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Abstract: Plug-in hybrid electric vehicles (PHEVs) are equipped with more than one power source,
providing additional degrees of freedom to meet the driver’s power demand. Therefore, the reason-
able allocation of the power demand of each power source by the energy management strategy (EMS)
to keep each power source operating in the efficiency zone is essential for improving fuel economy.
This paper proposes a novel model-free EMS based on the soft actor-critic (SAC) algorithm with auto-
matic entropy tuning to balance the optimization of energy efficiency with the adaptability of driving
cycles. The maximum entropy framework is introduced into deep reinforcement learning-based
energy management to improve the performance of exploring the internal combustion engine (ICE)
as well as the electric motor (EM) efficiency interval. Specifically, the automatic entropy adjustment
framework improves the adaptability to driving cycles. In addition, the simulation is verified by
the data collected from the real vehicle. The results show that the introduction of automatic entropy
adjustment can effectively improve vehicle equivalent fuel economy. Compared with traditional
EMS, the proposed EMS can save energy by 4.37%. Moreover, it is able to adapt to different driving
cycles and can keep the state of charge to the reference value.

Keywords: hybrid electric vehicle; energy management strategy; deep reinforcement learning; SAC
algorithm; automating entropy adjustment

1. Introduction

Nowadays, the problems of environmental pollution and energy depletion are becom-
ing more and more serious [1,2]. Unfortunately, traditional vehicles as the primary form
of transportation not only emit large amounts of exhaust fumes, but also consume large
amounts of petroleum resources [3]. Electric vehicles (EVs) are considered to be able to
solve the problems of fuel consumption and emissions. However, there are several issues
that prevent their actual diffusion, among which the most relevant is the limited driving
range [4]. Meanwhile, the industry is developing PHEVs as an intermediate solution [5].
Compared with traditional vehicles, PHEVs are typically equipped with two power sources:
the ICE and the EM that can be used as both a generator and EM [6]. Therefore, the EMS
attempts to navigate energy between several energy sources considering one or more
objectives while meeting the power needs of drivers [7,8].

1.1. Literature Review

Recently, various PHEV EMSs have been proposed. They can be broadly divided
into three categories: rule-based EMSs [9], optimization-based EMSs [10] and machine
learning-based EMSs [11].

The rule-based EMSs determine the operating state of the vehicle powertrain through
pre-established rules. Due to its simplicity, rule-based EMSs are easily applied in prac-
tice [12,13]. However, rule-based EMSs are formulated empirically so that they cannot
efficiently cope with all kinds of driving cycles, therefore cannot always ensure efficient
control [14,15]. To further enhance fuel economy, the expert knowledge and optimization
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algorithms are applied to the rule-based EMSs, such as the genetic algorithm (GA) and
particle swarm optimization (PSO) algorithm [16]. Zhou et al. present a multi-objective
optimization method that the membership functions of the integrated strategy are tuned
by elitist nondominant GA [17]. Natella et al. implement an optimization problem for the
off-line section of the velocity thresholds and the corresponding power splitting between
the actuators [18].

Optimization-based EMSs are mainly divided into global optimization-based EMSs
and real-time optimization-based EMSs [19]. The dynamic programming (DP) algorithm
and pontryagin minimum principle (PMP) strategy are the widely used global optimization
algorithms in PHEV EMSs [20]. The DP algorithm requires perfect knowledge over the
entire optimization horizon to obtain or approximate the global optimum and requires
much computing time, so it is not suitable for real-time control of PHEVs [21]. The PMP
algorithm-based strategy is also a widely studied global optimization strategy, which
solves the optimization problem by minimizing the Hamiltonian function [22]. However,
entire driving information is still needed to achieve improvements in fuel economy [23].
The equivalent consumption minimization strategy (ECMS) and model predictive con-
trol (MPC) strategy are representative of vehicle EMSs based on real-time optimization
technologies [24]. ECMS is the most popular real-time EMS, which gets the optimum fuel
consumption through the rational allocation of the power of the EM and ICE according
to the torque or power requirements of the vehicle in the current moment, and balances
fuel consumption and the battery state of charge (SOC) by the equivalent factor [25]. The
equivalent factor plays a very important role in the ECMS, and it directly affects the effec-
tiveness of the optimization strategy. Li et al. [26] studied the equivalent factor boundary
of the ECMS for PHEVs. However, it is still a challenge to precisely determine the equiva-
lence factor. This limits the adaptive adjustment capabilities of the ECMS. Feng et al. [27]
proposed an adaptive ECMS with energy demand prediction to improve the adaptive
capability. The MPC strategy optimizes the fuel economy of PHEV on a moving finite
horizon [28]. However, it is not possible to update the result of MPC frequently when
computing on look-ahead horizons because the computation time increases with the hori-
zon length. Therefore, Uebel et al. [29] proposed a two-level MPC approach to overcome
the computational burden. Mariani et al. [30] propose the design of an MPC strategy for
maximizing regenerative braking in a real vehicle that has been hybridized by means of
a kit.

The above approaches lack self-learning capabilities, which are dependent on the
accuracy of dynamic models, and can fail if such models run under various environments.
Therefore, machine learning-based EMSs have received extensive attention in recent years,
with reinforcement learning (RL) and deep reinforcement learning (DRL) being the most
widely studied. RL’s main idea is to train a fully autonomous agent by interacting directly
with its potential environment [31]. It is different from supervised and unsupervised
machine learning which need static data during the training process. In [32], model-free
predictive EMS with multi-step learning capabilities was proposed, in which the Q learning-
based EMSs, including the sum-to-terminal strategy, average-to-neighbor strategy and
recurrent-to-terminal strategy were investigated. Compared to the conventional strategy, a
real-time fast Q-learning-based reinforcement learning EMS was investigated to improve
the fuel economy and reduce the computational efficiency [33]. Chen et al. [34] combine
the Markov decision process (MDP) and Q-learning algorithms to design power flow EMS,
which achieves fuel economy improvement under different driving cycles. The Q-learning
algorithm needs to build a Q table whose size is determined by the dimension of the states
and the action. When applied to complex HEV, Q-learning needs discrete continuous
states and actions so that the curse of dimensionality, as well as discrete error, limits its
application [35]. In order to solve the problem with high-dimensional and continuous
state/action, the deep neural network is used in the RL approaches [36]. Wu et al. [37]
proposed a continuous EMS based on deep Q learning (DQL), which approximates the
action value function through a deep neural network. By using double deep Q-learning
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(DDQL), Han et al. [38] addressed the problem that traditional DQL tended to fall into
the trap of over-optimistic estimation of Q value during training. DDQL-based intelligent
decision algorithm was proposed in [39], which achieves energy savings similar to offline
optimization. Both DQL and DDQL sample data from empirical replay, then calculate
the target Q value. All the samples in the replay buffer have the same probability of
being sampled. This leads to a reduction in the learning efficiency of the RL agent. In
order to improve the learning efficiency, Runna et al. [40] applied prioritized replay to
the DQL-based EMS. DQL is a value function-based approach, but it has trouble with
solving large action spaces, especially continuous spaces [41,42]. Yue et al. [43] introduce
temporal-difference (TD) learning based on Q learning and achieve the management of
HEV supercapacitors and power batteries through a model-free online strategy. A DRL
EMS based on the TD algorithm was proposed and combined with road information to
achieve self-learning power flow distribution of the hybrid vehicle power system in [44].
Lian et al. [45] used the deep deterministic policy gradient (DDPG) algorithm to solve
the problem of multi-objective energy management with a large control variable space.
However, the above deep reinforcement learning algorithms are often highly sensitive to
hyperparameters which directly affect the convergence performance, and even the RL agent
is difficult to adapt to different conditions [46]. Recent work has shown that the SAC deep
reinforcement learning algorithm with maximum entropy learning can solve the above
problems. The standard RL improves their performance only by maximizing the cumulative
reward. Because the maximum entropy learning is to achieve entropy maximization, the
SAC improves its performance by maximizing the weighted sum of expected cumulative
reward and entropy. The maximum entropy learning frame is introduced to improve the
ability of the action exploration and robustness. Furthermore, in order to promote the
algorithm performance, auto-entropy tuning (AET) is proposed [47].

1.2. Contribution

Considering the good convergence and insensitivity to hyperparameters of the SAC
algorithm with auto-entropy tuning (SAC−AET), the SAC−AET-based EMS is proposed
to improve the control effect of the traditional RL algorithm-based EMS. The ability of the
maximum entropy learning framework used in EMS to explore the vehicle efficiency space
is investigated. An automatic entropy adjustment framework is introduced to enhance the
EMS’s adaptability to driving cycles. In addition, the driving cycles were collected from
real vehicles. The fuel economy of the proposed SAC-based EMS is compared with that of
the DDPG strategy, traditional SAC strategy and ECMS. In addition, the adaptability of the
proposed strategy to different driving conditions is verified by combining driving cycles.

The remainder of the paper is organized as follows. The PHEV powertrain model is
described in Section 2. The SAC algorithm-based EMS is described in detail in Section 3. In
Section 4, simulations are designed to evaluate the performance of the proposed EMS, and
simulation results are evaluated. The final section is the conclusion of the paper.

2. PHEV Powertrain Model

In this paper, the studied vehicle is a plug-in hybrid electric bus with a parallel
configuration which is shown in Figure 1. The vehicle powertrain consists mainly of ICE,
EM, battery pack and dual-clutch. The two clutches separate the EM and ICE so that the
vehicle powertrain can operate in different modes, such as only the ICE operation, only the
EM operation, and ICE and EM operation together. The relevant parameters of the vehicle
are given in Table 1.
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Figure 1. The PHEV powertrain framework.

Table 1. Vehicle parameters.

Symbol Parameters Value

Vehicle

Curb weight 10,500 kg

Rolling resistance coefficient 0.015

Air resistance coefficient 0.65

Frontal area 6.75 m2

EM

Maximum power 135 kW

Maximum torque 1000 Nm

Maximum speed 3500 rpm

ICE

Maximum power 159 kW

Maximum torque 904 Nm

Maximum speed 2300 rpm

Battery
Voltage 525 V

capacity 96 Ah

The ICE and EM are modeled by efficiency maps collected from an experimental
platform. The efficiency maps of the ICE and the electric EM depict the relationship
between speed, torque and efficiency, as shown in Figures 2 and 3. The red curve of the ICE
efficiency map in Figure 2 corresponds to the optimal torque at maximum efficiency. The
Figure 3 shows that the EM maintains a relatively high efficiency whatever the operating
conditions.

The balance equation of the vehicle longitudinal force is given as follows:

Ft = Fj + Fi + Fw + Ff (1)


Fj = δmacc
Fi = mg sin(θ)
Fw = 1

2 ρCd A f ν2

Ff = mg f cos(θ)

(2)

where Ft is traction force, Fj is the acceleration force, Fi is the road grade force, Fw is
aerodynamic resistance force, Ff is rolling resistance force, m is the gross weight, g is the
gravity constant, θ is the road slope, Cd is the aerodynamic coefficient, A f is the vehicle
frontal area, f is the rolling resistance coefficient, ν is the vehicle velocity. δ is the rotational
mass coefficient. acc is the vehicle acceleration, and ρ is the air density.
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Figure 2. ICE efficiency map.
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Figure 3. EM efficiency map.

The vehicle torque demand is given in Equation (3).

Treq = Ft × rw ÷ (ig × io × η) (3)

where rw is the wheel radius, ig is transmission ratio, io is the final drive ratio, η is the drive
system efficiency. The powertrain structure of the studied PHEV is configured with a six-
speed automated manual transmission (AMT) gearbox, and the AMT gearbox parameters
are shown in Table 2. According to the vehicle velocity, the gear information G and the
transmission ratio ig are obtained by checking the table.

In this paper, the ICE torque demand Te is determined by the SAC strategy. The EM
torque demand Tm is calculated by the Equation (4).

Tm = Treq − Te (4)

where the Treq is the demand torque.
The battery is a significant part of the vehicle. It not only powers the vehicle but also

stores the recovered energy when the vehicle is decelerating. There are many important
parameters of the battery, including battery current, open-circuit voltage, internal resistance,
SOC, and so on [48]. In this research, SOC is more important since it describes the remaining
battery energy. The Li-Ion battery is modeled by an equivalent internal resistance model
that can calculate the SOC as follows:



World Electr. Veh. J. 2022, 13, 193 6 of 19


Pb(t) = Pmηn

m

Ib(t) =
Voc(t)−

√
V2

oc(t)−4R0Pb(t)
2R0

SOC(t) = Qin−
∫ t

0 I(t)dt
Qmax

(5)

n =

{
−1, i f Pm > 0
1, i f Pm ≤ 0

(6)

where Pb is the power of the battery, Pm is the EM power, ηk
m is the charge and discharge

efficiency, Ib is the current, Voc is the open-circuit voltage, R0 is the internal resistance of
the battery, Qin is the initial capacity of battery, Qmax is the maximum battery capacity, n is
a variable that varies according to the EM power.

Table 2. The AMT gearbox parameters.

Upshifting
Velocity (km/h) 0–10 10–20 20–32 32–50 50–66 66–95

Downshifting
Velocity (km/h) 0–7 7–15 15–28 28–45 45–58 -

Gear position 1 2 3 4 5 6

Gear ratio 6.39 3.97 2.40 1.48 1 0.73

3. Energy Management Strategy Based on SAC Algorithm
3.1. SAC Algorithm

MDP is a sequential decision problem with a fully observable stochastic environment.
The goal of RL is to find the optimal strategy under MDP to maximize the final cumulative
reward r. Each state under the MDP is related not only to the current state s but also to the
current action a. Since RL relies on reward and punishment given by the environment to
learn, the corresponding RL also includes the reward and punishment value r. Therefore,
the RL process can be composed of a quadruplet M = (s, a, s’, r). The basic process of
the agent–environment interaction for deep reinforcement learning is shown in Figure 4.
The RL agent continuously interacts with the environment until it converges. In general,
the process of the agent–environment interaction can be summarized as follows: at each
moment of the discrete-time series, t ∈ {0, 1, 2, · · ·}, the RL agent samples action ak from
the policy network. After executing the action ak, the agent gets a new state sk+1 from the
environment and obtains a reward r based on the action performed.

EnvironmentEnvironment

RL controllerRL controller

s

r

a

s’

r’

Figure 4. Basic process of agent–environment interaction for deep reinforcement learning.

This deep reinforcement learning algorithm consists of three important parts: an expe-
rience replay for storing previous experiences to reduce sampling complexity, maximum
entropy for stabilization and exploration, and an actor-critic structure consisting of a policy
network and four Q networks built by Multilayer Perceptron (MPL). Through the interplay



World Electr. Veh. J. 2022, 13, 193 7 of 19

of the above three components, the SAC deep reinforcement learning algorithm can be
divided into two processes: soft policy iteration and automating entropy adjustment.

3.1.1. Soft Policy Iteration

The aim of standard reinforcement learning is to learn a policy π∗(at|st) to make
the desired reward larger in the future. The SAC algorithm is different from standard
reinforcement learning which only learns the optimal policy to maximize the reward. In
order to explore all possible optimal paths, entropy termH is introduced:

π∗ = argmaxπ ∑t Eρπ [r(st, at) + αH(π(·|st))] (7)

where α is the equilibrium parameter that is used to regulate the tradeoff between reward
and entropy. The strategy can be made more randomized by increasing α, that is, the
probability of each action is as uniform as possible, instead of concentrating on one action.
H is the entropy value of strategy π, ρπ is the probability of state-action tuple under the
current polity, r is the reward, s is the state, a is the action.

To ensure that the sum of reward (and entropy) is finite over the entire time−step
sequence, k ∈ {0, 1, 2, 3, · · ·}, discount factor γ, 0 ≤ γ ≤ 1, is introduced. The policy with a
discount factor can be defined as:

π∗ = argmaxπ ∑Eρπ

[
∞

∑
l=k

γl−kE[r(sk, ak) + αH(π(·|sk))]

]
(8)

l represents the time series from the current moment to the last moment.
Soft policy iteration is a general method to learn the optimal maximum entropy

policy [49]. The actor−critic framework consists of two kinds of networks: the policy
network and the Q network. The policy iteration process alternates between soft policy
evaluation (Q network) and soft policy improvement (policy network) to maximize the
reward during the iteration. The process of soft policy evaluation which computes the
soft Q value Q(sk, ak) can be achieved by repeatedly using the modified Bellman backup
operator T π for the fixed policy as follows:

T πQ(sk, ak) , r(sk, ak) + γEρ[V(sk+1)] (9)

where
V(sk) = Eπ [Q(sk, ak)− α log π(ak|sk)] (10)

is a soft value function.
In order to deal with complex and multimodal behaviors, the SAC algorithm intro-

duces the general energy-based policy [50]. In the policy improvement process, the new
policy is not tractable in practice, so the Kullback–Leibler divergence is introduced, which
can limit policy to a certain set of policies Π. The policy π ∈ Π is updated as follows:

π∗k = arg min
π
′∈∏

DKL

(
π
′
(·|sk)

∥∥∥exp( 1
α Qπold(sk, ·))
Zπold(sk)

)
(11)

Zπold(sk) does not contribute to π∗k , so it can be ignored to optimize the π∗k , and it has
been proven that Qπ∗k (sk, ak) ≥ Qπold(sk, ak). More details can be seen in [50].

3.1.2. Automatic Entropy Adjustment

The parameter α in Equation (8) is a significant parameter that directly influences the
optimization objective, which should be changed for different driving cycles by experienced
engineers. Therefore, this section formulates a different objective from maximum entropy
reinforcement learning to achieve the automatic entropy adjustment, where the entropy is
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considered as a constraint. We want to maximize the desired reward under the constraint
of a minimum expected entropy as follows:

max
π0:T

Eρπ

[
T

∑
k=0

r(sk, ak)

]
,

s.t.Eρπ [− log π(·|sk)] ≥ H
(12)

whereH is an expected minimum entropy threshold.
The optimal policy π∗k is given directly as follows, and its derivation is described in

detail in [51].

π∗k = arg max
πk
E[Q∗k (sk, ak)− αk log π(ak|sk)]

= arg min
πk

DKL

(
πk

∥∥∥ 1
Z(sk)

exp
(

1
αk

Q∗k (sk, ak)

)) (13)

the Equation (13) is exactly the soft policy improvement step, which has the additional
equilibrium parameter αk. The dual variable α∗k is a function of the optimal strategy at k.
The dual variable α∗k can be solved as

α∗k = arg min
αk
E�[−αk log π∗k (ak|sk; αk)− αkH] (14)

3.2. Practical Algorithm

In the last section, the problem has already been solved in the tabular case. In order
to extend the above method to the continuous domain, the function approximator is used
to represent the Q-function Qπ and policy πφ. A number of effective value function
approximation methods have been proposed [52]. In this paper, a neural network will be
used to approximate the value function, which scores the effect produced by the current
torque distribution. We use two artificial neural networks to approximate the Q-function
with parameter θi, i ∈ {1, 2}, which aim at reducing the overestimation of the Q value. The
Q value is chosen from the smaller of the double Q-function values. The target network
with the parameters (θ1, θ2) is introduced to prevent overfitting during the training of the
two Q networks. In each iteration, the Q networks are trained by the gradient descent
method and the parameters (θ1, θ2) of the target networks are updated by an exponentially
moving average of the value network weights as

JQ(θi) = ED
[

1
2
(Qθi (sk, ak)− (r(sk, ak) + γVθ1,θ2

(sk+1)))
2
]

(15)

θi(k + 1)← mθi(k + 1) + (1−m)θi(k), i ∈ {1, 2} (16)

where 0 < m < 1, is a smoothing factor. D is the replay buffer, from which minibatch are
obtained. A policy network is a Gaussian model with the mean and covariance given by
the neural network. The Gaussian policy is trained by minimizing the loss Jπ(φ):

Jπ(φ) = ED
[

α log πφ(ak|sk)− min
i∈{1,2}

Qθi (sk, ak)

]
(17)

The learning of α can be obtained by approximating dual gradient descent to minimize
the dual objective J(α):

J(α) = ED
[
−α log πφ(ak|sk)− αH

]
(18)

The Equations (15)–(18) form the core of the SAC−AET. In the following work, the
networks will be optimized by Equations (15)–(18). The process of the SAC algorithm is
shown in Algorithm 1.
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Algorithm 1 Soft actor-critic DRL with automating entropy adjustment algorithm.
initialization:

Q networks with weights θi, i = {1, 2},
policy network with weights φ,
target network with weights θ1,2,
equilibrium parameter α,
replay buffer D;

FOR EACH EPISODE DO
get initial state

for each environment step do
choose action ak ∼ π(ak|sk)
take action ak, observe sk+1 and reward r
update replay buffer D ← D ∪ {sk, ak, r, sk+1}

end
for each gradient step do

sample a minibatch from D
update the Q network parameters :

Q← Q− λ∇̂Q J(Q)
update the policy network parameters:

π ← π − λ∇̂π J(π)
update the equilibrium parameter:

α← α− λ∇̂α J(α)
update the target network parameters

end
END

3.3. Design of SAC Algorithm-Based EMS

The three important components (state, action, reward) are defined as follows:

3.3.1. State

The gear is an important driving information factor for PHEV. Therefore, the state
variables are given as follows:

s(t) = {ν(t), acc(t), SOC(t), Treq(t), G(t)} (19)

where ν is the vehicle velocity, acc is the acceleration, G,G ∈ [1, 2, 3, 4, 5, 6], is the current
gear of the vehicle, s is the current state, the future state is denoted by s

′
.

3.3.2. Action

The action a(t), 0 ≤ a ≤ 1, is used as the control signal for the ICE at moment t. When
the action a(t) is obtained by the SAC algorithm, the demand torque of the ICE and EM
can be calculated: {

Te(t) = Te max(t)a(t)
Tm(t) = Treq(t)− Te(t)

(20)

where Te max denotes the maximum value of the ICE torque. In order to ensure the safety
and stability of the vehicle, the following constraints should be ensured, which are mainly
the physical limitations for the vehicle controller and the maximum operating parameter
limitations of the ICE and EM:

SOCmin < SOC(t) < SOCmax
Te min < Te(t) < Te max
Tm min < Tm(t) < Tm max
ne min < ne(t) < ne max
nm min < nm(t) < nm max
Treq min < Treq(t) < Treq max
Ibatt min < Ibatt(t) < Ibatt max

(21)



World Electr. Veh. J. 2022, 13, 193 10 of 19

where ne and nm represent the ICE speed and the EM speed, respectively. max and min
denote the maximum and minimum values of the corresponding variable.

3.3.3. Reward

The objectives of the EMS are to achieve fuel economy and keep the battery SOC
within a certain range. The reward is defined as a function of vehicle fuel consumption
and battery SOC. The main purpose of the RL agent is to achieve the maximum reward.
However, we want to decrease the instantaneous fuel consumption and keep the SOC to
SOCre f . The introduction of rinit can resolve the conflict. The reward is shown as:

r(t) =


rinit − cost(t), SOC(t) ≥ SOCre f

rinit −
(

β
(

SOCre f − SOC(t)
)2

+ cost(t)
)

, else
(22)

cost(t) = be(t)
Te(t)ne(t)

9550
(23)

where the rinit = 1 is a constant. β is a proportional factor used to balance the SOC and fuel
consumption efficiency. In the study of this paper, β is taken as 15,000. SOCre f is reference
SOC value. cost is the instantaneous fuel consumption, and be is the effective specific fuel
consumption.

The proposed EMS for PHEVs based on the SAC algorithm is shown in Figure 5.
At each time step, the agent interacts with the environment to obtain samples (s, a, r, s

′
)

that are stored in the replay buffer whose capacity is set to hold one million data items.
During the learning process, a minibatch with 256 data items is randomly selected from
the replay buffer which is used to solve the problem of data correlation and non-stationary
distribution. In addition, the algorithm is able to learn from past experiences to increase
data utilization and learning efficiency. The state vector s combined with the action a is
used as input to Q networks. The Q networks output Q values, which are used to evaluate
the value of taking input action under the input state vector. The next state vector s

′
is

used as input to the policy network to calculate the next action. The inputs of the target Q
networks are s

′
combined with the next action. Then, the Q value at the next moment can

be obtained, which evaluates the value of taking the next action under the next state. Then,
Q networks and policy networks are trained by gradient descent algorithm according to
Equations (15) and (17), respectively. The α is learned by dual gradient descent according
to Equation (18). Policy network, Q networks and target Q networks have only one hidden
layer with 300 neurons, respectively. More details about the SAC algorithm have been
shown in Table 3.

Table 3. Parameters of SAC−AET.

Parameters Value

discount factor 0.99

target smoothing coefficient 0.005

learning rate 0.0003

batch size 256

hidden size 300

replay size 1,000,000

entropy target −3
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Figure 5. The proposed EMS framework.

4. Simulation and Discussion

The proposed SAC-based EMS is validated in this section. The convergence and per-
formance of the proposed strategy are verified by a standard driving cycle. In addition, the
performance of SAC−AET-based EMS is compared with that of the SAC fixed equilibrium
parameter, DDPG strategy and ECMS. The adaptability of the proposed strategy is verified
by the real driving cycle. The real driving cycle is obtained from the bus remote intelligent
monitoring platform based on a mass of data, which is repeatedly collected from vehicle
CAN as shown in Figure 6.

Figure 6. Real-world driving cycle collection.
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4.1. The Performance of SAC Algorithm-Based EMS for UDDS

The standard driving cycle Urban Dynamometer Driving schedule (UDDS) in Figure 7
is used for the learning process of the proposed method. We use two UDDS driving cycles
to simulate a long-distance trip of PHEV. In this section, the performance of the SAC−AET
for UDDS is explored. The reference SOCs are set to 35%, 40%, 45%, 50%, respectively,
to validate the control effects for battery SOC. Figure 8 represents the trajectories of the
reference SOC from 35% to 50% under UDDS driving cycle. We can see that the battery SOC
curves decrease from initial value 0.7 to reference SOC, which shows that the proposed
strategy can achieve the goal to keep the SOC to the various reference SOC. In order to
analyze the changes of each part of the EMS in detail, we randomly select one of the four
reference SOCs to explain, and here we will show the results when the reference SOC
is 45%.
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Figure 7. UDDS driving cycle.
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Figure 8. The SOC trajectories of different reference SOC.

Figure 9 shows the rewards of the iterations, where the rewards have a large fluctuation
at the beginning of the learning process. In the beginning, the RL agent cannot figure out
a better decision, and the exploration strategy is used to randomly explore the action for
the current state to obtain the cumulative reward information. As the number of iterations
increases, the exploration strategy is gradually weakened, and the selected actions can
bring higher rewards according to the current policy. Therefore, the reward stabilizes after
about 23 iterations. It can be found that the reward becomes larger than the initial condition
and eventually remains within a certain range.

Figure 10 shows the adjustment process of α. The blue line is the loss of equilibrium
parameter at each step throughout the training process, which shows that the α loss
gradually fluctuates near zero. The α is adjusted and finally stabilized to a certain value, as
the red line shows.
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Figure 10. The process of α adjustment.

The EM power and SOC trajectory curve of the vehicle are shown in Figure 11. The
EM not only acts as a power source but also charges the battery when the EM power is
negative. In the SOC maintenance stage, which is the horizontal part of the yellow line, the
probability of the negative power is larger to keep the SOC to reference SOC (0.45).
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Figure 11. SOC trajectory at reference SOC of 0.45 and EM power.

The strategy is trained for a total of 100 iterations and the change in SOC is observed
every 10 iterations, as in Figure 12. It can be seen from the figure that the value of the SOC is
the largest in the first iteration. This is because the parameters of the strategy are randomly
initialized at the initial time. During the 10th iteration, we can see that the terminal of
SOC will drop to 0.45. As the training time continues to increase, the terminal of SOC gets
closer to the reference SOC (0.45). This further reflects the stability of the strategy and the
ability to learn. The equivalent fuel consumption per 100 km for each iteration is shown in
Figure 13. With the increase in training, the fuel consumption per 100 km tends to stabilize.
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As we can see from the graph, there are two places with the lowest fuel consumption, but
in this case, the SOC of the battery is not controlled by the reference value. We simulated
five times under this driving cycle and the average value of equivalent fuel consumption
for 100 km is 24.42 L.
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Figure 12. SOC trajectories with different iterations.
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Figure 13. The equivalent fuel consumption variation with different iterations.

4.2. Comparison of Different Strategies

In this experiment, the optimality of SAC−AET-based EMS is compared with that of
the SAC algorithm-based strategy with fixed equilibrium parameter, DDPG-based strategy
and ECMS. The DDPG strategy is a deep reinforcement learning algorithm-based EMS that
is highly sensitive to hyperparameters. In this section, the four strategies are simulated
using real driving cycle c1, shown in Figure 14a.
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Figure 14. Testing driving cycle. (a) Real-world driving cycle c1. (b) Real-world driving cycle c2.

The four EMSs are simulated using the same initial state, objective function, control
variable and constraints. Table 4 shows the fuel consumption of the strategies. In order to
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reflect the stability of the proposed strategy, the results of the last five simulations were
averaged to obtain the ICE fuel consumption and the equivalent fuel consumption. As
we can see from the table, the SAC-AET has a fuel consumption of 9.4283 L/100 km,
which is more economical compared to the other three strategies. It is also the smallest in
terms of equivalent fuel consumption. The control effects of the DDPG strategy are close
to that of the SAC strategy, but the efficiency distribution of ICE working points of the
strategies according to Figure 15 shows that the proposed SAC algorithm-based EMS is able
to explore a wider action space, which then facilitates the ICE to work in a more favorable
operating zone for the strategy. It can be seen from the figure that most ICE operating
points are located near a 200 (g/kWh) fuel consumption rate. In addition to the ECMS, the
ICE operates in the 100–190 (g/kWh) range some of the time. Therefore, the SAC strategy
saves more fuel. The comparison with the traditional SAC algorithm-based strategy is used
to demonstrate that the introduction of automatic entropy adjustment not only improves
the fuel economy, but also increases the adaptability and self-regulation capability of the
strategy.
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Figure 15. The efficiency distribution of ICE working points of the four strategies. (a) SAC-AET
strategy. (b) SAC (fixed equilibrium parameter) strategy. (c) DDPG strategy. (d) ECMS strategy.
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The SOC trajectories of the strategies are shown in Figure 16. For maximizing the use
of electrical energy, we set the reference SOC to 0.3. In the figure, we can see that the SOC
trajectories for the SAC-AET strategy and SAC with fixed equilibrium parameter strategy
are close before 2400 s. After 2400 s, the SOC of the ECMS is the highest compared with
others, and its final SOC is 0.3064. The final SOCs of the SAC-AET and DDPG strategies
are 0.2908 and 0.2865, respectively.
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Figure 16. The SOC trajectories of four strategies.

Table 4. The comparison of fuel consumption in three strategies.

Algorithm
ICE Fuel

Consumption
(l/100 km)

Equivalent Fuel
Consumption

(l/100 km)

Saving
Rate (%)

Final
SOC

SAC
(learned parameter) 9.4283 23.5767 4.37 0.29

DDPG 9.5372 23.9056 3.04 0.28

SAC
(fixed parameter) 10.6914 24.5879 0.26 0.31

ECMS 10.9499 24.6541 - 0.31

4.3. The Adaptability of SAC Algorithm-Based EMS

Many of the existing methods require elaborate designs to adapt to different driving
cycles. In order to verify the adaptability of SAC strategies to stochastic driving cycles, we
use real-world driving cycle c2 including the city driving cycle, suburban driving cycle and
rural driving cycle, shown in Figure 14b. The maximum velocity of the driving cycle is
67.25 km/h, and the average velocity is 29.36 km/h. The actual and desired vehicle-speed
trajectories of the PHEV are shown in Figure 17. It can be seen from the figure that the
reference speed of the real-world driving cycle is followed very well. The SOC trajectory
of the real-world driving cycle c2 is shown in Figure 18. The demand power is relatively
low in phase T1 and the SOC drops slowly. Phase T2 has a higher demand power and the
SOC drops sharply, eventually to the reference SOC (0.3). Phase T3 enters the ICE charging
process, keeping the SOC fluctuating around the reference SOC. Similarly, we simulated
five times under this driving cycle. The average values of the ICE and equivalent fuel
consumption for 100 km are 9.951 l and 18.056 l, respectively.
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Figure 17. The actual and desired vehicle-speed trajectories.
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Figure 18. SOC trajectory of real-world driving cycle c2.

5. Conclusions

In this paper, an improved SAC algorithm-based EMS is proposed to improve the fuel
economy of EMS. The two Q networks are used to solve the problem of overestimation
of Q values. The equilibrium parameter, which is the most important parameter of SAC
algorithm-based EMS, can be self-adjusted by learning. The simulation results show that
the SOC is able to be maintained at the various reference value under a real-world driving
cycle. Compared with the SAC strategy with fixed equilibrium parameters, the introduction
of a self-learning equilibrium parameter can improve fuel economy. The fuel economy
of the proposed SAC algorithm-based strategy gets 4.37% performance than ECMS. The
control effects of the DDPG strategy are close to that of the proposed SAC strategy, but
the proposed SAC algorithm-based EMS is able to explore a wider action space, which
then facilitated the ICE to work in a more favorable operating zone for the strategy. The
proposed SAC algorithm-based strategy is more adaptable to different driving cycles.
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