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Abstract: Transportation system simulation is a widely accepted approach to evaluate the impact
of transport policy deployment. In developing a transportation system deployment model, the
energy impact of the model is extremely valuable for sustainability and validation. It is expected that
different penetration levels of Connected-Autonomous Vehicles (CAVs) will impact travel behavior
due to changes in potential factors such as congestion, miles traveled, etc. Along with such impact
analyses, it is also important to further quantify the regional energy impact of CAV deployment
under different factors of interest. The objective of this paper is to study the energy consumption of
electrified vehicles in the future for different penetration levels of CAVs deployment in the City of
Chicago. The paper will further provide a statistical analysis of the results to evaluate the impact of
the different penetration levels on the different electrified powertrains used in the study.

Keywords: transportation system modeling; connected-autonomous vehicle (CAV); electric vehicle
(EV); energy consumption; vehicle simulation

1. Introduction

Understanding the energy consumption of current and future vehicle technologies under
real-world conditions is critical to estimating the overall impact of system models. Estimating the
energy consumption during measured real-world drive cycles provides a good approximation, but does
not ensure a consistent impact on the transportation system model as a whole [1]. This is why it is
important to evaluate the energy impact on the drive cycles generated by the transportation system
model itself.

The transportation system modeling tool, POLARIS [2,3] is used to develop and validate the
transportation system model for different metropolitan cities of the United States. It uses population
and vehicle synthesis, along with activity demand generation and traffic flow to model the system.
An individual-level CAV technology choice framework is also implemented along with updated traffic
flow modeling to account for CAVs. A study was implemented in POLARIS to analyze the impact of
CAV technologies on travel demand and energy consumption in the City of Chicago.

The resulting stochastic speed profiles from POLARIS, combined with the data on driving cycles
and fleet distribution are used as an input to Autonomie [4], a vehicle system modeling tool. Using the
speed profiles, Autonomie was able to simulate the energy consumption of the transportation network
for different vehicle technologies. Figure 1 illustrates the steps involved with the process.
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Figure 1. CAVs modeling using POLARIS & Autonomie.

Previous studies demonstrated the importance and ability of evaluating the energy consumption
of transportation system models in real world scenarios to analyze the intersection between transport
policy and vehicle technology [5].

There are many traffic flow simulation tools that model CAV technologies as part of the U.S.
Department of Energy Vehicle Technologies Office (DOE-VTO) Systems and Modeling for Accelerated
Research in Transportation (SMART) Mobility Consortium. These models study the impact in mobility
due to the introduction of CAVs through microsimulation traffic flow models, such as AimSun [6]
and VisSim [7]; and mesoscopic traffic flow models such as POLARIS and BEAM [8]. There are
differences in the assumptions and modeling techniques between these different transportation system
tools. However addressing the assumptions of the different traffic flow models and their applications
themselves is beyond the scope of this paper, which is to evaluate the energy consumption differences
for one of the studies previously conducted in POLARIS.

The different literature studies and existing research in modeling the traffic flows for CAVs are
discussed in greater detail in Auld et al., 2017 [9]. This paper only focuses on the energy consumption
impacts of different vehicle powertrains for different CAV scenarios by isolating the impacts of vehicle
electrification. Auld et al. also discusses the details in demand generation, traffic assignment and
simulation of CAVs.

There were also several studies conducted to study the energy consumption of transportation
system models using different methods. Colin et al. [8] models the charging behavior and infrastructure
in BEAM. The study uses constant energy consumption unit values (kWh/km) for different average
speeds in the traffic flow. However to model plug-in hybrids, there are a lot of instantaneous control
behaviors (such as state-of-charge of batteries, etc.) that need to be accounted for when evaluating the
energy consumption. Hence U.S. DOE-VTO supports using Autonomie, a full vehicle simulation tool
to evaluate the energy consumption for transportation system simulation tools. Many projects funded
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through U.S. DOE-VTO are currently implemented using Autonomie for different transportation
system simulations as it accurately represents the energy consumption impacts of the traffic flow.
Autonomie further implements U.S. DOE-VTO technology targets for vehicle components (such as
engine efficiency, battery specific energy, etc.) [10] and therefore, would be applicable in evaluating the
impact of overall VTO portfoliio.

There are also several studies analyzing the potential impact of cooperative and adaptive cruise
control (CACC), a key CAV technology, on traffic flow and energy consumption. According to
Christopher et al. [11], CACC could lead to a following headway of 0.6 seconds. This would reduce
the drag forces and decrease energy consumption. Analysis of field data shows 14% savings in fuel
consumption of trucks [12]. Under different test environments, other studies estimate the reduction in
trucks’ fuel consumption between 10% and 21% [13], 8% and 11% [14], and 5% and 8% [15]. Similar
studies performed on light duty vehicles demonstrate varying fuel efficiency improvements [16–18].
However these studies had been conducted in specific test tracks within laboratory settings and do
not replicate the impact in real world driving. Using the combination of POLARIS and Autonomie
enhances the ability to evaluate the real-world impact in metropolitan cities.

2. POLARIS

POLARIS is an agent-based, activity-based model of integrated traveler behavior and traffic flow.
In a POLARIS simulation, the population is synthesized and activities for each individual are generated
and then planned using different heuristic methods combined with discrete choice models. The activity
start time and schedules are subject to change as the simulation is running and traffic congestion
is updated. The individual vehicles are moved through the links and nodes using a mesoscopic
simulation approach, based on the Newell kinematic waves model [19] subject to speeds and capacities
at the links, as well as turning and capacity constraints at the intersections. The simulation serves as a
feedback mechanism by providing the network performance for the route choice model, the demand
model, and the intelligent transportation systems (ITS) model. A set of measures of effectiveness
(MOE) are produced such as average speed, density, flow rate, and vehicle trajectories.

As part of the developments within SMART Mobility Consortium, different cities within the U.S.
are being developed in POLARIS. Currently, there are models for Southwest Michigan [5], Bloomington,
IN and Chicago, IL. POLARIS is being developed through collaboration of researchers around the
world [20,21]; however, the transportation system models currently implemented in POLARIS are
limited to United States.

The Chicago Metropolitan Area was developed in POLARIS in collaboration with Chicago
Metropolitan Agency for Planning (CMAP). Figure 2 illustrates a snapshot from the Chicago road
network that was developed.

Figure 2. Chicago Metropolitan Area Road Network.
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Three levels of CAV cost scenarios were setup to evaluate the impact of CAV penetration in the
traffic flow. Here, the CAV cost refers to Willingness to Pay (WTP) for vehicle automation. There
are multiple studies that model the WTP for vehicle automation through various surveys, modeling
techniques and different variables used. Bansal et al. [22] addressees the survey conducted in Austin,
Texas to study the WTP for vehicle automation. Shabanpour et al. [23] discusses the findings of these
studies in further detail.

Table 1 details the different assumptions considered for the study. These assumptions were
developed from various literature studies and were addressed in detail in Auld, 2017 [9].

Table 1. CAV case study setup.

Case CAV Cost ($) (Willingness to Pay) CAV Fleet Penetration (%)

1 15,000 13.4
2 5000 47.8
3 0 100

It can be seen that the penetration of CAVs increases significantly with decreasing cost
of automation.

3. Autonomie

The Vehicle System Simulation tool Autonomie is used to perform simulations on drive cycles
with the vehicle models that incorporate baseline and advanced vehicle technology targets as generated
for U.S. DOE [10] and U.S. DOT [24]. The vehicle models used to evaluate the energy consumption
on the drive cycles consist of gasoline conventional powertrains, power-split hybrid-electric vehicles
(HEVs), plug-in HEVs and battery electric vehicles (BEVs) of different all-electric ranges (AERs).
Multiple EPA class definitions of vehicles (Compact, Midsize, Midsize SUV and Midsize Trucks) have
also been used to evaluate the energy consumption on the driving profiles. Market penetration models
are used to select the advanced vehicle powertrain models for future years.

Table 2 details a subset of the different vehicle powertrains used to represent the fleets:

Table 2. Autonomie Vehicle Models Considered.

Powertrain Vehicle Technology

Engine Transmission

CONV (Mild Hybrid 48V) SkyActiv 10-speed Automatic
Power-Split HEV Power Split

Voltec PHEV 50AER Power Split
BEV 200AER

The component and vehicle assumptions are derived from the U.S. Department of Energy Targets.
Table 3 lists the detailed component-level assumptions.



World Electric Vehicle Journal 2020, 11, 9 5 of 13

Table 3. Vehicle Component Assumptions.

Component Assumption Powertrain Value

Battery Specific Power (W/kg)
HEVs 6000

PHEVs 1500
BEVs 870

Battery Energy Density (Wh/kg) PHEVs 188.89
BEVs 340

Engine Efficiency (%) CONVs 38.78
HEVs 52

Motor Efficiency (%) BEV 97

4. Simulation Results Analysis

Figure 3a illustrates the percentage of fuel consumption (in kg) change between the baseline case
(with maximum CAV cost scenario of $15,000) and case 3 (with no CAV cost) and Figure 3b summarizes
the different parameters of interest (vehicle miles traveled, average trip length, fuel consumption, etc.)
across the three different CAV penetration levels. The detailed results of mobility changes across the
different CAV penetration cases were presented in Auld et al., 2017 [9].

(a) Geographic distribution of % fuel
consumption changes between case 1 and 3

(b) Summary table of the different CAV penetration case runs

Figure 3. Summary of CAV study simulation run.

In Figure 3a, the dark green areas indicate higher total fuel consumption (in kg) for the CAV cost
case of $0. This is because higher CAV fleet penetration results in increased traffic flow in urban areas,
resulting in higher fuel consumption. However we observe a reduction in fuel consumption in the
suburban areas. This is driven by how the traffic flow is generated due to the increased penetration of
CAVs in the model. The Figure 3b shows the changes in total fuel consumption (in kg) and vehicle
miles traveled (VMT) across the different CAV penetration levels. It shows that with increasing %CAV
penetration, the total fuel consumption (in kg) increases much more aggressively compared to the
VMT increments.
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This section further details the breakdown of impact observed in energy consumption of the
different CAV cost scenarios across the different vehicle powertrains.

4.1. Conventional Vehicle Powertrain

Figure 4a illustrates the distribution of fuel consumption with respect to driving distance for
conventional vehicles for the three different penetration levels of CAVs. Figure 4b shows the box plot
of fuel consumption of conventional vehicles for the three different penetration levels of CAVs.

(a) Fuel consumption vs. driving distance of conventional vehicles (b) Fuel consumption box-plot for conventional vehicles

Figure 4. Fuel consumption distribution of conventional vehicles.

From Figure 4a, it can be seen that with respect to the driving distances of individual trips, the fuel
consumption rate (L/100 km) is very similar across the different scenarios. Figure 4b further shows
that the variation in average fuel consumption rates for conventional vehicles across the three different
CAV cost scenarios is negligible, although the full extent of the ranges could vary. This is because the
vehicle designs were indifferent for the different CAV scenario runs and hence do not show any drastic
difference across the different cases.

4.2. Hybrid-Electric Vehicles (HEVs)

Figure 5a illustrates the distribution of fuel consumption rate (L/100 km) with respect to driving
distance for HEVs for the three different penetration levels of CAVs. Figure 5b shows the box plot of
fuel consumption of HEVs for the three different penetration levels of CAVs.

(a) Fuel consumption vs. driving distance of HEVs (b) Fuel consumption box-plot for HEVs

Figure 5. Fuel consumption distribution of HEVs.
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Similar to Figure 4a, it can be seen that with respect to driving distance, the distribution of
fuel consumption rate (L/100 km) for HEVs is very similar across the different cases in Figure 5a.
Figure 5b further shows that the average fuel consumption rate (L/100 km) is similar across the
different cases, although the full extent could vary due to different trips being affected through the
traffic flow. For power-split HEVs, the fuel consumption is the driving factor and the impacts in
electrical energy consumption is not as significant.

4.3. Plug-In Hybrid-Electric Vehicles (PHEVs)

Figure 6a illustrates the distribution of fuel consumption with respect to driving distance for
PHEVs for the three different penetration levels of CAVs. Figure 6b shows the box plot of fuel
consumption of PHEVs for the three different penetration levels of CAVs.

(a) Fuel consumption vs. driving distance for PHEVs
(b) Fuel consumption box-plot for PHEVs

Figure 6. Fuel consumption distribution for PHEVs.

Figure 6a,b show that the fuel consumption rate (in L/100 km) is very similar across the different
CAV cost scenarios. Figure 6a shows that the fuel consumption rates (in L/100 km) across driving
distances of the various trips seem to not be influenced by the CAV cost scenarios.

Figure 7a illustrates the distribution of electrical energy consumption with respect to driving
distance for PHEVs for the three different penetration levels of CAVs. Figure 7b shows the box plot of
fuel consumption of PHEVs for the three different penetration levels of CAVs.

(a) Electrical consumption vs. driving distance for PHEVs
(b) Electrical consumption box-plot for PHEVs

Figure 7. Electrical consumption distribution for PHEVs.

From Figure 7a, the variation in electrical energy consumption across driving distance is not
apparent between the different CAV cost scenarios. However in Figure 7b, the variation in electrical
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energy consumption for the trips across the different CAV cost scenarios can be easily differentiated.
Considering the full range of electrical energy consumption values, it seem to increase with lower CAV
cost cases and hence higher CAV penetration in the traffic flow.

4.4. Battery Electric Vehicles (BEVs)

Figure 8a illustrates the distribution of electrical energy consumption with respect to driving
distance for BEVs for the three different penetration levels of CAVs and Figure 8b shows the box plot
of fuel consumption of BEVs for the three different penetration levels of CAVs.

(a) Electrical Consumption vs. driving distance for BEVs (b) Electrical Consumption box-plot for BEVs

Figure 8. Electrical Consumption distribution for BEVs.

A larger variation in electrical consumption for BEVs can be observed across the three different
CAV penetration levels, showing substantial influence of the resultant penetration rates compared to
the other powertrains. From Figure 8a, it can be seen that there are three distinct trendlines that can
be observed for unadjusted electrical consumption with respect to trip driving distance. In Figure 8b,
the average electrical energy consumption across the different scenarios is further observed to vary
and the variation is more apparent. This introduces a difference compared to what is observed for
the other vehicle powertrains where no significant difference in fuel consumption is seen across the
different CAV cost scenarios.

5. Effect of Penetration Level on Fuel Consumed

Figure 9 summarizes the distribution of driving distances and energy consumption for the
different vehicle powertrains across different CAV scenarios.

Figure 9. Simulation results summary across vehicle powertrains.
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The previous analysis showed some visual differences in the amount of fuel consumed for the
various CAV penetration levels. It is unclear whether the primary contributor to this difference is in
the resulting travel behavior through the miles traveled or the nature of each trip itself. An approach
to isolating the effect of automation on total fuel consumed is to control for the distance traveled via
regression methods. Also, it is of interest to understand whether certain powertrains benefit more
(energy consumed) than others from the presence of more connected and automated vehicles on
the road.

In this section, we focus on the total amount of energy consumed EnergyUsage for all simulated
powertrains in Wh. Figure 10 shows a density plot of the log energy usage for the different powertrains.
We note slight energy differences for conventional, hybrid, and plug-in hybrid vehicles, but energy
consumption differences are more pronounced for battery electric vehicles.

Conv HEV PHEV BEV

4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10

0.0

0.2

0.4

0.6

log(EnergyUsage)

de
ns

ity

Case

cost0

cost15000

cost5000

Figure 10. Density plot of log energy usage per powertrain.

The purpose of the log transform comes from the apparent gamma distributed response, which
makes visual comparison difficult. We propose modeling the energy usage directly from the class
of generalized linear models with a gamma density and an identity link. This approach naturally
accounts for the skewness in the response and should avoid any potential heteroskedasticity of the
residuals that would come from a Gaussian model. In Gaussian models for a response Y we have V[Y]
constant as a function of mean response E[Y|X] which in this setting is inappropriate [25]. As a matter
of fact longer trips can vary in nature, with expected highway-like type driving. Further analysis
also suggests, after conditioning on the trips distance, that the energy usage does have a close to
gamma distribution.

We model each powertrain separately. The model has the form:

g(E[Y|X]) = XT β

with g an identity link function, X the covariates of interest and β the true parameters to estimate.
Figure 11 shows the resulting fit for conventional, HEV and BEV vehicles along with the

penetration levels estimates. Estimates are typically computed using maximum likelihood methods.
Full details can be found in [26].
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## Conventional fit
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 117.143594 0.421373 278.005 < 2.2e-16
## Casecost15000 11.888918 0.522802 22.741 < 2.2e-16
## Casecost5000 10.662201 0.535938 19.895 < 2.2e-16
## DrivingDistance_km_ 376.896770 0.047217 7982.291 < 2.2e-16
##
## Dispersion parameter = 0.01456
## n = 1549244 p = 4
## Deviance = 21108.37346 Null Deviance = 1164654.14472 (Difference = 1143545.77126)
##
## HEV fit
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 33.6651 3.0850 10.9124 < 2.2e-16
## Casecost15000 14.2065 3.9504 3.5962 0.000325
## Casecost5000 5.3013 4.2087 1.2596 0.207853
## DrivingDistance_km_ 206.3293 0.3785 545.1267 < 2.2e-16
##
## Dispersion parameter = 0.01645
## n = 7581 p = 4
## Deviance = 120.20950 Null Deviance = 5886.37011 (Difference = 5766.16062)
##
## BEV fit
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 42.6753 11.8685 3.5957 0.0004629
## Casecost15000 9.8710 14.9598 0.6598 0.5105662
## Casecost5000 18.6043 16.6740 1.1158 0.2666454
## DrivingDistance_km_ 116.5068 1.3976 83.3614 < 2.2e-16
##
## Dispersion parameter = 0.01055
## n = 130 p = 4
## Deviance = 1.29695 Null Deviance = 89.16471 (Difference = 87.86776)

Figure 11. Resulting fit for different powertrains with respect to different penetration level estimates.

From the residual plots shown in Figure 12, we first note that a variance function going as the
squared of the mean response could be too strong. This is especially true for conventional vehicles.
Even so, the fit is appropriate and the estimates as well as the t values can be trusted.

Figure 12. Residual plots.
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An interpretation of the results shows evidence for differences in energy levels for conventional
vehicles in the various penetration scenarios. We note that an increase in automation cost leads to
lower penetration levels. Consequently, this tends to increase overall energy consumed. Although the
order of magnitude is not large (around 10 to 11 W.h additional on average), it is statistically significant
enough to be reported as a notable difference. On the flip side, HEVs and BEVs are not as much affected
by the penetration levels. In fact, in the case of an assumed automation cost of $5000, the energy usage
for HEVs is not affected enough to claim a change, suggesting that energy levels of HEVs are similar
for $0 or $5000 of additional automation cost. However an additional automation cost of $15,000 does
impact HEV energy usage with a significant estimate of an additional ∼ 14 W.h. Finally, BEVs seem
not to differ for all levels, and this is reflected through the resulting high p-values of the estimates.

We emphasize that the power of this approach is that we managed to isolate energy differences
on the penetration levels only by controlling for the trip distances. In fact, the outcome of this analysis
is in contrast to the visual conclusion that one can draw by looking at Figure 10, especially for BEVs.

6. Conclusions

This study implemented a combined analysis of CAV energy impacts across different CAV cost
scenarios. It demonstrates a powerful energy estimation tool for regional analysis that allows us to
analyze the intersection between transport policy and vehicle technology. The purpose of the study
is to evaluate the different impact of vehicle powertrains in energy consumption across the three
cases studied.

With 100% CAV penetration, the total driving distance for conventional powertrains increases
by 13% and the average fuel consumption decreases by 1.5%. For HEV powertrains, the total driving
distance increases by 10% and the average fuel consumption decreases by 2.2%. For PHEV powertrains,
the total driving distance increases by 47% and the average fuel consumption decreases by 4%,
and for BEV powertrains, the total driving distance increases by 25% and the average electrical energy
consumption increases by 33%.

Through varied visual inspection, it can be seen that there is a minimum impact of the different
vehicle powertrains across the three different CAV cost cases that can be explained without taking
driving distance into account. Further statistical analysis of the results, isolating the influence of
the trip distances, shows some influence of the conventional vehicles in determining the overall
energy consumption across the three different cost cases. With higher CAV penetration, and hence
increasing average trip lengths, conventional vehicles tend to operate with better fuel efficiency and
hence contributes to the overall energy consumption across the different cases.

In this study, there were no changes in the assumptions of the vehicle design itself across the three
CAV penetration levels. Further research studies would be implemented to better model connected
and automated vehicles, accounting for additional electrical accessory loads and vehicle dynamics for
different levels of connectivity and automation in vehicles.
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Abbreviations

The following abbreviations are used in this manuscript:

AER All-Electric Range
ANL Argonne National Laboratory
BEV Battery-Electric Vehicle powertrain
CAV Connected-Autonomous Vehicle
CONV Conventional vehicle powertrain
HEV Hybrid Electric Vehicle powertrain
PHEV Plug-In Hybrid Electric Vehicle powertrain
U.S. DOE United States Department of Energy
U.S. DOT United States Department of Transportation
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