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Abstract: The current increase of electric vehicles in Germany requires an adequately developed
charging infrastructure. Large numbers of public and semi-public charging stations are necessary to
ensure sufficient coverage. To make the installation worthwhile for the mostly private operators as
well as public ones, a sufficient utilization is decisive. An essential factor for the degree of utilization
is the placement of a charging station. Therefore, the initial site selection plays a critical role in the
planning process. This paper proposes a charging station placement procedure based on real-world
data on charging station utilization and places of common interest. In the first step, we correlate
utilization rates of existing charging infrastructure with places of common interest such as restaurants,
shops, bars and sports facilities. This allows us to estimate the untapped potential of unexploited
areas across Germany in a second step. In the last step, we employ the resulting geographical
extrapolation to derive two optimized expansion strategies based on the attractiveness of locations
for electric vehicle charging.

Keywords: charging infrastructure; charging station placement; real-world data; electric vehicle

1. Introduction

Climate change caused by greenhouse gases is generally seen as a key challenge
humanity is facing in the 21st century. The mobility sector is one of the main drivers of
emissions and must become carbon neutral shortly to avoid catastrophic consequences.
For personal mobility, electric vehicles (EVs) are currently favored by many practitioners
and academics as a technology for decarbonisation. The ongoing increase of EVs must be
accompanied by an increase in available public charging infrastructure (CI). The CI can be
divided into two groups, the fast-charging mostly DC network and the slow-charging AC
network. The former is necessary to enable long-distance highway traveling generally and
drivers stay near the vehicle during the short charging periods. The latter is the key enabler
for everyday mobility and can be further differentiated into private and public charging.
Private charging takes place at households or workplaces. Public charging occurs at openly
accessible charging stations (CS) in parking areas, while the EV drivers are usually engaged
in other activities such as shopping, sports, etc. Due to the generally longer charging times,
it is important to place the CSs at attractive locations, so that the users can integrate the
charging process into their daily life. Further, to make the CSs worthwhile for the operators,
a high frequency of usage is important. Failing to do so could mean that the expensive and
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often publicly supported CSs may remain unused. These ideas motivate this paper’s goal
of supporting the process of selecting suitable locations.

A large and growing body of literature has investigated and debated the topic of
site selection for charging infrastructure. In the absence of sufficient usage data or for
projections into the future, the models are typically based on socio-demographic data
including points of interest (POI) [1], expert interviews [2,3], traffic counters [4,5], and
user surveys [6,7]. However, the lack of real-world utilization data reference in these
approaches implies the use of fundamental assumptions. Users could state preferences
and behavior that does not coincide with the actual reality. Expert opinions and socio-
demographic data have no direct link to actual usage meaning that the people’s behavior
can only be approximated. Realized CSs usage may therefore significantly differ from
the anticipations made.

An alternative approach to the above-stated methods is to analyze data of CS or EV
usage [8–14]. The most frequently used method in these works is to use ordinary least
squares linear regression to find correlations between CS usage and external features. For
the placement of new infrastructure, dynamic features are of little relevance since the
location of a CS does not change. Dynamic approaches are useful in peak demand and
load management. The list of analyzed features can be categorized along the properties
of time-varying and static one axis and geographical scope on the other axis. Examples of
time-varying external features are, for example, the time of day, as is common for electrical
load profiles. In a larger scope, regional effects such as school vacations, public holidays, or
weather can cause time-varying behavior. Local specific features that influence the charging
behavior can be for example traffic hot spots or local events. For static features, area-based
and point-based features are the most suitable, such as population density or the type of
POIs nearby. Using this classification, researchers typically create a linear regression model
that links the CS usage and the available external features [14,15]. The approach of using
POI data or other types of Geographic Information System (GIS) data is not new and has
been used by other researchers as well. The authors in [15] find potential CS locations by
requiring that features such as public transportation, major road access, population centers,
stores, industrial centers, etc., are all nearby. However, this static approach is based entirely
on GIS data from external features. Information on the utilization of existing charging
stations to validate their assumptions was not taken into account. The authors in [14]
had access to both CS occupation and GIS data, in particular POIs, and their work can
therefore be considered as an evolution from [15]. They mapped CS usage to nearby POIs
and were thereby able to create a map of attractiveness for the area under investigation.
The limitation, however, is that the geographic areas analyzed are comparatively small
and therefore limited in scope. This makes it challenging to verify the applicability of the
encountered trends to a broader geographic area.

As was shown in the previous paragraph, there is a great deal of attention in the
literature on methods of selecting suitable locations for the expansion of CI. However, the
applicability of proposed methodologies to a larger scale remains questionable due to the
limited data in previous studies, especially for methods combining CS usage and POIs.
This limitation on local data makes the results more prone to spurious correlations and
overestimation of local phenomena. For greater applicability, the research question hence
needs to be examined with a much greater and more diverse geographic scope. Another
issue is that since researchers in the past were unable to test their findings on a national
scale, it was challenging to extrapolate how new charging infrastructure would be created.
Therefore, we focus on static properties, specifically on area and location data, as well
as real-world CS occupation data. By using a large data basis encompassing CS usage
and POI locations up to a national scope, this paper aims to contribute to the charging
station site selection in Germany. The sheer size of the data set enables robust statistical
statements about the correlation between CS usage and POIs. Consequently, the results are
less susceptible to local effects that cannot be reflected in the POI data.
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To do so, we use regression analysis to identify the impact of specific POI categories
on the charging station utilization. Using the regression fit function, we create heat maps
indicating the charging station site attractiveness. We use these heat maps to find new
sites for CSs that maximize their attractiveness by performing a genetic optimization with
two different strategies. The first strategy is called “competing” and aims to maximize
the attractiveness of every new build CS. The second strategy is called “cooperating” and
aims to maximize the overall attractiveness of the area under consideration by placing new
CSs. The results are presented and discussed afterward, followed by a discussion about the
limitations of our work. Last, the results are concluded, pointing out several key findings.

2. Data
2.1. Charging Station Utilization

The data used for the analysis are the charging station availability that is accessible via
different platforms in Germany [8]. Our data set consists of 21,777 charging points (CPs)
in urban and suburban areas in Germany. It includes mostly AC charging points and a
few DC fast-charging points. Large fast-charging networks along highways, comparable
to service stations, are not included in the data set. For approximately one year, 1,836,076
charging events have been recorded. According to the terminology used in this paper, a
charging event is defined as the period in which an EV occupies a CP, as our data do not
contain any information about the exact charging process. For each CP, we calculate the
key performance indicators (KPIs) charging events per week and average event duration.
Furthermore, the overall recording time for each charging point is determined. This
parameter may vary as more data sources were gradually added over time to the data
set, and some CSs did not provide continuous data for all CPs. On average, the recorded
data per CP is 311 days, which corresponds to a representative period, as also seasonal
charging behavior is included. The data reveals that most CPs are used less than once per
week, while the average utilization amounts to 1.8 charging events per week (see Figure 1a).
The histogram in Figure 1b) on average durations of charging events reveals a significant
spread across the analyzed CPs, with an average duration of 2:34 h. There are two maxima
at charging durations around 30 min and 3 h, respectively. As the low average utilization
already indicates, there are significant regional differences in the economic efficiency of
charging stations. A detailed analysis based on the same data can be found in [16]. For the
economic operation of an AC charging point, at least one charging process of about four
hours per day is necessary.
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Figure 1. (a) Distribution of average charging events per week. (b) Distribution of average charging 
duration based on all charging events in our data set.

Figure 1. (a) Distribution of average charging events per week. (b) Distribution of average charging
duration based on all charging events in our data set.
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For spatial analysis, the data are grouped based on the 401 administrative districts
of the German counties and independent cities. The 21,777 CPs in our data cover 375 of
these districts. To evaluate the performance of a CP in terms of empirical user acceptance
and utilization, a metric proposed in [17] is applied, which is defined as the product of
average charging events per week and average charging duration per event. This KPI is
calculated for every charging station and averaged for the regions. The large spread in CP
performance between individual German districts is depicted in Figure 2.
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Figure 2. Spatial distribution of the average utilization of CPs per region in Germany. The measure
for the utilization is calculated using the average duration in hours multiplied with the average
number of charging events per week. The value is calculated for every CP and then average over all
CPs within region.

2.2. Points of Interest

A POI is a location of particular interest for public life, such as schools, restaurants
and shopping locations. Thus, it represents a frequently visited destination for pedestrians,
cyclists and, car owners alike. We use POIs located and characterized in the OpenStreetMap
(OSM) service. These POIs can be used to characterize areas based on the category and
frequency of occurrence. For example, an area with a high number of restaurants and
bars could be a nightlife district, which is a place of common interest. In residential areas,
on the other hand, there are hardly any POIs. In our analysis, we use 23 different POI
categories as shown in Figure 3 along with their frequency of occurrence. We extract
1,162,387 POIs across Germany, each of which is characterized by its GPS coordinates and
category affiliation. The categorization, as well as the frequency of the POIs, are shown in
Figure 3. To extract the OSM POIs, we used the OsmPoisPbf project [18]. The information
on local POI distribution can be used to assess the attractiveness of a given area for the
expansion of charging infrastructure. For this purpose, the methodology used in this paper
is presented in the following section.



World Electr. Veh. J. 2022, 13, 94 5 of 18

Sh
op

C
on

ve
ni

en
ce

R
es

ta
ur

an
t

C
ol

le
ge

/S
ch

oo
l

C
af

e/
Fa

st
-f

oo
d

C
lin

ic
Sp

or
t

Pl
ac

e
of

W
or

sh
ip

Pa
rk

/G
ar

de
n

Pu
bl

ic
Bu

ild
in

g
H

ot
el

Po
st

/B
an

k
Ba

r/
Pu

b/
C

lu
b

H
os

pi
ta

l
C

in
em

a/
M

us
eu

m
G

as
st

at
io

n
R

ai
lw

ay
St

at
io

n
Th

em
e

Pa
rk

/S
ta

di
um

C
ar

R
en

ta
l/

Sh
ar

in
g

M
ar

in
a/

H
ar

bo
ur

M
ar

ke
tp

la
ce

A
er

ow
ay

0

10

20

Pe
rc

en
ta

ge
of

PO
Is

ca
te

go
ry

oc
cu

rr
en

ce

Figure 3. Histogram of the selected POI categories extracted from OSM.

3. Methodology
3.1. Regression

To identify whether there is a correlation between charging point utilization and the
individual POI categories, we use a linear regression model. As part of the data preparation,
the distances of each CP to the nearest POI must first be determined for this purpose. We
assume that the closer a POI is placed to a CP, the stronger is its influence on the CP
utilization. Thus, a POI right next to the CP has the strongest influence while vanishing
with distance. In order to limit the effective area of POI impact to walking distances, only
the POIs within a certain radius r around the considered CP location are taken into account
in the regression. Assuming a linear characteristic, the effective impact dij of the j-th POI
denoted by POIj on the utilization of the i-th CP denoted by CPi is determined by:

dij =
(
r− dist

(
CPi,POIj

))
> 0 for i ∈ N, j ∈ K (1)

where dist() is a function returning the distance between two points, N is the total number
of charging stations and K is the number of POIs under consideration. The geographic
distances between CPs and POIs are determined using the inverse haversine formula [19].
POIs with a higher distance than r = 500 m are assumed to have no influence on the CP
anymore and are set to zero [14]. A sensitivity analysis of this parameter is carried out
in the Appendix A to further justify our choice of parameter. Subsequently, we perform
a multiple linear regression to derive a correlation between the POI category and the
historical utilization of the CPs. In this regression model, the utilization of a given CP y
acts as the dependent variable and the corresponding matrix of distances to the nearest
POIs D collects the independent variables as described in (2). Furthermore, b is the vector
of the models’ estimates, and e is the error vector.

y = Db + e (2)

The predictor values b are calculated using the least-squares regression and are shown
in Table 1 in Section 4. Based on the linear regression, both positive and negative influ-
ences of the POI category on the utilization can be observed. In addition, we include the
population density as a control variable into our model.
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Table 1. Results of the regression analysis with marked significance (p < 0.05); R2 = 0.175, Along
with the estimates (b-Values) the standard error SE, t-test and p-value is shown.

Feature Estimate SE t-Test p-Value SIG

(Intercept) 0.010099 0.000568 17.77 ∼ 0 1
Bar/Pub/Club 1.45 · 10−5 1.64 · 10−6 9.01 ∼ 0 1
Car Rental/Sharing 1.46 · 10−5 1.86 · 10−6 7.84 0.455 1
Marina/Harbor 1.15 · 10−5 6.20 · 10−6 1.86 0.06305 0
Park/Garden 1.08 · 10−5 1.50 · 10−6 7.21 ∼ 0 1
College/School 6.99 · 10−6 1.66 · 10−6 4.16 0.000032 1
Clinic 6.78 · 10−6 1.74 · 10−6 3.89 0.000102 1
Population density 6.68 · 10−6 1.85 · 10−7 36.17 ∼ 0 1
Marketplace 6.57 · 10−6 2.36 · 10−6 2.79 0.0053 1
Cinema/Museum 6.27 · 10−6 1.63 · 10−6 3.85 0.00012 1
Cafe/Fast-food 5.23 · 10−6 1.45 · 10−6 3.57 0.00036 1
Restaurant 4.32 · 10−6 1.47 · 10−6 2.93 0.00334 1
Shop 3.55 · 10−6 1.58 · 10−6 2.25 0.02466 1
Hotel 5.81 · 10−7 1.40 · 10−6 0.41 0.6786 0
Place of Worship 5.26 · 10−7 1.63 · 10−6 0.32 0.74835 0
Post/Bank −2.27 · 10−7 1.71 · 10−6 −0.13 0.89439 0
Airport −1.35 · 10−6 9.79 · 10−6 −0.14 0.89017 0
Hospital −1.64 · 10−6 1.57 · 10−6 −1.05 0.294 0
Convenience −2.13 · 10−6 1.71 · 10−6 −1.25 0.21228 0
Sport −2.86 · 10−6 1.49 · 10−6 −1.93 0.05399 0
Railway Station −3.36 · 10−6 1.87 · 10−6 −1.79 0.07287 0
Public Building −5.24 · 10−6 1.46 · 10−6 −3.58 0.00034 1
Theme Park/Stadium −7.76 · 10−6 3.47 · 10−6 −2.23 0.02527 1
Gas station −9.16 · 10−6 1.37 · 10−6 −6.68 ∼ 0 1

3.2. Heat Maps of Attractiveness

Using the fitted regression function, heat maps were generated on the basis of existing
POIs and their categories. For this purpose, a dense grid of equidistantly located virtual
CPs is created across the considered region. The design matrix D̃ of distances to the nearest
POIs is calculated using the virtual CPs. Subsequently, the fitted values ŷ are determined
using Equation (3) and are displayed in the form of a heat map.

ŷ = bD̃ (3)

Thus, the fitted values can be interpreted as the fraction of the utilization in Figure 1
that can be explained by the POIs at a specific location. In the following, these values
are considered as the attractiveness of a potential location for charging infrastructure.
To provide some context for the evaluation of the derived site attractiveness in the heat
map, the POIs and the already existing charging stations are also plotted in this figure. In
addition to the subsequent analysis of the optimal placement of future CSs, these heat maps
can already provide a valuable contribution to rough area planning, as they reduce the area
under consideration dramatically to the most promising locations for an adequate charging
infrastructure expansion.

3.3. Siting Optimization

Given the previously introduced heat maps, we use this information to find sites for
CSs that maximize the attractiveness for users in the following. To achieve this, a three-step
method was developed as follows:

1. Creation of a Voronoi graph that allocates areas to the nearest CS,
2. Numerical integration of the attractiveness covered within the intersection area of the

walking distance radius and the Voronoi area of a CS,
3. Genetic optimization of the collected attractiveness through additional CS at new sites.
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These steps are further described in the following subsections.

3.3.1. Voronoi Graph

A Voronoi graph is a tool that is typically used to partition a given plane with n points
into n convex polygonal areas such that each of these areas contains only one point. The
boundaries between the individual areas are drawn in a way that they are equidistant to
the nearest two neighboring points. In this paper, a Voronoi graph is used to define the
theoretical coverage areas (polygons) of the given CSs (points) within the region under
consideration (plane). For the implementation, the Python package scipy [20] was used.

3.3.2. Estimation of Occupation of a Newly Built CS

The areas defined by the Voronoi graph are only bounded by the given set of CSs
within the borders of the region under consideration. Especially in regions with a low
density of CSs, the derived coverage areas may become very large. In practice, the CS
defining such a large theoretical coverage area may be the nearest one around. Yet, the
most distant locations within the considered area are improbable to be affected by the
existence of this CS anymore. Hence, the theoretical coverage area needs to be limited to
a practical definition of coverage that is more meaningful for the daily life of EV users.
Therefore, a radial boundary with a maximum of 0.01° on the latitude and longitude map
(corresponding to approximately 1.1 km) is superimposed on the theoretical coverage area
from the Voronoi graph. Figure 4 illustrates the introduced limitation of the CS coverage
area. To simplify the calculation of these covered areas, they are split into several subareas.
As Figure 4, these can be of three different types, which are characterized by how the line
opposite to the CS location is delimited and by how many vertices of that line are on the
radius defined earlier as the CS range. The purple area is an example of where the Voronoi-
boundary is more restrictive than the CS range. The area covered is consequently delimited
by the Voronoi boundary and the two radial lines connecting the CS with the two points
where Voronoi boundary and CS range meet. The yellow areas are similar, but the range
is the limiting factor. The green and blue areas are similar because the Voronoi boundary
is more restrictive than the CS range, but either one (green) or two (blue) of the Voronoi
vertices are closer to the CS than the CS range. The radial lines are consequently shorter
than the CS range. This logic was implemented using Matplotlib [21] in combination with
a pixelated heat map. Once the covered area Acaptured is calculated, we determine the
captured attractiveness AT of a newly built CS using the following loading function

AT =
Acaptured

Acircle
· ŷCS. (4)

The area of the range limiting circle Acircle is used to normalize and hence, can be
interpreted as a weighting of how much of the attractiveness that is predicted in the heat
map can be actually captured. ŷCS is the point value of the heat map at the desired location
(i.e., the construction site of the CS to be built). Given that the heat map was constructed
using the regression results, it can be thought of as an estimation of an occupation rate if
no other CSs were nearby. The unit of AT is identical to the predicted attractiveness ŷ of
the regression results and can therefore be interpreted as the utilization of a newly built
CSs. Since the regression results do not consider competition between the stations, it is
important to keep in mind that the utilization will be lower due to the area ratio.
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Figure 4. Example of the area a CS covers. The attractiveness of all points in the gray area is integrated
to form the attractiveness of the station.

3.3.3. Competing and Cooperating Genetic Optimization

The calculation described in Equation (4) in the previous section can be interpreted
as a target function for optimization with the geographic coordinates of the new CS to
be placed serving as optimization inputs. The optimization problem is non-convex and
non-monotonous since the heat map does not necessarily have only a single global max-
imum. Additionally, existing CSs interact with the new CS through the Voronoi borders
separating them. An optimization method that is well suited to tackle this kind of problem
is genetic optimization. The algorithm works by creating a population of inputs (a list
of geographic coordinates) and evaluating their performance. Just like in the real-world
evolution, successful members of the population are more likely to create offspring and
thereby steadily move the population towards the most promising coordinates. In this
work, the python library geneticalgorithm was used [22]. As inputs to the optimizer, we
define two scenarios called “competing” and “cooperating”. In the competing optimization,
the target function of the optimizer solely focuses on the attractiveness obtained by the
newly built CS. This can be interpreted as a new competitor who aims to position its CS
at the most attractive location possible. In the cooperating scenario, the target function
is the integral of all CSs in the observed region. This can be interpreted as a monopoly
player or a regulatory body trying to maximize coverage of the entire CS network. The
key difference is that the algorithm is more willing to place CSs close to each other in the
competing scenario than in the cooperating scenario since it is not punished for “stealing”
attractiveness from another CS. In the cooperating scenario, this is less attractive since only
the additionally covered area contributes to the overall attractiveness.

4. Results

In this section, the results obtained in this paper are presented. We start by providing
and evaluating the regression results. These have subsequently been used to generate heat
maps which are shown in the next section. For the sake of conciseness, the regression
results are exemplified in detail for the city of Cologne, which contains diverse areas
ranging from highly urbanized quarters to almost rural suburbs. The two last sections
focus on the placement strategies for additional CSs based on the results of the genetic
optimization. To compare the different expansion strategies, the resulting placement of the
first ten new CSs in the two scenarios is shown. The example of Cologne is used once again
to analyze the behavior of the algorithm in detail. This analysis is generalized in a second
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step by looking at the nationwide results for the cooperating and competing optimization
strategies separately. A comparison of the two different optimization strategies concludes
this section. All heat maps, the underlying csv-files, and the station placement results can
be downloaded from our git repository. The link can be found at the end of this paper.

4.1. Regression

Table 1 shows the results of the regression analysis. As the regression is of a linear
nature, both positive and negative influences were expected and obtained. Since all esti-
mates were generated using the same methodology, their values may also be compared.
The highly utilized CPs seem to be mostly related to POIs that characterize short-term
stays, such as bars, pubs, clubs, schools, colleges, clinics, marketplaces, cinemas, etc., as can
be seen from the POI categories with high estimate values. The high positive correlations
for car rental places can possibly be explained by the ca-sharing vehicles also relying on
public infrastructure. These interpretations should, however, be taken carefully since there
may be hidden factors. One such factor is ,for instance, that fast chargers tend to be quite
close to gas stations. As [8] shows, fast chargers have an overall low occupation rate, but
given the much shorter charging events, they can service more vehicles than a slow charger.
Other POIs such as marinas and harbors, airports, shops, or hotels may be too infrequent
so that their predictive value is limited. This is also reflected in the high p-value, so that the
null hypothesis cannot be discarded. Overall, the regression results serve as input for the
subsequent steps.

4.2. Heat Maps of Site Attractiveness

An example of the resulting heat map for the city of Cologne can be seen in Figure 5.
It becomes immediately apparent that a high local density of POIs leads to a higher
attractiveness of an area. This is not surprising since most estimates in the regression were
positive and of larger magnitude than their negative counterparts. A high POI density
corresponds to many amenities and high availability of activities in the surroundings that
the EV drivers can turn to while their vehicle is charging. For this reason, the effect of many
POIs also leading to high site attractiveness can be well explained and meets expectations.
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Figure 5. Heat map of Cologne depicting attractiveness calculated based on POIs, where yellow
indicates a high attractivness and red a low attractiveness.
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4.3. Optimization for Charging Infrastructure Expansion

Based on the site attractiveness, the placement of additional CSs has been optimized
according to two different expansion strategies, as explained in Section III.C. While the
competitive strategy seeks to maximize the captured attractiveness of each CS added,
the cooperative strategy focuses on maximizing the coverage area. Figure 6 shows the
optimization results for the example of the city of Cologne where we see a similar behavior
for both approaches. The algorithms partially try to fill the gaps in the very attractive areas
in the city center (1, 2, 3, 4, 7 for competing and 1, 5, 6 for cooperating). A second option
is to pick smaller hotspots further away from the city center (5, 6, 8, 9, 10 for competing
and 2, 3, 4, 7, 8, 9, 10 for cooperating). The main difference between the approaches is that
the competing strategy results in a lot stronger agglomeration of CSs near the city center
and fewer stations in the surrounding area. Further, there are only two stations (5 and 10)
in the competing scenario that do not reduce the attractiveness of an existing station. In
comparison, the cooperating strategy shows no subtraction of attractiveness for stations
2, 4, 7, and 9 and very limited subtraction for stations 5 and 8. The described behaviors
are in line with the optimization goals formulated earlier. We can therefore conclude
that the implementation has been successful. Similar checks for other cities confirm the
proper operation of the optimization algorithms but are not repeated here for the sake of
conciseness. The results are, however, available on our Github repository.

Competitive optimization in Köln

(a)

Figure 6. Cont.
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Cooperative optimization in Köln

(b)

Figure 6. Existing and new CS in the city of Cologne (“Köln”) as decided by the cooperating (a) and
competing (b) optimization strategy. Green dots are existing CS, and blue dots are new CS. The order
of stations added is indicated with numbers at each blue dot. The shaded area surrounding each
station shows the area in which each station is able to collect the attractiveness. The underlying heat
map is plotted only for the city and district of Cologne, where yellow indicates a high attractiveness
and red a comparatively low attractiveness.

4.4. National Scope

By integrating the attractiveness of the areas covered by CSs in each district, it is possi-
ble to gain an understanding of the results on the national level. Figure 7 shows the results
by looking at the change in achieved attractiveness after CSs are added. When comparing
the graphs, it immediately becomes apparent that both approaches perform similarly.
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Figure 7. Increased achieved attractiveness by adding new CS to the existing infrastructure using
the optimization strategy cooperating (a) and competing (b). Each line shows the result for a single
district, with the color becoming darker for districts with greater improvements. Example of how to
read: In the cooperating case, after adding 10 CS the highest covered attractiveness was 0.16.
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It can be seen that the covered attractiveness across all districts increases with more
stations in a linear fashion. This is a strong indication that enough sites are still available
for new CSs, and no significant competition has arisen yet. As Figure 6 shows for the
cooperative optimization of Cologne, this is a result of many sites outside the city centers
not yet being covered. For the competitive approach, it can be seen that there are sufficient
places still available where a new CS can be placed between existing CSs. Both patterns
repeat themselves in other locations as well. If only the amount of attractiveness covered is
taken as a metric, both strategies perform similarly well and, the average improvement
after adding 10 CSs across all districts differs by only 0.6%. This finding can be augmented
when including Figure 8. It can be seen that for most counties, the difference between the
two approaches results in a captured attractiveness below 5%.
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Figure 8. Histogram of the number of counties by the difference between the two approaches.
Example how to read: In 33 counties, the difference between the two approaches is 3%.

Comparison Between Districts

As Figure 8 shows, the performance difference between competing and cooperating
optimization is less than 5% relative to the originally covered attractiveness in 201 out
of the 242 districts analyzed. Additionally, districts with a relatively high difference are
characterized by having very few CSs at the present time.

In order to provide an understanding of the geographic differences between the
individual districts, Figure 9 projects the gains in captured attractiveness from the optimal
placement of ten additional CSs onto a map of Germany. The plot, therefore, shows the
values at x = 10 of the cooperating case in Figure 7 but is shown on the map to provide a
sense of geographical spread. The results illustrate that there is a highly uneven distribution
between smaller urban districts and the larger and more rural districts. This effect can also
be observed in [8,16] where rural areas experience significantly fewer charging events as
compared to urban areas. This is not very surprising since population density was included
as a factor in the regression model shown in Table 1 and strongly and positively correlates
with attractiveness.
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Figure 9. Attractiveness of newly built CSs by district. Dark districts are those with a high attractive-
ness and light areas are those with a low attractiveness covered by the newly created CSs.

5. Discussion

One key point in the public debate revolving around CSs is how the market should be
organized. The currently employed model is to have private companies build CSs wherever
they think it is most attractive. This harbors the risk that, particularly in rural areas, hardly
any public charging infrastructure will be developed due to the low utilization to be
expected. The absence of public CSs could, however, prevent inhabitants and companies in
these regions from purchasing EVs, leading to a chicken-egg situation where no private
investor is willing to invest in CSs due to the lacking demand. This chicken-and-egg
situation can be overcome in two ways. The current approach is to publicly support
charging infrastructure with subsidies to reduce the financial risk for investors. The
currently followed approach is to fill the financial gap through public subsidies, increasing
the incentive to also operate in less revenue-promising areas. Alternatively, CSs could be
treated similarly to assets of the electricity grid, which are considered natural monopolies.
In this case, a central agency would determine the sites and type of charging infrastructure
to be constructed. A variant of the latter is a central agency tendering locations and
subsidizing the bidder able to realize a project with the least amount of subsidy.

Theoretically, a central planning agency could position new CSs more optimally than
private competitors would since the agency optimizes for global user comfort instead of
company-specific profits. This type of optimal placement corresponds to the cooperating
optimization approach used in this paper. The competitive placement in turn corresponds
to the competing scenario. If the CSs had an unlimited range and were able to capture
the entire attractiveness of their respective Voronoi region, Hotelling’s law would predict
a much stronger concentration of the competitors near the centers of attractiveness [23].
The limited range however ensures that new stations are not being placed very close to
competitors since this would reduce the attractiveness of both sites. Due to this, CSs
would not concentrate on the most attractive locations but would rather spread out in a
real-world setting.

In the results, it can be seen that the cooperating optimization does in fact create a
more widespread network, but the differences are relatively minor in most places. This
behavior is a clear argument that the competitive construction of CSs is a suitable method
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to create a reasonable coverage if the focus is on small areas. The issue of how local
monopolies can be prevented from creating excessive prices would need to be solved on
a policy level. Looking at the national level, however, reveals that there are significant
differences in the attractiveness among the regions. Investors seeking to maximize the
usage of their CSs would consequently focus on the most attractive districts with a high
population density or many amenities where people can spend time while their car is charg-
ing. An unguided and solely market-driven approach can therefore not create adequate
nationwide covering of CSs necessitating governmental intervention. An approach where
bidders compete for the lowest subsidies—similar to what is already done when tendering
renewable energies—could be a promising approach and is the approach currently used for
creating the Deutschlandnetz. Deutschlandnetz is a tender where the government defined
1000 areas where fast-chargers should be built and private companies submit their required
subsidy as bids.

6. Limitations

The results obtained in this paper provide a starting point for the placement of new
stations and aim to contribute to the public discussion of optimized placement. There are,
however, several limitations of this work that we would like to point out:

• The average occupation was used as a measure of the attractiveness of a station.
In the data we use, CSs are marked as occupied as long as an EV is plugged-in. This
does not reflect the actual amount of energy that was charged. EV drivers could also
use the CS as a free parking spot with little to no recharging happening. In addition,
some charging events are excessively long. Hence, it is likely that the actual charging
process is significantly shorter. To consider this we limited the maximum occupation
time to six hours, as also indicated in Figure 1. In response to this, many cities and CS
operators have introduced a maximum parking duration at CSs or a fee for excessively
long CS occupation. In more rural areas however or at night, these rules often do
not apply. Nevertheless, we decided to use the occupation status as a measure of
attractiveness for two reasons. Firstly, the measure is very robust and a simple metric.
While possibly including some charging events that do not add much value, Figure 1
shows that the vast majority of events take a reasonable amount of time and should
therefore significantly outnumber irregular events. The second reason is that the
occupation status is easy to retrieve. This allowed us to sample a much larger dataset
than would have been possible if we for instance only considered recharged energy per
CS. The larger dataset, therefore, gives us a much more representative picture, which
outweighs possible inaccuracies. However, this limitation can be overcome by more
accurate data on the individual charging processes, which is currently only available
to charge point operators. If the energy sold and profit margin per station are known,
the analysis could be redone with a more explicit focus on the economic analysis.

• False POI data and spurious correlations.
The POI data used originates from OSM, which is a community-based platform. POI
data entered is checked by the community, but may still contain errors. Furthermore,
relevant categories may be overlooked due to the authors’ subjective selection of POI
categories. Moreover, spurious correlation or temporal distortions may be present
as well. Therefore, we used Google Maps satellite data, and performed plausibility
checks of different locations. For example, the POI category ’Marina/Harbour’ has
a high estimate, but is not significant. In some cases, municipal utilities with an
electric fleet in the vicinity of these POIs could be identified that might lead to the
high utilization. Also the POI category ’Car Rental/Sharing’ can be assigned a strong
positive effect. These are often the bases of local car-sharing services with explicit EV
offerings, which use public and semi-public CSs. It can therefore be assumed that
these POIs were added after the construction of the CSs and therefore do not represent
an indicator for future attractive locations. In order to extend the analysis and make it
more robust other socio-economic factors could be added to augment the features of
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the regression analysis. This reduces the impact of false data and spurious correlations
as they are outweighed by stronger correlations.

• Station placement was made independent of local circumstances.
When building a CS, many factors such as a strong grid connection, space for con-
struction, or traffic flow are relevant. These factors were not considered in this work
since evaluating them would have created excessive manual work and would have
thus prevented the country-wide analysis without treating certain localities differently.
In reality, new CS would probably not be built exactly where we suggest even if the
measure of attractiveness was completely accurate. We can however assume that new
stations could probably be built at least reasonably close to the suggested sites in most
places. The global picture and the key messages are therefore robust concerning the
limitations mentioned in this paragraph.

• Linear regression is a relatively simple tool. When considering the results presented
in Table 1, it is clear that there is no intuitive explanation for all of the given estimates
with some even being counter-intuitive. We do not claim that every single correlation
is meaningful in itself. What we can however confirm from analyzing cities we are
familiar with is that the generated heat maps correspond very well to our intuitive
understanding of attractiveness. The combined effect of all dependencies shown in
Table 1 seems to create a good representation of area attractiveness. The applied
method can, however, only include aspects reported on OSM and may be blind to
special local circumstances. A more complex tool can be used once an adequate proof
is made that the found relationships are stable, i.e. by splitting the data into training
and test datasets.

• Number of CPs not considered when placing new CS.
We do not take into account the number of CPs per CS. The splitting of attractiveness
should not be affected strongly by this since there is little reason to go to a more
distant CS just because there are more CPs at the station. New CSs may however
be built with different numbers of CPs and therefore capture different amounts of
revenue in the real application. This would possibly make highly attractive areas even
more attractive, but likely not alter the overall findings and results. A second-level
optimization could be run to optimize the number of CPs. This would, however,
require much more data to ensure that noise does not overlay actual effects.

• Local power grid capacity is not considered.
A major issue with growing EV penetration is the additional loading of the local
power grids. Arising problems with large-scale EV integration are associated with
overloading of transformers and cables and voltage band violations [24–26]. Therefore,
the local grid conditions play a decisive role in the cost-effective deployment of
new charging infrastructure. Consequently, a detailed analysis of the local grid
must be carried out following our analysis to define the feasibility and economic
viability. In addition to the general suitability of the local grids, several technical
measures are suitable for achieving cost-effective integration of CSs. Among these
solutions, managed charging strategies play an important role in preventing the
overloading of local grid assets [27]. This can result in intelligent scheduling of the
local charging processes or load-management strategies where the charging power is
temporarily reduced to avoid overloading. However, the reduction of charging power
is usually not indicated to the users and can lead to a reduced user experience and
lack of acceptance.

7. Conclusions

Considering the results obtained in this paper and the previous discussion, several
conclusions can be drawn. These are given in the following.

• Within cities or other municipal areas, no strong advantage of centralized planning
of new CSs could be found. Our results show that the cooperating and competing
placement strategy results in a very similar distribution of CSs. Given the overall
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inclination to favor market solutions over governmentally mandated solutions in
Germany, a market solution seems like the most suitable approach if new infrastructure
should be placed within a city or municipal district.

• There is a risk for local chicken-and-egg problems in areas that are unattractive
for CSs. As can be seen in Figure 9, there are areas in Germany where it will be
extremely challenging to make constructing a new CS financially worthwhile. We
know that these same areas also have a low number of EVs in the fleet [28]. These two
factors combined make it very likely that a local chicken-and-egg problem is created.
The goal of the newly elected government is to have 15 million EVs in Germany by
2030. If the country wants to achieve this goal, there is very little room for blank
spots on the map and electromobility needs to be possible everywhere. As a result
governmental subsidies will eventually have to focus on these unattractive areas since
private investors will require significant support to create a business case in these
areas.

• The found results may be used as starting point in the search for new CS sites
Although the results obtained in this study are based on simplified assumptions,
they do nevertheless provide a starting point for charge point operators in their
search for new sites. The heat maps significantly reduce the possible areas for future
CSs, allowing a more efficient analysis based on additional factors. The data can
therefore be used as an input for the evaluation of the electrical integration capacities
considering the local power grid conditions. All generated heat maps and suggested
sites were uploaded and can be used free of charge. Local operators may use the
provided attractiveness and merge it with information about the availability of sites
and grid conditions.

We hope that the provided insights support decision makers in politics, business, and
academia in their decision on where to place charging infrastructure.
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Appendix A

Appendix A.1. Sensitivity Analysis of the Distance Parameter r

The maximum radius r has a direct influence on the results of the regression. A
comparison of the regression results with varying radius is carried out in Figure A1. In
order to compare the results of the regression analysis, the distances dij are normalized
with the maximum boundary. The graphs show small differences in the importance and
ranking of categories for r = 250 m and 500 m. At a distance of 750 m, the results deviate
somewhat more clearly from the other distances. However, for all for cases the predictor
importances are in the same order of magnitude. A similar picture emerges for the heat
maps. With larger distance a lower resolution results whereby sharp demarcations between
the attractiveness values are no longer recognizable. However, with smaller distance the
computation time for the generation of the heat maps increases. Therefore a value of
r = 500 m seems a good trade off between accuracy and computation time. Comparing the
obtained attractiveness values reveals also only small differences, so that the results of the
genetic optimization are not affected.

r = 250 m r = 500 m r = 750 m

Figure A1. (Top): Predictor estimates of the linear regression for different values of r. The values are
normalized for comparison. (Bottom): Example heat maps of cologne for different r.
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