a 1–2% loss in range due to added weight or tire
pressure. However, simulating the impact of road grade, wind, and vehicle speed in a
true highway environment demonstrated significant losses of up to 43.2% of the EPA-
stated range for a Nissan Leaf. In addition, ambient temperature effects resulted in the
Leaf requiring around 2 × the number of charging events. Overall, model predictions
indicate losses (city or highway) from 24.9–57.8% at 20 ◦F to 8.1–37.5% at 95 ◦F for the
vehicles simulated.

Battery chemistry was also found to play a role in EV range as the vehicle ages.
The simulated Jaguar I-Pace with an NCM622 battery had a 43.7% decrease in range at
100,000 miles, whereas the Tesla Model S with an NCA battery predicted a 53.1% decrease
in range at the same vehicle mileage. Here, the greater decrease in capacity of the NCA
battery with increasing cycles resulted in the Tesla losing a larger percentage of its range
with mileage. The subsequent model expansion that was employed to include rain and
snow data demonstrates different stopping locations along a lower speed route, which
suggests that in-vehicle estimations of range might need to link to local weather stations
to modify their algorithms. Model exploration and expansion to the VW ID.4 reveals
that significant efforts are still needed in battery chemistry to achieve a true 300-mile
on-road range for lower-cost EVs. It is recommended that the EPA reconsider their range
estimations and provide more realistic values expected by the consumer given possible
driving profiles in Kansas based on the time of year and the age of the vehicle. Finally, a
relatively simple spreadsheet was created that allows users to quickly estimate the range of
an electric vehicle based on the route, time of year, battery pack charge, age of the vehicle,
whether the HVAC system is engaged, and whether rain is present.
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Nomenclature

Variable Description Units
a Parameter in distance determination [-]
aaux, baux, caux Auxiliary power draw parameters [W], [W s m−1], [W s2 m−2]
aEPA, bEPA, cEPA EPA rolling resistance and drag coefficients [N], [N s m−1], [N s2 m−2]
A, B, C, D, E, F Parameters in range multiplier curve fit [-], [in−1], [-], [mi−1], [mi−2], [mi−1 in−1]
A f Frontal area of vehicle [m2]
Ah Battery pack capacity [A h]
Ah0 Initial capacity of battery pack [A h]
arr, brr, crr Rolling resistance parameters [N], [N s m−1], [N s2 m−2]
art, brt, crt Precipitation parameters for rolling resistance [-], [m−1], [s m−2]
aYM, bYM, cYM, dYM, eYM, fYM Energy consumption parameters for HVAC system on [kWh mi−1], [kWh mi−1 ◦F−1],

[kWh mi−1 ◦F−2], [kWh mi−1 ◦F−3],
[kWh mi−1 ◦F−4], [kWh mi−1 ◦F−5]

c Parameter in distance determination [-]
CD Drag coefficient [-]
cm Battery pack capacity multiplier [-]
Cr,mult Multiplier on nominal battery capacity [-]
cy Battery pack cycles [-]
d Distance [m]
Dphase Distance of each phase of EPA test [m]
E Elevation [m]
Eaux Energy consumption per unit distance [kWh mi−1]
ECdccycle Total energy consumption per unit distance [W h m−1]
ECdcphase Energy consumption per phase of EPA test [W h m−1]
Edcphase DC energy consumption per phase of EPA test [W h]
F Scaling factor on HVAC engaged models [-]
FD Drag force [N]
FG Gradation force [N]
FR Rolling resistance force [N]
FT Traction force [N]
Fx Acceleration or deceleration force [N]
g Standard gravity [m s−2]
GP Maximum gradient of road [deg]
i0 Final drive gear ratio [-]
ig Transmission gear ratio [-]
Ipack Pack amperage [A]
Ire f Reference amperage [A]
It Amperage of a single representative battery [A]
KUDDS Scaling factor of UDDS cycle [-]
Kcycle Cycle scaling factor [-]
Kphase Phase scaling factor [-]
lat Latitude [deg]
lon Longitude of vehicle location [deg]
m Overall mass of vehicle [kg]
mi Mileage of vehicle [mi]
n Time-step [-]
N Motor speed [rev min−1]
ncycle Number of cycles for EPA test [-]
Npar Number of batteries in parallel [-]
Paux Auxiliary power draw [W]
Pb Brake power [W]
Pm Motor power [W]
Pr Regenerative braking power [W]
pre f Reference pressure [kPa]
ptire Tire pressure [kPa]
qdr Map driving direction [deg]
qwind Wind direction [deg]
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Rcycle Range of EV for cycle [m]
rd Tire radius [m]
REarth Radius of Earth [m]
Rmult Range multiplier [-]
SOC State of Charge [-]
t Time [s]
Tamb Ambient temperature [K]
Tre f Reference temperature [K]
trt Thickness of rain or snow [m]
Tt Battery pack temperature [K]
UBE Total usable battery energy [W h]
Uw Wind speed in x-direction [m s−1]
V Current vehicle velocity [m s−1]
V Average vehicle velocity [m s−1]
Vcabin Cabin volume [m3]
Ve f f Effective vehicle velocity [m s−1]
Vpack Current pack voltage [VDC]
Vpack Average pack voltage over time step [VDC]
Vw Wind speed in y-direction [m s−1]
Vwind Wind speed [m s−1]
x Parameter in bearing calculation [-]
y Parameter in bearing calculation [-]
Zre f Reference weight [N]

Greek Variables

Variable Description Units
α Tire pressure exponent for rolling resistance [-]
αaux Temperature exponential factor for HVAC system off [-]
β Weight exponent for rolling resistance [-]
βbr Bearing angle [deg]
γ,χ,δ Capacity offset parameters [W], [-], [-]
∆Ah Battery pack capacity change [A h]
∆ f Difference in latitude between time steps [deg]
∆l Difference in longitude between time steps [deg]
∆t Time step [s]
∆Wh Change in battery pack energy [W h]
hm Motor efficiency [-]
ht Driveline efficiency [-]
ϕ Yaw angle of the vehicle [rad]
ϑ Angle of wind relative to direction of motion [rad]
θ Roadway slope [deg]
ρ Density of air [kg m−3]
µr Rolling resistance coefficient [-]
τb Brake torque [N m]
τw Wheel torque [N m]
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Acronyms

AAA American Automobile Association
CSC Constant Speed Cycle
E East
EPA Environmental Protection Agency
EV Electric Vehicle
GPS Global Positioning System
HVAC Heating, Ventilation, and Air Conditioning
HWFET Highway Fuel Economy Test
MCT Multi-Cycle Test
MPGe Miles Per Gallon Equivalent
N North
NCA Nickel Cobalt Aluminum Oxide
NCM333 LiNi1/3Co1/3Mn1/3O2
NCM523 LiNi0.5Co0.2Mn0.3O2
NCM622 LiNi0.6Co0.2Mn0.2O2
NEDC New European Driving Cycle
S South
SAE Society of Automotive Engineers
UDDS Urban Dynamometer Driving Schedule
US06 Supplemental Federal Test Procedure
W West

Appendix A

Table A1. Pertinent vehicle parameters for six commercial EVs.

Vehicle and Model Year 2017–2019
Chevy Bolt

2018–2020
Nissan Leaf

2019 Jaguar
I-Pace

2019 Tesla
Model S AWD

75D

2019 Tesla
Model 3 Std.
Range RWD

2019 VW
e-Golf

AAA Test Data Available Yes Yes No Yes No Yes

Coefficient of Drag [-] 0.32 0.28 0.29 0.24 0.23 0.25

Vehicle Height [in] 62.8 61.6 61.3 56.5 56.8 58.3

Vehicle Width [in] 69.5 70.5 74.6 77.3 72.8 70.8

Frontal Area [m2] 2.211 2.162 2.315 2.026 1.984 2.048

Vehicle Mass [kg] 1616 1557 2140 2215 1611 1585

Unloaded Tire Diameter [in] 25.5 24.9 29.6 27.7 29.4 24.9

Tire pressure [psi] 38 36 37 45 37 41

Tire Revolutions per Mile
[rev min−1] 815 836 703 751 708 836

Final Drive Ratio [-] 7.05 8.19 9.06 9.73 9 9.75

Motor Type
Permanent

Magnet
Synchronous A

Permanent
Magnet

Synchronous B

Permanent
Magnet

Synchronous B
AC Induction

Permanent
Magnet

Synchronous B

Permanent
Magnet

Synchronous B

Maximum Motor Speed
[rev min−1] 8810 10,390 13,000 18,000 13,800 12,000

Maximum Brake Torque
[N-m] 360 321 696 658 431 290

Maximum Brake Power [kW] 150 110 296 386 211 100

Maximum Regeneration
Power [kW] 60 43.3 116.5 * 60 116.5 * 70
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Table A1. Cont.

Vehicle and Model Year 2017–2019
Chevy Bolt

2018–2020
Nissan Leaf

2019 Jaguar
I-Pace

2019 Tesla
Model S AWD

75D

2019 Tesla
Model 3 Std.
Range RWD

2019 VW
e-Golf

Maximum Speed [mi hr−1] 91 89.5 124 139.8 130 93.2

Cabin Volume [ft3] 94.4 116.0 102.6 94 97 93.5

Battery Chemistry [-] NCM622 NCM523 NCM622 NCA1 NCA2 NCM

Batteries in Series [-] 96 96 108 96 96 88

Batteries in Parallel [-] 3 2 4 74 46 3

Nominal Pack Voltage [VDC] 350 350 388 400 350 370

Nominal Pack Capacity [Ah] 171.4 115 222.9 245 230 111

Calculated Pack Capacity
[kW-hr] 59.99 40.25 86.49 98.00 80.50 41.07

Initial Cycles for EPA Tests [-] 4 6 4 6 4 8

SOCmin/SOCmax 0.1/0.8305 0.1/0.9071 0.1/0.8664 0.1/0.8298 0.1/0.8571 0.01/0.9946

EPA City/Highway [mi] 255.1/217.4 165.2/132.4 244.8/220.8 255.0/264.6 230.5/206.3 130.6/117.9

Model City/Highway [mi] 254.6/218.0 165.3/132.5 244.8/220.7 255.6/265.1 229.6/205.7 131.2/116.4

Unadjusted MPGe
City/Highway 182.2/157.4 177.3/142.1 114.1/102.9 137.9/142.7 138.2/123.8 126.0/111.0

Model MPGe City/Highway 182.9/156.6 177.3/142.1 114.1/102.9 137.9/143.0 138.2/123.8 125.7/111.5

HVAC Off 20 ◦F
and 95 ◦F City/Highway Loss

[mi]

−31/−15
−6/−2

−19/−9
−2/−2 N/A −32/−21

−19/−14 N/A −13/−3
−7/0

HVAC Off Model 20 ◦F
and 95 ◦F City/Highway Loss

[mi]

−28.6/−16.2
−9.4/−5.1

−17.3/−10.9
−5.6/−3.5

−31.4/−25.5
−10.6/−8.5

−31.5/−27.3
−10.6/−9.0

−24.8/21.4
−8.2/−7.0

−10.0/−7.7
−3.3/−2.5

HVAC On 20 ◦F
and 95 ◦F City/Highway Loss

[mi]

−148/−68
−65/−22

−58/−26
−24/−8 N/A −109/−69

−48/−25 N/A −65/−20
−34/−9

HVAC On Model 20 ◦F
and 95 ◦F City/Highway Loss

[mi]

−145.1/−74.5
−69.5/−17.6

−50.3/−33.0
−21.2/−13.3

−95.1/−62.2
−53.8/−24.5

−99.4/−75.7
−48.2/−25.1

−132.8/−86.1
−86.1/−20.8

−50.5/−29.2
−30.2/−10.8

Cr,mult 1.0428 1.0596 1.0428 0.9045 0.9884 0.9012

γ 0.8786 0.9222 0.8786 0.8851 1.0069 0.8861

χ 1.0391 1.0592 1.0391 1.0095 1.0552 1.0042

δ ** 0 0 0 1.7714 0 0.4936

aEPA [N] 63.1648 37.0537 −62.1995 −6.6723 77.3991 −27.6012

bEPA [N s m−1] 0.4020 1.2567 2.8080 0.1171 −1.4856 0.4535

cEPA [N s2 m−2] 0.4300 0.4296 0.4108 0.3470 0.3653 0.3860

arr [N] 5.0165 × 10−2 2.9817 × 10−2 −3.8378 × 10−2 −4.2681 × 10−3 6.1051 × 10−2 −2.2877 × 10−2

brr [N s m−1] 3.1937 × 10−4 1.0114 × 10−3 1.7326 × 10−3 7.3551 × 10−5 −1.1702 × 10−3 3.7573 × 10−4

crr [N s2 m−2] 8.9076 × 10−6 5.7334 × 10−5 8.2824 × 10−6 3.7951 × 10−5 7.5030 × 10−5 6.8783 × 10−5

aaux [W]–HVAC off 9.6491 × 102 6.2301 × 102 1.5011 × 103 1.8325 × 103 1.2063 × 103 3.6632 × 102

baux [W s m−1]–HVAC off 6.1117 × 101 7.1905 × 101 1.4680 × 102 1.4651 × 102 5.9168 3.9827 × 102

caux [W s2 m−2]–HVAC off 1.5524 3.6700 1.0389 × 101 4.0367 1.1617 × 101 1.0023

αaux–HVAC off 2.3446 2.2228 1.8577 1.6729 1.8577 1.0136

Heating System Resistance Heat Pump Heat Pump Resistance Resistance Heat Pump

aaux [W]–HVAC on 3.1176 × 101 6.2800 6.1403 1.7323 × 101 1.3458 × 101 9.9413

baux [W s m−1]–HVAC on 6.1308 × 10−1 7.1900 × 10−1 3.4647 × 10−1 1.3758 × 100 6.3044 × 10−1 4.3196 × 10−1
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Table A1. Cont.

Vehicle and Model Year 2017–2019
Chevy Bolt

2018–2020
Nissan Leaf

2019 Jaguar
I-Pace

2019 Tesla
Model S AWD

75D

2019 Tesla
Model 3 Std.
Range RWD

2019 VW
e-Golf

caux [W s2 m−2]–HVAC on 9.0834 × 10−3 3.6300 × 10−2 2.2299 × 10−2 1.3437 × 10−2 6.8909 × 10−3 3.1307 × 10−2

aYM [kWh mi−1] 1.3088 × 10−1 1.3801 × 10−1 4.0411 × 10−1 1.4360 × 10−1 3.2757 × 10−1 2.4480 × 10−1

bYM [kWh mi−1 ◦F−1] −3.5724 × 10−3 −3.4800 × 10−3 −7.5055 × 10−3 −3.2636 × 10−3 −8.1276 × 10−3 −3.7500 × 10−3

cYM [kWh mi−1 ◦F−2] 4.6682 × 10−5 5.1000 × 10−5 9.5581 × 10−5 4.7516 × 10−5 1.1177 × 10−4 4.2937 × 10−5

dYM [kWh mi−1 ◦F−3] −2.4521 × 10−7 −2.8300 × 10−7 −4.9901 × 10−7 −2.7221 × 10−7 −6.0641 × 10−7 −2.2862 × 10−7

eYM [kWh mi−1 ◦F−4] 3.3140 × 10−11 1.4500 × 10−10 2.9917 × 10−10 2.7485 × 10−10 2.7688 × 10−10 3.2365 × 10−10

fYM [kWh mi−1 ◦F−5] 3.9879 × 10−12 2.8400 × 10−12 8.1332 × 10−12 2.1291 × 10−12 7.5301 × 10−12 4.5652 × 10−12

* Estimates and ** Not enough data to calibrate the parameter.

Table A2. Parameters for the 2021 VW ID.4.

Coefficient of Drag [-] 0.28

Vehicle Height [in] 64.4

Vehicle Width [in] 72.9

Frontal Area [m2] 2.18 *

Vehicle Mass [kg] 2049

Unloaded Tire Diameter [in] 29.2

Tire pressure [psi] 50

Tire Revolutions per Mile [rev min−1] 692

Final Drive Ratio [-] 12.99

Motor Type Permanent Magnet Synchronous B

Maximum Motor Speed [rev min−1] 16,000

Maximum Brake Torque [N−m] 309

Maximum Brake Power [kW] 150

Maximum Regeneration Power [kW] 70 *

Maximum Speed [mi hr−1] 99.4

Cabin Volume [ft3] 99.9

Battery Chemistry [-] NCM712 (used NCM622 data)

Batteries in Series [-] 96

Batteries in Parallel [-] 3

Nominal Pack Voltage [VDC] 400

Nominal Pack Capacity [Ah] 205

Calculated Pack Capacity [kW−hr] 82

Initial Cycles for EPA Tests [-] 4

SOCmin/SOCmax 0.1/0.9999

EPA City/Highway [mi] 278.5/237.1

Model City/Highway [mi] 270.8/233.4

Unadjusted MPGe City/Highway 107/91
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Table A2. Cont.

Model MPGe City/Highway 120.8/104.1

HVAC Off 20 ◦F
and 95 ◦F City/Highway Loss [mi] N/A

HVAC Off Model 20 ◦F
and 95 ◦F City/Highway Loss [mi]

−27.7/−21.4
−9.0/−6.6

HVAC On 20 ◦F
and 95 ◦F City/Highway Loss [mi] N/A

HVAC On Model 20 ◦F
and 95 ◦F City/Highway Loss [mi]

−151.0/−76.4
−96.4/−22.2

Cr,mult 1.0428

γ 0.8786

χ 1.0391

δ** 0

aEPA [N] 65.0997

bEPA [N s m−1] 1.8644

cEPA [N s2 m−2] 0.4068

arr [N] 4.6304 × 10−2

brr [N s m−1] 1.3246 × 10−3

crr [N s2 m−2] 3.2345 × 10−5

aaux [W]–HVAC off 1.3973 × 103

baux [W s m−1]–HVAC off 8.0243 × 10−1

caux [W s2 m−2]–HVAC off 1.2360 × 101

αaux–HVAC off 1.8577

Heating System Resistance

aaux [W]–HVAC on 9.9394

baux [W s m−1]–HVAC on 4.6607 × 10−1

caux [W s2 m−2]–HVAC on 5.0793 × 10−3

aYM [kWh mi−1] 4.7395 × 10−1

bYM [kWh mi−1 ◦F−1] −1.1758 × 10−2

cYM [kWh mi−1 ◦F−2] 1.6167 × 10−4

dYM [kWh mi−1 ◦F−3] −8.7681 × 10−7

eYM [kWh mi−1 ◦F−4] 3.9058 × 10−10

fYM [kWh mi−1 ◦F−5] 1.0961 × 10−11

* Estimates and ** Not enough data to calibrate the parameter.
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