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Abstract: Current source inverters (CSIs) use inductors as the major component to store energy.
Compared with voltage source inverters (VSIs), CSIs have two advantages: 1. They can avoid
the converter failure caused by capacitor failures, and 2. The load current does not increase with
load mutation or even short-circuit failure. Therefore, CSIs can be a promising technology for
EV charging. However, the waveforms, parameter design procedure, and power efficiency are still
unclear. Therefore, it is unclear if CSIs are suitable for EV chargers. This article derives the closed-loop
equations of the critical components, including the inductor current waveforms and the voltage ripple.
Especially, the load over-voltage phenomenon is derived and verified to further ensure the reliability
of the CSI system. Based on the derived equations and reliability requirements, the parameter design
procedure is proposed. The power efficiency of both the Si- and SiC-based converters are derived and
compared to remove the barrier of applying CSIs in EV chargers in the industry. Our simulations and
experiments verify the correctness of the system modeling, over-voltage phenomenon, and power
efficiency. All the simulation files (using PLECS) and calculation files (using MATLAB) are attached
for the readers to verify and/or further modify.

Keywords: current source inverter (CSI); inductor-based converter; SiC converter; power efficiency

1. Introduction

Source inverters are widely used in advanced electric vehicle (EV) chargers [1–6],
grid-tied photovoltaic (PV) systems [6–11], wind turbine generator (WTG) systems [6],
motor drives [12,13], data center power supplies [14–17], etc. In EV charging technology,
bidirectional vehicle-to-grid and grid-to-vehicle charging can make full use of the internal
power cells of EVs and employ them in the microgrid as mobile energy storage units [18].
Figure 1 gives two examples: the grid-connected PV-EV battery charging system [19]
and the grid-connected wind turbine generator (WTG)-EV battery charging system [20].
As shown in Figure 1, a bidirectional inverter is necessary for transferring power from
PV array to grid because the output of PV generators is DC; and as shown in Figure 1.
(b), a bidirectional inverter is used for transferring power from the DC chargers to wind
generators because the output of wind generators is AC. Moreover, the bidirectional
chargers adopt the reflex charging control strategy [21,22], considering traditional DC–DC
charging processes have the problems of incomplete reaction, excessive thermal generation,
and a short battery life cycle due to long-lasting charging [23]. Moreover, bipolar pulses
produced by inverters can be used in the reflex charging mode [24]. Compared with the
traditional DC power charging process, the reflex charging mode can speed the charging
process up and extend the life of batteries [21,25–27]. Generally, inverters are classified
into voltage source inverters (VSIs) and current source inverters (CSIs) by considering
the structure of the inverters [28–31]. Figure 2 shows the typical topologies of VSIs and
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CSIs [28]. For VSIs, the DC voltage is an AC/DC rectifier, and a large capacitor is used to
maintain the DC-link voltage stability; as for CSIs, the DC current source is an AC/DC
rectifier with a large inductor that is used to maintain a constant current [28,29]. VSIs use
DC-link capacitors as the major components to store energy, while CSIs use inductors to
store energy [31].
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Meanwhile, CSIs are mostly used in reliability-sensitive applications, such as elec-
tric field welding [32,33]. The authors of [34] evaluated the mean time between failure
(MTBF) and concluded that the MTBF of capacitors could dominate the MTBF of the
whole converter. Therefore, medical grade products (e.g., electric field welding [32,33] and
electrosurgical generators [35]) still prefer CSIs.

Furthermore, CSIs are also widely used in applications that suffer load mutation [35].
Because CSIs use inductors as the major components to store energy, they tend to keep the
current constant during load mutation or even a short-circuit fault without extra high-speed
feedback control. Alternatively, because VSIs tend to keep the voltage constant, VSIs suffer
from a large current if circuits encounter a short-circuit fault.

These advantages in reliability and short-circuit protection are promising in EV charg-
ers. Firstly, EV chargers are automation grade application and require high reliability.
CSIs as capacitorless converters can have a high MTBF [34] and can operate with high
environmental temperatures. Furthermore, when the batteries encounter a short-circuit
fault, a high current should be strictly forbidden. Therefore, CSIs are inherently suitable for
EV chargers and battery protection.

On the other hand, wide band-gap (WBG) semiconductor technologies such as silicon
carbide (SiC) and gallium nitride (GaN) recently have received increased attention for
their superior characteristics [36–41], as Figure 3 [42] shows. Specifically, applications
such as electric vehicles (EVs) demand that WBG semiconductors meet their stringent
specifications [42].
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The physical properties of SiC, Si, and GaN materials are given in Table 1 [43], SiC
MOSFETs have a higher breakdown electric field, which allows higher and thinner doped
voltage blocking layers [44]. It makes SiC MOSFETs have a lower voltage drop and smaller
on-state resistance than those of Si at the same voltage rating [45]. In addition, a higher
breakdown electric field results in a smaller die area, which makes the junction capacitance
of SiC MOSFETs smaller than that of Si MOSFETs. Therefore, SiC MOSFETs have a reduced
switching loss. Therefore, replacing Si MOSFETs with SiC MOSFETs can improve the
efficiency of the inverter.
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Table 1. Physical Properties of SiC, GaN, and Si materials.

Electrical Property Si SiC GaN

Band Gap Energy (eV) 1.1 3.26 3.4
Electric Field (×106 V/cm) 0.3 3 3.5

Electron Mobility (×103 cm2/V·s) 1.3 0.9 0.9–2
Thermal Conductivity (W/cm·K) 1.5 3.7 1.3

Saturation Drift Velocity (×107 cm/s) 1.0 2.0 2.5

Figure 4 shows the structure of a cell of Si MOSFET, SiC MOSFET and GaN HEMT [46,47].
The SiC MOSFET is a vertical trench construction similar to Si MOSFETs, while GaN is a
lateral construction [46,47]. Therefore, SiC parts are usually available in a compatible package
style, such as TO-247 and TO-220, allowing them to drop in as replacements for MOSFETs
and IGBTs in existing designs, giving immediate advantages [47]. While GaN HEMTs have a
different structure and mechanism, they still need further analysis on aspects such as dynamic
on-state resistance [48,49]. Therefore, applications with high reliability requirements prefer
SiC MOSFETs.
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The authors of [35] proved CSIs’ ability in the transition between the three control
modes: the constant voltage, current, and power modes. Therefore, [35] forms the founda-
tion for the CSIs’ application in EV chargers. The authors of [24] demonstrated that CSIs can
be applied to EV chargers and proposed a drive circuit to prevent output voltage overshoot.
However, two basic questions remain that prohibit CSIs’ application in the industry: 1. The
parameter design procedure is unclear; 2. The power loss is unclear. Especially with SiC
MOSFETs’ wide application, both the volume and power loss of CSIs would be reduced.
Theoretic analyses would be important to discuss the possibility to use CSI topology as the
EV charger.

This paper comprehensively derives the expressions of the critical waveforms in
CSIs. Wherein, the output voltage and its ripple are critical for overvoltage protection; the
inductor current and its ripple can be used to calculate the volume and power loss of the
inductors. Therefore, the comprehensive parameter design diagram is given. Furthermore,
the power loss as well as the power efficiency calculation is presented. With the power
loss equations, this paper also compares the power efficiency between the converters with
Si MOSFETs and the converters with SiC MOSFETs, and hence verifies the advantages of
applying SiC MOSFETs in CSIs.

In this research, the circuit operating condition analysis and the formulas of output
characteristics were studied, including the output voltage and its ripple, which are neces-
sary for proper overvoltage protection design. The parameter design is presented as well.
Moreover, the power loss calculation and efficiency estimation are discussed, especially for
its application based on SiC power devices, providing the possibility for its application in
the industry. Finally, the correctness of those theoretical analyses was verified through both
simulations and experiments.
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The rest of the article is organized as follows: Section 2 presents the circuit topology
and the operation principles. With the derived expressions, the article analyzes the reason
for the voltage overshoot and the magnitude and shape of the current ripple. Furthermore,
Section 2 discusses the parameter design procedure. Section 3 derives the equation of the
power conversion efficiency and compares the power efficiency between Si- and SiC-based
CSIs. Furthermore, Section 4 presents the simulations and experiments that verified the
waveforms and the power conversion efficiency. Finally, Section 5 concludes the article.
And all parameters in this paper are symbolized according to the following nomenclature,
as shown in Table 2.

Table 2. Nomenclature.

Symbol Parameter

L Power Inductor
S1~S5 Switches
UDC Input DC Voltage
Rload Load Impedance

IL Average Inductor Current
IL.max Inductor Current Peak Value
IL.min Inductor Current Valley Value
∆iL Inductor Current Ripple
fs Switching Frequency of S5
Ts Inverter Working Period
fsw Switching Frequency of S1–S4
D Duty Cycle of S5

Rds(on) MOSFET On-State Resistance
VF Diode Forward Voltage
pcon MOSFET Conduction Loss
pswi MOSFET Switching Loss
Eon MOSFET Turn-On Switching Energy
Eoff MOSFET Turn-Off Switching Energy
Eswi MOSFET Switching Energy

2. Operation and Modeling of CSIs

The topology of the capacitor-free CSI is shown in Figure 5 [24]. Ref. [24] describes the
operation principle of the circuit but could not provide the detailed waveform equations.
Section 2 presents the circuit, operation principles, and modulation scheme, and then
derives the waveform equations with both the simplified and precise models. Moreover,
the difference between the precise and accurate models is compared. Based on all the
equations, the parameter design procedure is proposed as well.
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2.1. Circuits, Operation Principles, and Modulation Scheme

As shown in Figure 6, the CSI was operated in switching period Ts corresponding
to the frequency fs of S5, and S1–S4 operated at a higher frequency fsw to produce bipolar
pulses. The D denotes the duty cycle of S5. Under this operation scheme in Figure 6, four
circuit stages of the inverter are shown in Figure 7. It also shows the current flow in each
mode.
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2.2. Operation Principles and Two Models
2.2.1. Simplified Model

Firstly, a simplified model was constructed with ideal switches. In this model, the
ideal switches were short circuit in the on-state and open circuit in the off-state.

(1) The charging stage: (t0 − t1)
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As shown in Figure 7a, when S1–S5 were ON and the freewheel diode was OFF, the
inductor was charged by the input DC source. Because S5 was modeled as an ideal switch,
there was no voltage across it. The circuit voltage equation based on KVL is:

vL(t) = UDC = L
diL
dt

= L
∆iL
DTs

(1)

where UDC is the input DC voltage, and ∆iL is the inductor current ripple defined as
the difference between the inductor current peak and valley values. The decrease of the
inductor current was equal to the increase of the inductor when the inverter worked in a
steady state and can be expressed as:

∆iL =
DUDC

L fs
(2)

(2) The discharging stage: (t1–t4)

As shown in Figure 7b,c, S5 was always OFF in this stage, and S1, S4 and S2, S3 were
two pairs of switches operating in complementary control. Since the freewheel diode and
S1–S4 were modeled as ideal switches, the circuit voltage equation based on KVL is:

vL(t) + vo(t) = 0 (3)

The average voltage across inductors was zero when the circuit was in a steady state:

1
Ts

∫ Ts

0
vL(t)dt =

1
Ts

∫ DTs

0
Udcdt +

1
Ts

∫ (1−D)Ts

0
−vload(t)dt = 0 (4)

UDC · DTs − ILRload(1− D)Ts = 0 (5)

Moreover, the average current of inductor IL can be expressed as:

IL =
DUDC

(1− D)Rload
(6)

2.2.2. Precise Model

This section proposes a precise model where the MOSFETs were modeled as a constant
resistor Rds(on), and on-state and freewheel diodes were modeled as a constant voltage
drop VF in the on-state. They were both modeled as an open circuit in the off-state. The
equivalent circuit of the charging and discharging states are shown in Figure 8.
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As shown in Figure 8, both stages can be described as an R–L fist-order circuit with
one excitation, and the differential equation that describes the inductor current can be
expressed as (7) and (8):

L
diL
dt

+ 2Rds(on)iL = UDC (7)

L
diL
dt

+ iL(2Rdson + Rload) = −VF (8)

The peak and valley values of the inductor current are denoted as Il.max and IL.min,
respectively. By solving the differential Equations (7) and (8), the inductor currents in the
charging and discharging states can be expressed as (9) and (10), respectively:

iL_Ch(t) = IL.mine−2Rdsont/L +
UDC

2Rdson

(
1− e−2Rdsont/L

)
(9)

iL_Dis(t) = IL.maxe−(2Rdson+Rload)t/L +
−VF

2Rdson + Rload

(
1− e−(2Rdson+Rload)t/L

)
(10)

The energy discharged by the inductor and charged from the inductor reached a
balance when the inverter worked in the steady state, as shown in (11) and (12), respectively:

|∆iL+| = |∆iL−| (11)

iL_Ch(DTc)− iL_Ch(0) = iL_Dis(0)− iL_Dis((1− D)Tc) (12)

By solving (11), the peak and valley values of the inductor currents IL.max and IL.min
can be obtained according to Equations (13) and (14), respectively:

IL.min =

Udce
−(2Rds(on)+Rload)(1−D)/(L fs)

2Rds(on)

(
1− e−2Rds(on)D/(L fs)

)
− VFe

−(2Rds(on)+Rload)(1−D)/(L fs)

2Rds(on)+Rload

1− e
−2Rds(on )(D/(L fs)−(Rload+2Rds(on))(1−D)/(L fs)

(13)

IL.max = IL.mine−2Rds(on)D/(L fs) +
Udc

2Rdson

(
1− e−2Rds(on)D/(L fs)

)
(14)

2.3. Model Comparison and Error Analysis

The simplified model was based on the condition that all switches were ideal switches,
while in the precise model, the diode was modeled as constant voltage VF and the MOSFET
was modeled as resistor Rds(on). Therefore, the simplified model was valid for all kinds of
switches (SiC MOSFETs, Si MOSFETs, and GaN HEMTs). However, GaN HEMTs’ dynamic
on-state resistance was different compared with those of MOSFETs. Therefore, the precise
model was valid for SiC and Si MOSFETs, but less valid for GaN HEMTs. The errors of the
two models are discussed below.

Figure 9a,b show the comparison of the inductor current waveforms between simu-
lations, the simplified model, and the precise model. As shown in Figure 9a, the results
calculated by the simplified and precise models both matched the simulation results when
the inverter was on the rated conditions. However, when the inverter was under a low
load, as shown in Figure 9b, the error of the results calculated by the simplified model was
great, but the results calculated by this precise model matched the simulation results very
well.
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The error of the inductor current ripple ∆iL and the inductor average current IL solved
by the proposed two models are shown in Figure 10, where IL* and ∆iL * were solved by the
simplified model, and IL and ∆iL were solved by the precise model. As shown in Figure 10,
the error between these two models increased with the increase of IL, and the error was
positively correlated with RDS(on). The error of IL and ∆iL were both within 10% when
Rds(on) was less than 500 mΩ and IL was less than 30 A. When the Rds(on) of the MOSFETs
was smaller than one milliohm of resistance, the error of IL and ∆iL were both less than 5%.
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In the precise model, MOSFETs were modeled as a constant resistor, but the MOSFETs’
resistance changed with ID. However, this variation was small, especially for SiC MOSFETs
(within 16.67%). With the parameter variation shown in Table 3 [50,51], simulation results
with a typical, minimum, and maximum Rds(on) were conducted. The results are shown in
Figure 11. It indicated that the precise model was still valid when Rds(on) changed with ID.
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Table 3. The comparison between SiC and Si MOSFETs.

Rds(on) @25 ◦C SiC MOSFET
(C3M0025065D, Vgs = 15 V)

Si MOSFET
(IPW60R037P7, Vgs = 10V)

Minimum 24 (ID = 10A) 60 (ID = 0 A)
Typical Value 25 (ID = 33.5A) 37 (ID = 29.5 A)

Maximum 28 (ID = 135A) 95 (ID = 135 A)
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2.4. Parameter Design Based on Simplified Model
2.4.1. Inductor Design
Inverter Working in CCM Mode

Because CSIs work in the CCM mode, iL is always larger than zero, and its minimal
value IL.min is zero:

IL.min = IL −
1
2

∆IL = 0 (15)

Lc =
(1− D)Rload

2 fs
(16)

The Current Ripple

The current ripple was calculated by (2). As shown in (2), the inductor current ripple
∆iL was determined by the inductance when the input DC voltage UDC was constant and
the charge–discharge frequency fs and duty cycle D were fixed. The current ripple was
reversely correlated with the inductance. To ensure that the ripple of the inductance current
met the ripple current limits within the full input voltage range, the maximum value of
inductance under different modes was:

∆iL =
DUDC

L fs
≤ γIL.max (17)

where γ is the ripple quotient defined as the ratio of ∆iL to IL.
The inductance should be designed to satisfy both the above conditions:

L ≥ max{Lc, Lmin} (18)
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2.4.2. Active Switches Selection
Voltage Stress

During the discharge state, S5 was turned off, as shown in Figure 7b–d, and the voltage
potential of its drain is Udc; the voltage potential of its source is −VF, so the voltage stress
of S5 was:

VDS,S5 = Udc + VF (19)

During the discharge state, the voltage of the turn-off switch was the sum of the
voltage of load resistance and the conduction voltage of the on-state switch, so the voltage
stress of S1–S4 can be expressed as:

vDS,S1∼S4 = iL ·
(

RLoad + RDS(on)

)
(20)

From the previous analysis, the inductance current decreased during the discharging
state; thus, the maximum VDS was at the start point of the discharge state:

VDS.max(S1∼S4)
= IL.max ·

(
Rload + RDS(on)

)
≥ Uload.max (21)

Current Capability of Switches

The drain source current of S5 was equal to the inductance current during the charge
state, and could be turned off during the discharge state, so the average current in each
charging period was:

ID(pulse),S5
= IL.max (22)

ID(av),S5
=

1
T

∫ DTs

0
(iL)dt = DIL (23)

The active switches S1–S4 were always ON during the charge state, and two pairs
of switches were alternatively turned on and off during the discharge state with a high
frequency fsw. S1 and S4 were turned on to output a positive pulse; S2 and S3 were turned
on to output a negative pulse if the output pulse widths of the positive and negative pulses
were equal, i.e., the conduction times of S1/S4 and S2/S3 were equal to half the discharge
state:

ID(S1∼S4)
=

1
Ts

[∫ DTs

0

(
1
2

iL

)
dt +

∫ (1−D)Ts

0
(iL)dt

]
=

1 + D
2

IL (24)

2.4.3. Freewheeling Diode Selection

During the charging state, as Figure 7a shows, the diode was turned off by the reverse
voltage, vreverse:

vreverse = UDC − iL · RDS(on) (25)

The inductance current increased during the charge state, and thus VR reached its max-
imum at the end point of the discharge state and fell to its minimum when the inductance
charging finish time was:

VR.max = UDC − IL.min · RDS(on) (26)

The diode could only be turned on during the discharge state and when its current
was equal to the inductance current.

The average current in each charging period was:

IF =
1
Ts

∫ (1−D)Ts

0
(iL)dt = (1− D)IL (27)
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3. Power Loss Estimation Based on the Precise Model
3.1. Conduction Loss

The conduction losses of MOSFETs were usually expressed using their on-state resis-
tance Rds(on), while the conduction losses of freewheel diodes were usually expressed using
their forward threshold voltage VF. Moreover, from the analysis in Section 2.2, we know
there was current flowing through S5 only in the charging state, and this current flowed
through two circuit branches consisting of S1/S3 and S2/S4 on average. However, there was
current flowing through the freewheel diode only in the discharging state, and this current
also flowed through S1/S4 or S2/S3 by turns. Therefore, the conduction of each switch can
be expressed as:

pcond ,S5 =

(∫ DTs

0
i2L_ChRds(on)dt

)
fs (28)

pcond ,S1=S2=S3=S4 =

[∫ DTs

0

(
iL_Ch

2

)2
RDS(on)dt +

1
2

∫ (1−D)Ts

0
i2L_DisRds(on)dt

]
fs (29)

pcond,Diode =

(∫ (1−D)Ts

0
VFiL_Disdt

)
fs (30)

3.2. Switching Loss

The switching process of MOSFETs took some time when the voltage and current
waveforms overlapped, which produced the switching loss. Therefore, the energy loss can
be expressed as:

psw =

(
〈Eon〉Ts

+
〈

Eo f f

〉
Ts

)
fs =

[∫ ton

0
u1(t)i1(t)dt +

∫ to f f

0
u2(t)i2(t)dt

]
fs (31)

where ton is the time interval of the turn-on stage, while toff is the time interval of the
turn-off stage. Moreover, u1 and i1 are the voltage and current of MOSFETs when they are
turned on, respectively, while u2 and i2 are the voltage and current of MOSFETs when they
are turned off, respectively.

Here, parasitic inductances of MOSFETs were not taken into consideration, and the
switching behavior was determined by the parasitic capacitance consisting of Cgd, Cgs, and
Cds.

Figure 12 shows the waveforms when the MOSFETs were turning on and off. Com-
bining (30), the power loss of the turn-on and -off stages, respectively, can be calculated
as:

Eon =
∫ tri

0 VDS1

(
I1
tri

t
)

dt +
∫ trr

0 VDS1

(
Irr
trr

t
)

dt +
∫ t f u

0

(
VDS1 − VDS1

t f u
t
)

I1dt

= 1
2 VDS1 I1

(
tri + t f u

)
+ 1

2 VDS1 IRRtrr
(32)

Eo f f =
∫ tru

0

(
VDS2

tru
t
)

I2dt +
∫ t f i

0
VDS2

(
I2 −

I2

t f i
t

)
dt =

1
2

VDS2 I2

(
tru + t f i

)
(33)

where tri and tfu are the times of current rising and voltage falling during the turn-on
transient, respectively, and tru and tfi are the times of voltage rising and current falling
during the turn-off transient, respectively, which can be calculated from (32)–(35).

tri = RgCiss ln
(

Vg

Vg −Vm

)
(34)

t f u = RgCgd,av
VDS −Von

Vg −Vm
(35)

tru = RgCgd,av
VDS −Von

Vm
(36)
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t f i = RgCiss
Vm −Vth

Vm
(37)
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(a) Analysis of Communication between the Charging and Discharging States

When the CSI transited between the charging and discharging states, S1–S4 stayed
ON and there was no power loss consumed from S1–S4 during this process. The current
communication was between the freewheel diode and S5, as shown in Figure 13.
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and (b) the dead-time of the discharging state.

S5 stayed ON in the charging state when IL increased, and S5 stayed OFF in the
discharging state when IL decreased. Therefore, as for S5, I1 and I2 in (30) and (31) were
the minimum values of the inductor current IL.min and the maximum of inductor current
IL.max, respectively, and VDS can be calculated with (17). Then, the switching loss of S5 can
be calculated as:

psw ,S5 = fs ·
{

1
2
(VDC + VF)

[
IL.min

(
tri + t f u

)
+ IL.max

(
tru + t f i

)]
+ QgVG

}
(38)

where IL.min and IL.max can be calculated from (11) in the precise model.
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(b) Analysis of Communication between the P- and N-Modes during the Discharging
State

During the discharging state, S1/S4 and S2/S3 turned on and off when the working
state changed between the P- and N-modes by turns. As shown in Figure 14, the current
did not pass through the body diode of S1–S4 in this interval; thus, there was no reverse
recovery effect for S1–S4.
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Ng denotes the number of bipolar pulses in one discharging state, so S1 and S4 turned
on and off for Ng times. The current of S1–S4 was the current of the inductor that changed
during the discharging state given in (6), so the switching loss for each time was different
and should be calculated respectively. For the kth switching stage, the switching loss of
S1–S4 can be calculated as:
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Moreover, the total switching loss of S1–S4 in a period of Ts can be calculated as:

psw,S1=S4 = fs ·
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Rload + Rds(on)
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[
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(
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psw,S2=S3 = fs ·
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[
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(
tri + t f u

)
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(
tru + t f i
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+ QgVG
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(42)

Then, the total loss for the CSI can be calculated as:

ploss−total = pcond ,S5 + 4pcond ,S1=S2=S3=S4 + pcond,Diode + psw ,S5 + 2psw,S1=S4 + 2psw,S2=S3 (43)

3.3. Efficiency Comparison between Si- and SiC-Based CSIs

To identify the main cause of losses in the inverter, two kinds of power MOSFETs were
used in the proposed topology, and their switching and conduction losses were compared.
The main electrical characteristics of these two devices are shown in Table 4.
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Table 4. Main electrical characteristics of power devices.

Parameter SiC MOSFET
CREE C3M0025065D

Si MOSFET
Infineon IPW60R037P7

Vds (V) 650 650
d (A) 97 76

Id(pulse) (A) 251 280
Rdson (mΩ) 25 37

Ciss (pF) 2980 5243
Coss (pF) 178 85
Crss (pF) 12 156
Qg (nC) 108 121
trr (ns) 51 300

Tj,Tstg (◦C) −55~150 −40~175
Price @ quantity = 1 ($) Note 1 27.87 13.92

Note 1: the prices were obtained from Digikey.com on 21 September 2022.
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Figure 15. The comparative calculation results of the total power loss of CSI based on Si and SiC
power devices: (a) fs = 10 kHz, and (b) fs = 20 kHz.

Figure 15 compares the power losses between the SiC- and the Si-based CSIs. The
input DC voltage was specified as 100 V, while the output power and the switching
frequency varied in value. Figure 15a–d points out that when the inverter transferred
low power, the switching loss totally dominated the power loss, and the all-SiC CSI had a
great advantage in power loss reduction. This power loss reduction was more pronounced
at a high switching frequency. Figure 16a–d showed the curves of the efficiency versus
the output power and the switching frequency in the all-Si- and the all-SiC-based CSIs.
Figure 16a gives the efficiency curves when the input DC voltage was 100 V and the output
power was 100, 150, 200, 250, 300, 350, 400, and 500 W; Figure 16b gives the efficiency
curves when the input DC voltage was 400 V and the output power was 2, 2.5, 3, 3.5, 4,
and 4.5 kW. Figure 16c shows the efficiency curves when the input DC voltage was 100 V
and the switching frequency was 10, 20, 30, 40, and 50 kHz, and Figure 16d shows the
curves when the input DC voltage was 400 V. As shown in Figure 16a, under all kinds of
load conditions, the efficiencies of the all-SiC-based CSI were all higher than those of the
all-Si-based CSI. Figure 16b shows the efficiencies of the all-SiC-based CSI were all higher
than those of the all-Si-based CSI.
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4. Simulation and Experimental Verification

To verify the analysis and proposed models about output characteristics and power
loss properties, the simulation and experiments were conducted based on the CSI designed
in Section 2. Moreover, the parameters in this simulation and experiment are given in
Table 5.

Table 5. Related parameters in the simulation and experiment.

Parameter Value

L (mH) 1.25
Vdc (V) 100, 200

Rload (Ω) 10, 20, 50, 100
fs (kHz) 10

D 0.1~0.9
fsw (kHz) 100

4.1. Simulation Results

The simulations were based on PLECS. Actual physical models downloaded in the
official website were used in this simulation. The switching frequency of the all-SiC-based
CSI was maintained at 10 kHz. The simulation waveforms are shown in Figure 17 where
(a) and (b) show the output waveforms when Udc = 100 V and D = 0.5, respectively; (c) and
(d) show the waveforms when Udc = 200 V; and (e) and (f) show the results when D = 0.9
and D = 0.1, respectively. Furthermore, Figure 17f,g present the waveforms when the
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inverter worked with unbalanced bipolar pulses to verify that the system can work with
the reflex charging mode.
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4.2. Experiments Results

To validate the circuit analysis in Section 2 and the calculation and simulation results
in Section 3, a 100 V all-SiC-based CSI and power efficiency testing platform were built in
the lab based on the design. The physical picture of the CSI prototype and the test platform
are shown in Figure 18. S1–S5 in Figure 18a were C3M0025065D, and the input voltage was
supplied by an AMP SP200VDC4000W. The load was non-inductance, the inductance of
which was measured to be smaller than 1 µF. The waveforms were collected by a Tektronix
MSO46, and the power losses were measured by an HIOKI PW6001.
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Figure 19 shows the experimental waveforms of the all-SiC-based CSI when the load
resistance was 20 and 50 Ω. As it shows, the experimental waveforms agreed with the
simulation results, and they were also consistent with the analysis and formulas previously
proposed.

The power loss and efficiencies were measured by a power analyzer, and the efficien-
cies of the CSI were measured when the load resistance was 10, 20, 50, and 100 Ω. Moreover,
the inductor losses that were measured were involved. According to the experimental
results, the efficiency versus the output power could be plotted as shown in Figure 20. The
curves based on the calculated and simulation results are also given for comparison, where
the inductor loss of the calculation and simulation results were thought to be equal to the
experimental results.
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5. Conclusions

CSIs have a high MTBF due to their capacitorless features and short-circuit tolerance
ability. Therefore, CSIs can be a promising technology for EV chargers. However, the wave-
forms, the output voltage ripple, and the current ripple have not yet been fully analyzed.
This study derived the closed-loop equations of the waveforms to comprehensively under-
stand the operating principles and all the waveforms. Furthermore, based on the derived
output ripple equation, this paper points out that the output voltage would encounter the
voltage overshoot under a light load condition. Based on the derived equations and the
over-voltage condition, this article proposes the parameter design procedure. Furthermore,
the power efficiency of both the SiC- and Si-based CSIs were derived. The results showed
that SiC-based CSIs could achieve an 11.02% peak efficiency increase, 16.52% light load
efficiency increase, and 4.02% full load efficiency increase. Therefore, with the wide use
and the fast development of SiC MOSFETs, CSIs will become increasingly attractive in EV
chargers. Our simulations and experiments validated the correctness of both the equations
and the power conversion efficiency.
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