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Abstract: In this paper, a novel and complete navigation system is proposed for mobile ground
vehicles in a park environment. LiDAR map representation and maintenance, dynamic objects
detection and removal, hierarchal path planning and model-free local planning are developed in the
system. The system is formulated in three layers. In the global layer, given the global point cloud
map of the environment, the traverse area is detected and its skeleton graph is extracted to represent
the global topology of the environment. Then, in the middle layer, the global map is divided into
several submaps and each submap is represented by a modified multi-layer grid map. In the local
layer, considering the dynamics of the environment, according to the real-time LiDAR observation, a
probabilistic distribution-based representation and its updating mechanism are proposed. Based on
the hierarchal environment map representation, the path planning and local planning are performed
in a hierarchal way. Considering the complexity of the motion model estimation, a model free local
planner is used. Extensive experiments are conducted in the real environment and the source code
will be made open for the robotics community.

Keywords: hierarchical navigation system; path planning; LiDAR; multi-layer map

1. Introduction

Ground vehicle navigation has been extensively studied and developed in recent
decades. Alongside traffic scenes, park scenarios are becoming a more important appli-
cation task environment, representing the last 1km of navigation. The robust, stable, and
flexible navigation function has become a fundamental requirement for mobile ground
vehicles and many navigation systems have been successfully developed. However, due
to rough and irregular terrain, complex dynamic cases, and a changing environment,
constructing an effective and adaptable navigation system is still necessary.

At present, the mainstream perception methods mainly include vision-based [1,2]
and LiDAR-based methods, as well as vision–language methods [3–5]. There are many
related studies using them for navigation systems. Vision-based methods can provide rich
environmental information with cameras, but are vulnerable to changes in light conditions,
and the computational cost is large. The method based on LiDAR is more robust and
suitable for all-day navigation tasks in the park environment.

Navigation systems are highly involved with environment representation. The per-
formance of the environment-representing method plays an important role during the
navigation process. For LiDAR-based maps, point cloud-based maps are in a raw style,
while the information is redundant and less informative, including the topological informa-
tion and occupancy information. Among the existing navigation systems, the environment
representation methods can be classified into the following classes: a 2D grid map, which
is incapable of representing 3D information, and a 2.5D map, which is a more expressive
form based on the multi-layer 2D structure. Instead of using grid cells, in [6], the map
directly uses raw point cloud and sample points for the nodes and to construct a probability
road map.
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An effective map representation should have the following characteristics. Firstly,
topological information should be clear. Secondly, it should be easily updated. Thirdly, it
should be easily and efficiently retrieved. Thus, in this paper, we propose a novel multi-
layer map for a 3D environment with rough ground terrain. Based on the map module,
the path planning and local planner modules are proposed to formulate a full navigation
system. A star on the global topological map, hybrid A star on the middle map, model-free
planner on the local map. Our contributions are as follows.

• We developed a map representation and maintenance form based on a multi-layer
map architecture, proposed a ground detection method based on regional ground
plane fitting and a topology extraction method based on probabilistic road map, and
an integrated dynamic objects removal algorithm;

• Based on the hierarchical navigation architecture, we established a three-level planner
for path planning and dynamic obstacle avoidance at different distances; The method
in this paper is integrated into a real unmanned mobile platform, and the experimental
tests are carried out in a complex park environment to verify the effectiveness of the
navigation system.

2. Related Work

Research into navigation systems has a long history. In recent years, related research
on navigation systems has mainly focused on three aspects, namely state estimation,
autonomous navigation and motion planning. The CMU-exploration [7] developed by the
Robotics Institute of Carnegie Mellon University is a stable navigation system. Obstacle
avoidance [8], autonomous exploration [9,10] and traversable area analysis [11] are included
in the system’s autonomous navigation algorithm. Based on the simulation platform and
the ground robot platform, it is easy to test the performance of the navigation system in
different simulation environments and different real-world scenarios.

For a mobile robot system, reliable observation of the environment is the basis of state
estimation and autonomous function achievement, and mapping also plays an important
role in robotics. As an active sensor, LiDAR is widely used in unmanned systems because
of its wide data coverage, high accuracy and strong reliability. LiDAR-based mapping
methods mainly include SLAM methods [12] and point cloud stitching methods based on
RTK/GPS localization [13]. RTK/GPS can be used in an open, well-signaled environment
to obtain absolute location information in real time without cumulative error, based on
which maps can be built in conjunction with LiDAR [14]. Google’s Baidu unmanned vehi-
cles [15] have adopted GPS-based multi-sensor fusion localization and mapping methods.
However, RTK/GPS may locate incorrectly due to poor signal indoors or heavily obscured
environments, in which case localization and mapping can be achieved through SLAM
algorithms. The LOAM (LiDAR Odometry and Mapping) [16] proposed by Zhang et al.
is a classic method based on point cloud geometric feature matching, and can achieve
efficient real-time localization. Additionally, they use low-frequency optimization thread
to reduce cumulative errors. The LeGO-LOAM [17] proposed by Shan et al. is based on
LOAM for lightweight improvement and adds ground optimization and loop detection.
LIO-SAM [18] is based on a multi-sensor fusion framework that fuses tightly coupled IMU
with the addition of GPS observation factor.

For map representation, researchers are looking for an expression form that is in-
formative and easy to maintain. In addition to the point cloud map, the grid map has
the advantages of easy construction and maintenance, clear correspondence with the real
environment, and a small storage space. The combination with multiple layers is a common
form of the accurate characterization of the environment in detail. Peter et al. designed
a model containing layers such as an obstacle layer, elevation layer, normal vector layer,
etc. [19]. The structure is shown in Figure 1.
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Figure 1. Structure of multi-layer grid map: multi-layer structure (upper part) and grid data structure
of each layer (lower part).

For good localization performance and reliable path planning, a ‘clean’ map containing
only static objects in the environment is expected, which is necessary for the navigation sys-
tem. Researchers have proposed many methods based on ray-tracing or visibility [20–22] for
dynamic object removal and static map construction, which may have disadvantages [23],
as shown in Figure 2, while achieving certain effects. As shown in Figure 2a, the static
ground plane is regarded as a dynamic object when the incident angle is too large. For the
case in Figure 2b, if there is no point cloud behind the high part of the dynamic object due
to the open terrain, the high part cannot be removed. Meanwhile, occlusion has always
been a troubling problem, if a dynamic object is partially occluded by a static object, the
occluded part cannot be removed, as shown in Figure 2c.

Figure 2. Shortcomings of visibility-based methods: (a) Ground error identification. (b) The red
part is not removed because of the empty scene behind. (c) The red part is not removed because
of occlusion.
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In order to analyse the dynamic objects in the environment, there are also many works
using target recognition and tracking. Vision-based recognition and tracking methods have
been extensively studied and applied [24–27]. Three-dimensional target detection algo-
rithms based on laser point cloud can be divided into traditional methods and deep learning
methods [28–31]. Ref. [28] uses the method in [32] to extract the feature fragments of the
target, and uses the clustering algorithm to obtain the target point cloud. In [30], the laser
point cloud is represented in the form of aerial view and combined with a convolutional
neural network (CNN) for target detection and tracking. However, the laser point cloud
is sparse when the target is far away; therefore, the recognition effect will be significantly
reduced, and false recognition or tracking is harmful to environment modeling.

Traditional planning algorithms can be divided into graph-based algorithms and
sampling-based algorithms. Classical graph search algorithms include Dijkstra’s algo-
rithm [33], A* [34] and sampling-based algorithms include RRT [35] and RRT* [36], etc.
In order to solve the adaptation problem for different scenarios and different platforms,
numerous techniques have been developed to solve the autonomous planning problem.
For planning collision-free and safe paths online for autonomous underwater vehicles, Juan
David proposed an improved approach [37]. Liu et al. proposed the MAPPER algorithm to
realize Multi-agent navigation in dynamic environments [38]. O. Peltzer et al., from Stan-
ford University, proposed the FIG-OP algorithm for autonomous exploration of large-scale
unknown environments [39].

Our navigation system combines existing mapping methods and planning algorithms,
introduces model constraints, a multi-layer framework, and realizes autonomous percep-
tion and autonomous navigation of LIDAR-only ground vehicles for park environments
based on multi-layer maps and multi-level planners.

3. Proposed System

Our navigation system is formulated in a hierarchical way. The system is mainly
divided into the following two modules: the mapping representation module and
planning module.

3.1. System Framework

As shown in Figure 3, the mapping representation module contains six sub-modules
for navigation, namely global point cloud map, traverse area detection and representa-
tion, dynamic objects detection and removal, topological skeleton extraction, middle map
construction and local map maintenance. Correspondingly, the planning module is also
divided into different levels, which are responsible for planning from the global level
to the local; in descending order, the hierarchy is as follows: the global planner, middle
planner and local planner. To meet the requirements of the three-level planner, we use
the global traversable topology map for the top-level global planner. For the more refined
requirements of the middle level local planner, we use appropriate scales to divide the map
into local areas and combine the observation information to form a submap. Furthermore,
for the requirements of motion and obstacle avoidance control of the bottom-layer local
planner, we combine real-time observation to update the local submap in real time to ensure
the safety and reliability of navigation.
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Figure 3. System framework (our navigation system includes mapping and planning modules,
forming a three-level structure).

3.2. Mapping Representation Module

Accurate and complete map representation is the prerequisite for a mobile robot nav-
igation system and high-level applications. Traditional point clouds and feature maps
organized by octree and grid maps can meet the needs of single problem such as global
localization and path planning. But they can’t meet the needs of long-term, multi-task ap-
plication scenarios for multi-element and continuous environment modeling. In the field of
auto-driving, multi-level vector maps are widely used because they contain different types
of data needed for the whole process of auto-driving. Now the collection, post-processing
and verification of vector maps require a lot of computation and manual verification, which
limits the range of application. The goal of our navigation system is to build a multi-level,
multi-element and maintainable map.

3.2.1. Global Raw Point Cloud Map

A global map is the basis of navigation systems and is necessary for global path plan-
ning. In our navigation system, we chose to use SLAM methods to build global point cloud
maps, such as LeGO-LOAM, hdl-graph-SLAM [40], and LIO-SAM. An optional method is
to use real-time localization through RTK (Real-time kinematic) for laser scan stitching to
build a global point cloud map. Then, appropriate downsampling is performed according
to the application requirements and scenario. Subsequently, a static map, topological map,
and grid map are all generated from the raw point cloud map.

3.2.2. Traverse Area Detection and Representation

The traverse area is derived from the raw point cloud scans, which is the basis of
a grid map and topological map, and provides optional path planning ranges to ensure
the security, reliability and rapidity of the overall navigation system. The traverse area
detection in our system is processed in real time during the scanning of LiDAR. That is,
when a laser scan frame is obtained, the point cloud of the ground is extracted from the
frame in real time; then, the raw point cloud and the ground point cloud are stitched to
generate the raw global map and map of the traverse area, respectively.

Although LiDAR can detect data a hundred meters away, points that are too far away
become sparse and unreliable. So, we take the LiDAR position as the center, and draw a
circular area of interest by distance, denoted as Vt. Then, we organize and represent point
cloud in Vt by defining vertical bins, a process referred to as bin-wise organization. That
is, we use bins to divide the point cloud into equal-interval azimuth angles and radial
distances on the horizontal x-y plane, including points that can be projected vertically into
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their ranges, as shown in Figure 4a. Each bin is denoted as Bt
i,j, as shown in Equation (1),

where i, j are the indexes according to radial distance ρk and angular direction θk.

Bt
(i,j) =

{
pk | pk ∈ Vt,

(i− 1) · Lmax

Nr
≤ ρk <

i · Lmax

Nr
,
(j− 1) · 2π

Na
≤ θk <

j · 2π

Na
− π

}
(1)

where θ = arctan 2(y, x), and ρk represents the points in Vt, Nr and Na represent the
maximum of i, j, respectively. However, this method results in bins that are too small
near the center of the area of interest and too few points in these bins, which may lead
to subsequent misjudgments. So, we chose to increase the angle range of the inner circle
sectors, as shown in Figure 4b.

Figure 4. Bin-wise organization of laser point cloud: (a) Division method according to the equal-
interval azimuth angles and radial distances; (b) Adjusted division method.

In the park environment, the ground is not generally flat as a whole, so it is inap-
propriate to use uniform ground coefficients to describe the traversable area. Therefore,
our system uses the method of regional ground plane fitting to detect the traversable area.
Based on bin-wise organization, select the point with the lowest height (i.e., z value) in
each bin. If its height is lower than the possible ground-level threshold (determined by the
height of the LiDAR and actual environmental conditions), it may be a potential ground
point, and take it as a seed point. Then, the flatness test of seed points is taken. The local
ground surface can generally be regarded as a horizontal or slightly inclined plane, the
changes of height and distance of the ground scan points in the small neighborhood should
be nearly uniform, while the scanning point cloud of the road edge and the grass will
change sharply or irregularly. Based on the above characteristic, on the same scan line of the
seed point, take N points left and right of the seed point and then denote its neighborhood.
Additionally, calculate the sum of the distances from the points in the neighborhood to the
seed point. If the sum value is less than the set distance threshold and the height of the
point is less than the set height threshold (the threshold takes a specific value after sorting
all the points on the scan line where the seed point is located), then keep it; otherwise,
discard it. Therefore, this step can exclude the edge of the road and grass point cloud, as
shown in Figure 5.

Figure 5. (a) Possible situation of real ground points. (b) Possible situation of grass points. (c) Possible
situation of road edge points (where the big red circle is the tested scanning point, and the small red
circles are its neighborhood points).
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Let z be the mean z value of the filtered seed points. The initial estimated ground
points set G0

l,t is obtained as follows:

G0
l,t =

{
pk | pk ∈ Bt

(i,j), z(pk) < z̄ + τseed

}
. (2)

z(·) represents the z value of the scan point, and τseed indicates the height margin. Then,
we process the flatness test of the points in G0

l,t and discard points if they do not satisfy
the smoothness criteria. If i-th inner points set is Gi

l,t, then its covariance matrix Ci
l,t can be

calculated with the following Formula (3):

Ci
l,t = ∑

1≤j≤|Bi
i,t|

(
pj − p̄i

l,t

)(
pj − p̄i

l,t

)T
. (3)

|·| represents the number of elements in the set, and pi
l,t represents the average

position coordinates of Bi
l,t. Then, a principal component analysis (PCA) is used to calculate

its three eigenvectors, of which the normal vector with the smallest eigenvalue is most
likely to be the normal vector representation of the ground. Denote that eigenvector as ni

l,t;
the plane equation can be obtained with the following formula:

ai
l,tx + bi

l,ty + ci
l,tz− ni

l,t
T · p̄i

l,t = 0. (4)

Further, if the angle between the normal vector and the vertical direction is greater
than 20◦, it will be considered as incorrectly fitted ground (i.e., traversable area), and
point clouds in corresponding local areas will be regarded as non-ground points (i.e.,
non-traversable area).

3.2.3. Dynamic Point Cloud Detection and Removal

The conventional construction of a point cloud map is generally a sequential accumu-
lation process of LiDAR scanning data. Therefore, dynamic objects such as pedestrians
and vehicles will be included in the map which may cause interference for map-based
localization and reasonable path planning [20]. According to the characteristics that dy-
namic objects in the park environment are inevitably in contact with the ground and the
shortcomings of visibility-based methods in Figure 2, our method removes dynamic objects
based on the vertical occupancy ratio [23], which does not depend on visibility and can
effectively avoid the above drawbacks. The general process of this method is shown in
Figure 6.

Figure 6. The pipeline of dynamic objects removal algorithm.

It is assumed that the point cloud map is obtained by some methods and it may
contain dynamic objects. Besides the map, the inputs also include laser scan data of the
same or different terms, and it is assumed that the pose information corresponding to the
scans can be accurately registered to the map. We define the original point cloud map as M,
the laser scan data at a certain time t as Pt, and the pose under the map coordinate system
corresponding to Pt is Tt ∈ SE(3).
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First, use Tt to find the position of the LiDAR in the map at time t, and take this
position as the center to extract the point cloud of the region of interest according to the
horizontal 2D distance, which is denoted as Qm,t. Similarly, in Pt, the point cloud of the
region of interest is extracted at the same distance with the LiDAR as the center, and is
denoted as Qs,t. Then, similarly to the operation of extracting the region of interest in the
ground detection process, we take the LiDAR position as the center and use the definition
of the vertical bin to organize and represent the point clouds of Qm

t and Qs
t . Each bin is

denoted as Bm,t
i,j ⊂ Qm

t and Bs,t
i,j ⊂ Qs

t according to the angle and radial distance, as shown in
Equation (1). On the basis of the above method of expression and organization, the vertical
occupancy ratio (VOR) of each bin is defined as follows:

VOR =
max

{
z
(

ps,t
(i,j),k

)}
−min

{
z
(

ps,t
(i,j),k

)}
max

{
z
(

pm,t
(i,j),k

)}
−min

{
z
(

pm,t
(i,j),k

)} , (5)

where points pm,t
(i,j),k ∈ Bm,t

i,j , ps,t
(i,j),k ∈ Bs,t

i,j . From the above definition, if there are static or
no objects in the corresponding bin of the map and current scan, the VOR should be close
to 1. For the case where there are no dynamic objects in the map but there are dynamic
objects in the current scan, the VOR will be greater than 1. For the case where there are
dynamic objects in the map but no dynamic objects in the current scan, the VOR of the
corresponding bin should be significantly less than 1. Therefore, if the VOR is close to 1 or
greater than 1, no additional operation on the map is required. If the VOR is obviously less
than 1, the dynamic point cloud in the map needs to be removed.

However, deleting the point cloud of dynamic objects directly from bins results in
vacant holes in the map. Therefore, we chose to perform a regional ground surface fitting
in the corresponding bin Bs,t

i,j ∈ Qs, to compensate for the static ground points for the
vacant holes.

3.2.4. Topological Skeleton Extraction

The global topological map is constructed based on the grid map. First, the point
cloud map of the traversed area without dynamic objects is projected into a global grid map.
Instead of considering the height fluctuations of the ground and real-time dynamic objects
factors, the traversable areas are directly projected to free grids, while other projections are
occupied grids.

Then, we construct a distance function for the free grid, which is used to represent the
distance between the free grid and the nearest occupied grid, and denote the corresponding
distance as the distance value. In addition, based on the principle of the probabilistic road
map, random sampling is carried out in this global grid map, and sample points located
in the free area are denoted as gi. Areas located at intersections and covered by a large
traversable area will have a greater sampling probability, which ensures the efficiency of
generating sampling points. For each sample grid gi, centered on itself, a local grid submap
of L × L size is intercepted, and is denoted as Gsub

i . In Gsub
i , update the original gi to the

free grid with the largest distance value. Then, the construction of a probabilistic road map
is based on the updated sample points set, i.e., build connections and perform collision-free
detection on the sample points. Finally, the topological skeleton representation of the global
traverse area is obtained, and we use it for global planner navigation.

3.2.5. Middle Map Construction

Based on the x-y plane, the global point cloud map is divided into 30 m × 30 m
square areas that are connected and non-intersecting. In order to make the path planning
reasonable and forward-looking, we construct the local submap in the navigation process
as follows: First, we obtain the current position information of the mobile platform through
the localization algorithm, and derive which square area the current position is located in
with the lookup table method. Next, take the square area currently located at the center
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and obtain its eight-neighborhood square areas in the global map to form a 3 × 3 array, as
shown in Figure 7a. The array of these nine square areas is used as the current submap for
navigation. In addition, as the mobile platform moves, if the current located square area
changes, the submap is updated accordingly with this new square area at the center, as
shown in Figure 7b.

Figure 7. Point cloud map segmentation: (a) Submap before moving. (b) Submap after moving.

After dividing the point cloud map, project the appropriate submaps to grid submaps.
The resolution of the grid is comprehensively determined by the environmental conditions,
the task accuracy requirements, the volume, and the flexibility of the mobile platform. In
addition, in the park environment, the ground height is not consistent in macro. Therefore,
it is inappropriate to directly calculate the occupancy probability of the grid according to
the altitude information of the point cloud. To solve this problem, we choose to take the
ground plane coefficients information into consider for each grid. That is, for each grid,
if the grid contains a traversable ground point cloud, the method in Section 3.2.2 will be
used to obtain ground coefficients, and the relative height is obtained by subtracting the
corresponding local ground height from the original height of points in the grid. Then, the
occupancy probability is calculated using the relative height. For the grid without ground
points, it is directly set to the occupied state. If the point cloud in a grid is denoted as pi, the
relative height of pi is denoted as4z(pi); then, the calculation formula of the occupancy
probability Po of the grid is as follows:

Po = min
{

P′o, 1
}

, where P′o =
max{∆z(pi)} −MinThres

MaxThres−MinThres
(6)

MaxThres and MinThres above are fixed height interval parameters. In order to reduce the
interference of tree branches and roofs, we usually filter out points above a certain height
before calculating Po.

In addition, our system uses the form of a 2.5D map to describe the grid map. The
information in each grid includes the occupancy probability, ground coefficients, and distri-
bution of point cloud in the grid which is fitted into a three-dimensional Gaussian function.

Moreover, for the middle planner navigation module, if the destination target is not
within the current submap range, the last target point based on the current local submap
should be on the boundary of the submap.

3.2.6. Local Map Maintenance

Static and invariant local maps represent the infrastructure information of the envi-
ronment. However, they cannot reflect real-time dynamic changes, such as pedestrians,
vehicles and static obstacles that newly appear or disappear. Therefore, we need to update
and maintain local maps based on real-time observations. We can obtain real-time point
cloud distribution which is fitted into a three-dimensional Gaussian function, and calculate
the occupancy probability of grids in grid submap at the current time according to the
laser scan information. Based on the 2.5D description form of the grid map, an information
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layer representing the real-time state is established, and the information of distribution
and occupancy probability is updated into it. Moreover, the current occupancy probability
takes precedence over the original occupancy probability in the navigation module.

3.3. The Planning Module

As an important part of the navigation system, path planning uses the existing map’s
prior information or real-time sensor data to plan a safe, short and smooth path for the
vehicle to reach the goal area or goal point. As shown in Figure 8, our planning module
is divided into three sub-modules, namely the global planner, middle planner and local
planner. The global planner roughly plans a passable path in the entire campus, which
consists of several waypoints. The middle planner plans between the two waypoints
planned by the global planner, and obtains a smooth path that conforms to the vehicle
dynamics constraints. The local planner executes the path planned by the middle planner,
avoiding local obstacles and re-planning when necessary.

Figure 8. Planning Framework.

The motion planning methods for mobile robots in dynamic environments include
sampling-based methods and trajectory optimization-based methods. The basic idea of the
sampling-based method is to perform random sampling in the workspace or configuration
space to find a collision-free trajectory connecting the starting point and the target point.
The random sampling motion planning does not need to model the environment, but
sacrifices completeness and optimality.

The method based on trajectory optimization has high computational complexity and
requires high control accuracy of the robot. Therefore, we construct a motion control method
based on kinematic elements and incorporate the nonholonomic kinematic constraints of
the mobile platform into it. The mobile platform can stably avoid obstacles and approach
the target point under the guidance of motion elements.

3.3.1. Global Planner

The main function of the global planner is to accept the manually input target point
and plan a feasible path for the vehicle to reach the target point in the global map. The
global planner combines the global topology map and the traverse area to set up some
waypoints in the global map.

As one of the classic graph-search algorithms, A* has good performance and accuracy.
It uses heuristic information to find the optimal path, which is suitable for the path-planning
algorithm as the topmost layer in the waypoint graph. Since the global planner uses the
waypoint map jointly processed by the PRM and the distance map, it can find a near-



World Electr. Veh. J. 2022, 13, 201 11 of 20

optimal global path faster. A flow chart demonstrating the process from the setting up of
the global target point to the completion of the path is provided in Figure 9.

Figure 9. Global planning flowchart.

The map used by the global planner is maintained and updated for a long time. When
a global target point is obtained, the global planner determines connectivity in the waypoint
graph. If it is connected in the waypoint map, it will directly find a feasible path and hand
it over to the local planner for execution. Otherwise, it will actively explore and generate
new waypoints; if it is really unreachable, it will return relevant information.

3.3.2. Middle Planner

The Hybrid A* algorithm is a graph-search algorithm that improves on the A* algo-
rithm. As shown in Figure 10, the difference from the ordinary A* algorithm is that the path
planned by Hybrid A* considers the kinematic constraints of the vehicle, that is, it satisfies
the maximum curvature constraint of the vehicle. The heuristic function is crucial to the
search efficiency of the A* algorithm, and it is crucial to study reasonable and effective
heuristics to estimate the cost of expanding nodes to the target point. In the Hybrid A*
algorithm, the heuristic function is divided into two types: the non-integrity constraint
heuristic cost without obstacles and the integrity heuristic cost with obstacles.

Figure 10. Node expansion diagram: (a) A* node expansion; (b) hybrid A* node expansion.

In the middle planner, the pose information of the current vehicle and the grid map
for path planning are received from the localization module, and the waypoint information
is received from the global planner. Waypoint information contains a series of local target
points planned by the global planner. The search space of Hybrid A* not only considers the
expansion in the x and y directions, but also considers the exploration in different angles.
Compared with the exploration space of ordinary A*, the node expansion of Hybrid A* is
three-dimensional. In the front and rear directions, the middle planner plans five paths
divided by equal angles. Since we need to consider the kinematic constraints of the vehicle,
we use the Reeds–Shepp curve.
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In a middle-level path-planning process, the current position of the mobile robot, the
local grid map and the local goal points in the waypoint information are used as the input
of the algorithm. By comparing the size of the cost value h1 of the nonholonomic constraint
heuristic cost without obstacles and the cost value h2 of the completeness heuristic cost
with obstacles, the larger cost is selected as the cost value of Hybrid A* h(n)= max(h1, h2).
The planner will select the path with the lowest cost, split the path into waypoints and
publish them to the local planner.

3.3.3. Local Planner

The local planner subscribes to the waypoint information published by the middle
planner, and plans the waypoints as local target points in turn. The local planner is mainly
composed of the following four parts:

1. Free Path: The free path uses the sampled discrete points for forward simulation,
which represents the possible movement of the vehicle in the future. As shown in
Figure 11, through multiple data uniform interpolation and data fitting, 729 possible
paths are planned as candidates;

2. Voxel Grid: For collision checking, the local planner uses a voxel grid with Free Path
overlaid. Considering the occlusion of the vehicle radius, the voxel grid is generated
within a certain range according to the spline distance;

3. Collision Detection: After the voxel grid is generated, in order to be more efficient
in the screening of local paths, each grid and path index are calculated offline. By
finding neighbors within a specified distance around a waypoint in a set of paths that
belong to a set of voxel grids. Finally, the index relationship table between each voxel
grid and the feasible path are obtained.

4. Path Filtering: First, the planner will filter the blocked paths, which can be achieved
by using the index relationship table. From the remaining paths, set up a cost function
based on the point cloud height between the ground threshold and the obstacle
threshold. At the same time, the angle difference between each path and the target
point and the angle difference between the direction of the path and the current
vehicle orientation are used to calculate the cost.

Figure 11. Generation results of sampling-based Free path.

4. Experiment
4.1. Traverse Area Detection

As described in Section 3.3.2, our traverse area detection algorithm is real-time. That is,
we extract the ground points from the laser point cloud of each frame (or key frame for the
SLAM method) during the mapping process. We use the laser scan frames collected in the
park environment as the testing data. The experimental results are shown in Figure 12. The
results show that our algorithm performs effective and robust ground point cloud detection
in the presence of vehicles, trees and fences. The segmentation effect is satisfactory. In order
to show the generalization of our method, we not only used VLP-16 LiDAR to collect data
in the campus environment as shown in Figure 12a for experiments. The point cloud in
KITTI dataset collected by 64-line LiDAR was also tested, as shown in Figure 12b.
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Figure 12. Results of traverse area detection experiment: The upper part of (a,b) is the segmented
point cloud (the green part is the divided ground point cloud, the red part is the non-ground point
cloud, and the gray part represents the bins described in Section 3.2.2), and the lower part is the
corresponding picture.

4.2. Dynamic Detection and Removal

In the original point cloud map, there will inevitably be dynamic objects. Furthermore,
the trajectory of dynamic objects will accumulate in the map along with the construction
process. As shown in Figure 13, in addition to the environmental structures of ground and
walls , there are dynamic objects—walking people (red points in right part of Figure 13),
as well as static objects—pillar buildings. We use the method in Section 3.2.3 to remove
dynamic objects without affecting the static part of the environment.
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Figure 13. (Left) Part of the original point cloud map. (Right) Annotations of dynamic objects (red
points) and static parts (blue points) in the map.

During dynamic object detection, the extracted region of interest (black point cloud in
the figure) and the resolved dynamic object (red point cloud in the figure) are shown in
Figure 14.

Figure 14. Discrimination of dynamic objects (red points) in the region of interest (black points).

After distinguishing the dynamic objects and the static parts, we remove the dynamic
point cloud. The resultant static point cloud map of the environment we obtained is shown
in Figure 15. In addition, because our algorithm performs regional ground plane fitting on
the corresponding region of dynamic points suppression to compensate for the mistakenly
deleted ground points, we can see that there are no vacant holes in the static map.

Figure 15. The static point cloud map.
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4.3. Planning Results

We divide the global static point cloud map into fixed size local submaps according
to the method in Section 3.2.4. The result is shown in Figure 16, and we represent each
submap with a different colored point cloud for clarity.

Figure 16. Map segmentation result: global (left) and local (right) perspectives.

For the path planning algorithm, we design two experiments to verify the effectiveness
of the planning algorithm. The first experiment is for the global planner, and the second
experiment is for the middle planner. Taking the entire campus map as input, through
random sampling and iterative optimization combined with the distance map, we generated
the topology map, which is shown in Figure 17. The red dots in the figure are the sampling
points, which represents the nodes in the topology graph. The red line segment represents
the feasible path. An optimization function using distance as a penalty factor converges
the path to the position farthest from surrounding obstacles. Based on this topology map,
the global planner will plan a path from the start point to the goal point.

Figure 17. Global topology map in the park environment.

The middle planner is based on the grid map, and plans a local passable path according
to the information such as the occupancy of the grid. In the garage scene where many
pillars exist, we set the start and end points through the global planner. The middle planner
uses the hybrid A* algorithm and uses the Euclidean distance as the cost estimate in the
heuristic search to plan an unobstructed path. As shown in Figure 18, the blue point is the
starting point, the red point is the ending point, and the green point is the path planned by
the middle planner. The result of path planning is evaluated according to the following
three parts: distance from obstacles, length of path, and maximum corner of path.
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Figure 18. The path planned by the middle planner.

4.4. Dynamic Obstacle Avodiance

In order to test the dynamic obstacle avoidance ability of the navigation algorithm, we
arrange pedestrians to actively block the driving path of vehicles. As shown in Figure 19,
the vehicle is driving in a straight line in the current lane, with the driving direction of the
vehicle as the front, and a pedestrian in the left front is walking perpendicular to the driving
direction of the vehicle. The red and blue arrows represent the movement directions of
pedestrians and vehicles, respectively.

Figure 19. The stage when the vehicle and the pedestrian are far apart.

Pedestrians will block the vehicle’s forward path as much as possible to verify the
dynamic obstacle avoidance ability. When the navigation system determines that there are
dynamic obstacles blocking the path, it will update the path in time, which is implemented
on the local planner. As shown in Figure 20, when a pedestrian moves in front of the car,
the vehicle obviously has a deflection angle to the left, and it can avoid colliding with the
pedestrian by turning.
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Figure 20. The stage when the vehicle and pedestrian approach each other.

As shown in Figure 21, since the local planner only re-plans in a local area, after
bypassing pedestrians, the vehicle will still return to the path planned by the middle
planner to continue driving. When the feasibility of the middle planning path cannot be
guaranteed, the local optimal path is used as the current travel path.

Figure 21. The stage after the vehicle actively avoids pedestrians.

As shown in Figure 22, it shows the dynamic obstacle avoidance capability in other
scenarios in the park.
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Figure 22. Dynamic obstacle avoidance in the park scene: (a) when the robot is far away from
pedestrians; (b) the robot avoids pedestrians; (c) the robot continues to perform navigation tasks.

5. Conclusions

We propose an LiDAR-only ground vehicle navigation system for park environments.
Through hierarchical design, our system can achieve smooth navigation both globally and
locally. The global map and planner provide road information and traversable paths of the
entire park. The middle-level map and planner are responsible for local map maintenance
and local path planning, and the bottom-level planner combines real-time perception
information with complete dynamic obstacle avoidance. We have completed multiple
validation experiments in real park environments, and the experimental results demonstrate
that our system can perform reliable and robust navigation in real scenarios.
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