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Abstract: A single energy storage technology will deliver either high power or high energy
density. In high cycle applications like 48 V mild hybrid electric vehicles, lithium-ion batteries
or supercapacitors have to be oversized to meet power, energy and cycle life requirements. However,
a passive hybrid energy storage system is able to meet those challenges, but its performance depends
on several factors. In this study, simulations and experimental investigations show how the design
and operation conditions influence the performance of a passive hybridized system. In a comparative
study for 48 V systems, consequences on performance are discussed.

Keywords: hybrid electric vehicles (HEV); lithium-ion battery; supercapacitor; modeling; regenerative
braking

1. Introduction

Considering the requirements of an energy storage system (ESS) for current generations of 48 V
mild hybrid electric vehicle (MHEV) (Gen1: 11 kW; ~320 Wh) [1], a high power to energy (P/E) ratio
and a high cycle lifetime is mandatory. Future generations (Gen3: 25 kW; 1–5 kWh) of MHEVs will
require a different P/E ratio in order to enable pure electric driving within cities (FHEV = full hybrid
electric vehicle) [2]. Lithium-ion batteries (LIB) in form of high-energy (HE) or high-power (HP)
cells and even supercapacitors (SC) as a single system cannot satisfy all requirements in terms of P/E
ratio and cycle life without oversizing and/or overstraining the system. Therefore, a hybrid energy
storage system (HESS) and specifically a passive HESS is a suitable approach for pulse load profiles,
which appear in MHEVs and even in FHEVs.

Passive HESS show higher efficiencies and less complexity than other HESS solutions [3]. However,
their performance is mainly determined by the technology matching in terms of voltage characteristics
and ohmic resistance ratio whereas new degrees of freedom arise on system level. Different LIB
technologies and even more so conventional electrochemical double layer capacitors (EDLC) exhibit
quite different characteristics in ohmic resistances and voltages. New capacitor technologies like
Lithium-carbon capacitors (LIC) [4–6] arise that fill the gap in power and energy density between LIB
and SC technologies and bring new flexibilities in the design of passive HESS.

This study shows by experimental and model-based investigations how the design of a passive
HESS and its operation condition influence power and energy density. Advantages over battery-only
ESSs are discussed in a comparative study by analyzing two virtual 48 V MHEV scenarios.

World Electric Vehicle Journal 2019, 10, 71; doi:10.3390/wevj10040071 www.mdpi.com/journal/wevj

http://www.mdpi.com/journal/wevj
http://www.mdpi.com
http://dx.doi.org/10.3390/wevj10040071
http://www.mdpi.com/journal/wevj
https://www.mdpi.com/2032-6653/10/4/71?type=check_update&version=3


World Electric Vehicle Journal 2019, 10, 71 2 of 20

2. Fundamentals

2.1. Pulse Current Load and Operating Voltage

Factors that have an impact on the performance of a HESS within pulse load profiles have already
been discussed in previous papers. Besides the setup and the capacity ratio of the LIB or the SC [6,7],
also the characteristic of the pulse load profile and its impact were part of the discussion [8,9].

The character of a pulse load profile can be described by its period (T) and the pulse duration (PD),
in which the load current (Iload) is active. In Figure 1a a given current versus time Iload (t) is presented
schematically for two different periods (T1 and T2) as well as for two different pulse durations (PD1 and
PD2). Using Equation (1) the pulse profile can be characterized by its duty cycle (D), which describes
the relationship between the period T and the pulse duration PD.

D =
PD
T

(1)

The individual voltage limits of two hybridized energy storage technologies determine the
permissible voltage operating range. The upper cut-off voltage (Umax) or the lower cut-off voltage
(Umin), whichever is violated first, determines the actual operating range of the HESS. The usable energy
of a HESS (EHESS, total) is limited to the difference of the available capacities Q1 and Q2, which depend
on the upper (Umax) and lower cut-off voltage (Umin) of the HESS (see Figure 1b).
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voltages (Umax and Umin) on the operating voltage range of a passive hybrid energy storage system
(HESS) and usable energy of each component.

The usable energy of a HESS EHESS,total is the sum of the usable energies of each energy storage
EHESS,1 and EHESS,2, which can be calculated by the integration of the voltage curve U1 and U2 by the
capacity within the limits Q1 and Q2 (see Equation (2)).

EHESS,total =

∫ Q2

Q1

U1(Q)dQ +

∫ Q2

Q1

U2(Q)dQ (2)

2.2. Characterization of Energy Storage System (ESS) during Pulse Load Profiles

Energy and power density are typical dimensions to describe the characteristics of an ESS.
The energy density (eESS) defines which energy can be extracted per mass (mESS) of the ESS. In [10],
it is proposed to integrate time-varying voltage U (t) and load current Iload (t) only during active pulses
(g = 1) and to neglect U (t) and Iload (t) during pulse off times (g = 0). To characterize the power density
pESS, eESS is divided by the product of total time τ and κ, whereby κ is the fraction of τ in which
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the current pulse is active. The energy density eESS and the power density pESS can be calculated by
Equations (3) and (4):

eESS =
1

mESS

∫ τ

0
U(t)·Iload(t)·g(t)dt (3)

pESS =
eESS

τκ
(4)

The P/E ratio is given in (1 h−1) and describes the ratio between power and energy density of an
ESS and it is also used to specify the requirements of P/E ratio for applications. Depending on the
degree of electrification of an xHEV, the P/E Ratio can hold a value of 3 h−1 until 40 h−1 [11].

3. Modeling

It is one objective of this study to derive a universal cell model (CM) for a variety of LIB and
SC technologies along with a standardized parameter determination, which simplifies the design
processes for HESSs. Besides commercial LIBs, such as lithium-ion phosphate (LFP) and lithium-ion
cobalt oxide (LCO), conventional EDLC technologies, and two different types of LIC technologies are
also investigated in this study.

There are two general concepts that use both LIB and SC materials for the electrodes, either as
a serial or parallel connection. The composition of the electrodes differs between the two concepts.
In serial connection, one electrode consists of battery material and the other one holds EDLC material
and forms a serial hybrid capacitor (SHC). A parallel hybrid capacitor (PHC) consists of so-called
bi-material electrodes which are containing EDLC and battery material [12].

3.1. Cell Model (CM)

The Thevenin model is used as the cell model which is a common method to describe the electrical
behavior of LIBs [13,14]. Considering state of the art modeling of EDLCs, the Thevenin model is similar
to the “classical model” for EDLCs [15] but extended by a voltage source.

The model consists of a voltage source to represent the open circuit voltage (Uocv), the ohmic
resistance (Rinter) which describes the ohmic losses due to electrolyte and electrodes and one RC-circuit
(with RRC and CRC) to take diffusion processes within electrochemical energy storage devices into
account. The terminal voltage (Ucell) can be calculated by Equation (5), considering the dynamics of
URC between two-time samples (∆t) in Equation (6).

Ucell(t) = UOCV(t) + I(t)·Rinter(t) + URC(t) (5)

URC(t) = URC(t− 1)e
−∆t

RRC(t)CRC(t) +
(
1− e

−∆t
RRC(t)CRC(t)

)
RRC·I(t− 1) (6)

3.2. Single Cell Characteristics and Parameter Determination

Rinter is determined by the RDC pulse method [16] in which the pulse duration PD is varied
depending on the cell technology. Using Ohm’s law, Rinter can be calculated from the resulting change
in voltage caused by the applied current. This procedure is performed for a state of charge (SOC) of
10% to 90% in 10% steps in discharge (DIS) direction and will be used as a look-up table within the
simulation tool. For LIBs, the pulse is performed for 20 s and for all SC technologies, Rinter given in the
datasheets are reached by a 2 s pulse.

The parameterization procedure of UOCV is slightly different between cell technologies. For LIB
and LICPHC, UOCV is measured in a 2.5% SOC interval starting from 100% SOC and a relaxation time
of 20 min, after each point interval is reached. In case of EDLC and LICSHC, UOCV is measured by a
continuous 1 C charge starting at Umin until Umax. Measured parameters for modeling UOCV and Rinter

characteristics are given in Figure 2. RRC and CRC are determined by using Matlab® Optimization
Toolbox (The MathWorks, Inc., Natick, MA, USA) in which a nonlinear Levenberg–Marquardt algorithm
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is used to fit the parameters RRC and CRC in the least square sense to minimize modeled and measured
error of Ucell.

Besides the high-energy versions of LIBs (LFPHE and LCO), also a high-power oriented LFP cell
(LFPHP) is parameterized for the virtual concept study. To analyze energy and power density, each
cell is charged by a 1 C constant-current–constant-voltage (CCCV) regime until the upper cut-off

voltage Umax and a cut-off current of C/20 are reached. Afterwards, each cell is discharged with a
pulse load profile with a duty cycle D of 0.5 at pulse duration PD set to 10 s until the lower cut-off

voltage Umin is reached. In general, power densities consider mainly maximum allowed C-Rates in
DIS direction, which for most LIBs are higher than in charge (CHG) direction. One of the most crucial
design constraints in ESS design of MHEVs are the high peak currents in CHG direction (~230 A for
11 kW at 48 V). Hence, for power and energy density measurement, the highest allowed C-Rates for
CHG direction are applied. The experiments are performed at room temperature (approximately
25 ◦C), but due to the applied load, cells heated up. The maximum cell temperature has been achieved
by LICPHC with approximately 36.6 ◦C at 150 A. The maximum temperatures for the other cells have
been in a range between 25.2 ◦C and 33.6 ◦C. Measured energy and power density for all cells under
study are presented in Table 1 along with further technical data.

World Electric Vehicle Journal 2019, 10, x  4 of 20 

Besides the high-energy versions of LIBs (LFPHE and LCO), also a high-power oriented LFP cell 
(LFPHP) is parameterized for the virtual concept study. To analyze energy and power density, each 
cell is charged by a 1 C constant-current–constant-voltage (CCCV) regime until the upper cut-off 
voltage Umax and a cut-off current of C/20 are reached. Afterwards, each cell is discharged with a 
pulse load profile with a duty cycle D of 0.5 at pulse duration PD set to 10 s until the lower cut-off 
voltage Umin is reached. In general, power densities consider mainly maximum allowed C-Rates in 
DIS direction, which for most LIBs are higher than in charge (CHG) direction. One of the most crucial 
design constraints in ESS design of MHEVs are the high peak currents in CHG direction (~230 A for 
11 kW at 48 V). Hence, for power and energy density measurement, the highest allowed C-Rates for 
CHG direction are applied. The experiments are performed at room temperature (approximately 25 °C), 
but due to the applied load, cells heated up. The maximum cell temperature has been achieved by LICPHC 
with approximately 36.6 °C at 150 A. The maximum temperatures for the other cells have been in a 
range between 25.2 °C and 33.6 °C. Measured energy and power density for all cells under study are 
presented in Table 1 along with further technical data. 

 
Figure 2. Measured parameter for cells under study; (a) measured open circuit voltage (OCV) 
characteristics for lithium-ion batteries (LIB) and supercapacitors (SC); (b) Rinter characteristics for 
OCV and SC technology with RDC pulse measurement. 

  

Figure 2. Measured parameter for cells under study; (a) measured open circuit voltage (OCV)
characteristics for lithium-ion batteries (LIB) and supercapacitors (SC); (b) Rinter characteristics for OCV
and SC technology with RDC pulse measurement.



World Electric Vehicle Journal 2019, 10, 71 5 of 20

Table 1. Technical data of cells under study including measured energy/power densities and capacities.

Cell Type Cell Design Capacity (Ah) Voltage
Range (V) Mass (kg) Volume (l) C-Rate Max

CHG
eESS

(Whkg−1)
pESS

(Wkg−1)

LCO 18650 2.45 2.5–4.2 0.045 0.017 0.75 209.45 149.71
LFPHE 26650 3.00 2.0–3.6 0.085 0.036 1 109.54 109.89
LICSHC Pouch 1.28 2.2–3.8 0.250 0.150 117 11.29 1722.96
LICPHC Pouch 4.30 2.2–3.8 0.270 0.150 35 35.14 1555.65
EDLC Cylindrical 2.25 0.1–2.7 0.540 0.390 471 5.88 745.43 *
LFPHP 26650 2.50 2.0–3.6 0.076 0.036 4 101.14 411.98

* Maximum allowed C-Rate could not be supplied due to test bench limitation (max 200 A). A higher pESS is possible.

3.3. From Cell Model (CM) to System Model (SM)

In a battery pack many cells are connected in a hierarchal manner by serial and/or parallel
connection (xSyP) to meet the voltage, power and/or energy requirements of the application. To derive
a system model (SM) from a cell model, the parameters of the cell model are scaled up according to
the configuration (xSyP) to emulate the time dependent voltage and resistance characteristics of the
system (see Equation (7)). The indices (LIB, SC) imply the considered technology. This method is quite
accurate as long as no intrinsic cell imbalances are assumed [17]. Calmer’s rule is applied to solve
Equation (7) for ILIB, and according to Kirchhoff’s current law, the current of the SC bank ISC can be
calculated from the difference between ILIB and Iload given in Equation (8). 1 0(

−Rinter,SC(t)·
SSC
PSC

) [(
Rinter,SC(t)·

SSC
PSC

)
+

(
Rinter,LIB(t)·

SLIB
PLIB

)] ( Iload(t)
ILIB(t)

)

=

 Iload(t)(
UOCV,LIB(t) + URC,LIB(t)

)
SLIB −

(
UOCV,SC(t) + URC,SC(t)

)
SSC


(7)

ISC(t) = Iload(t) − ILIB(t) (8)

As the currents in Equations (7) and (8) are calculated on the system level, the changing SOC must
be considered within the cell model. The SOC is calculated by Equation (9) in which the integral of the
current I is divided by the product of the nominal capacity (CN) and the number of cells P that are
connected in parallel.

SOC(t) =
1

P·CN

∫ t

t=0
Idt ·100% (9)

An overview of the algorithm containing upscaling the cell model parameters of the used electrical
circuit model (ECM) in Figure 3a along with the calculation of load distribution and a drawback to
parameter dynamics is given in Figure 3b.

World Electric Vehicle Journal 2019, 10, x  5 of 20 

Table 1. Technical data of cells under study including measured energy/power densities and capacities. 

Cell 
Type 

Cell 
Design 

Capacity 
(Ah) 

Voltage 
Range (V) 

Mass 
(kg) 

Volume 
(l) 

C-Rate 
Max 
CHG 

eESS 

(Whkg−1) 
pESS 

(Wkg−1) 

LCO 18650 2.45 2.5–4.2 0.045 0.017 0.75 209.45 149.71 
LFPHE 26650 3.00 2.0–3.6 0.085 0.036 1 109.54 109.89 
LICSHC Pouch 1.28 2.2–3.8 0.250 0.150 117 11.29 1722.96 
LICPHC Pouch 4.30 2.2–3.8 0.270 0.150 35 35.14 1555.65 
EDLC Cylindrical 2.25 0.1–2.7 0.540 0.390 471 5.88 745.43 * 
LFPHP 26650 2.50 2.0–3.6 0.076 0.036 4 101.14 411.98 

* Maximum allowed C-Rate could not be supplied due to test bench limitation (max 200 A). A higher 
pESS is possible. 

3.3. From Cell Model (CM) to System Model (SM) 

In a battery pack many cells are connected in a hierarchal manner by serial and/or parallel 
connection (xSyP) to meet the voltage, power and/or energy requirements of the application. To 
derive a system model (SM) from a cell model, the parameters of the cell model are scaled up 
according to the configuration (xSyP) to emulate the time dependent voltage and resistance 
characteristics of the system (see Equation (7)). The indices (LIB, SC) imply the considered 
technology. This method is quite accurate as long as no intrinsic cell imbalances are assumed [17]. 
Calmer’s rule is applied to solve Equation (7) for ILIB, and according to Kirchhoff’s current law, the 
current of the SC bank ISC can be calculated from the difference between ILIB and Iload given in Equation 
(8). 

൥
1 0

൬−R୧୬୲ୣ୰,ୗେ(t) ∙
Sୗେ

Pୗେ
൰ ൤൬R୧୬୲ୣ୰,ୗେ(t) ∙

Sୗେ

Pୗେ
൰ + ൬R୧୬୲ୣ୰,୐୍୆(t) ∙

S୐୍୆

P୐୍୆
൰൨൩ ൬I୪୭ୟୢ(t)

I୐୍୆(t) ൰

= ቆ
I୪୭ୟୢ(t)

൫U୓େ୚,୐୍୆(t) + Uୖେ,୐୍୆(t)൯S୐୍୆ − ൫U୓େ୚,ୗେ(t) + Uୖେ,ୗେ(t)൯Sୗେ
ቇ 

(7) 

Iୗେ(t) = I୪୭ୟୢ(t) − I୐୍୆(t) (8) 

As the currents in Equations (7) and (8) are calculated on the system level, the changing SOC 
must be considered within the cell model. The SOC is calculated by Equation (9) in which the integral 
of the current I is divided by the product of the nominal capacity (CN) and the number of cells P that 
are connected in parallel. 

SOC(t) =
1

P ∙ C୒
න Idt

୲

୲ୀ଴
 ∙ 100% (9) 

An overview of the algorithm containing upscaling the cell model parameters of the used 
electrical circuit model (ECM) in Figure 3a along with the calculation of load distribution and a 
drawback to parameter dynamics is given in Figure 3b. 

 
Figure 3. Schematics of the cell model (a) and the algorithm for system modeling (b). Figure 3. Schematics of the cell model (a) and the algorithm for system modeling (b).



World Electric Vehicle Journal 2019, 10, 71 6 of 20

4. Analysis

The analysis of passive HESS is conducted by experimental and model-based approaches. Within
experimental investigations, LIB and SC technologies are hybridized on cell level (C2C) and a 48 V
system level (S2S). In focus are the energy and power density depending on technology matching,
the system layout, and the impact of pulse load characteristics. To derive further findings of practical
applicability of HESS, model-based analysis of nowadays (Gen1) and future-oriented (Gen3) MHEV
applications are conducted.

4.1. Experimental Study of Energy Density and Power Density Enhancement

The determination of energy and power density of HESSs on C2C and S2S level is conducted
in the same way as for the single cells (PD: 10 s; D: 0.5). Besides that, for S2S study, pulse duration
PD and duty cycle D are changed according to the pulse duration and the duty cycle occurrence
in application-oriented load profiles. For evaluating power density, only results, in which ILIB is
not exceeding its maximum allowed C-Rate counterpart, are taken into account. For the calculation
of energy and power density Equations (3) and (4) are applied, whereas for S2S analysis only the
cumulated mass of the used cells is considered to calculate mESS.

4.1.1. Cell to Cell Analysis (C2C)

A Basytec HPS Battery Tester (BaSyTec GmbH, Asselfingen, Germany) is used for the C2C
experiments to provide Iload (PD: 10 s; D: 0.5) and to measure the terminal voltage of the HESS UHESS.
An Agilent Keysight 3872A (Agilent Technologies, Inc., Santa Clara, CA, USA) measures the voltage
drop over a shunt resistance (1 mΩ) to identify ILIB and ISC. With Ohm´s law, ILIB can be determined
directly. Using Equation (8), ISC can be calculated by using measurement data of ILIB and Iload with a
time resolution of 1 s. As HESS, LFPHE and LCO are connected to all SC technologies under study.
In the case of the EDLC, two EDLC have to be connected in serial to gain the voltage ranges of LIBs.
The schematics of the test bench and data acquisition are presented in Figure 4a.
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and schematic of system to system analysis (S2S) campaign using energy storage system (ESS) of
Table 2.

4.1.2. System to System Analysis (S2S)

For investigations on a S2S level, sinks and loads are used (cumulated max. 120 A CHG/DIS),
whose load profiles can be controlled by a PC. The test bench principle is presented in Figure 4b and
as for the C2C investigation, a shunt resistance (1 mΩ) is used to determine Iload in a time resolution
of 0.2 s. In comparison to the C2C level, a battery management system (BMS) is necessary to satisfy
safety requirements of the used 48 V ESS, which is also providing data like ILIB for the evaluation and
calculating ISC according to Equation (7).

In application-oriented profiles, like HEV life cycle test in Figure 5a, a variety of pulse durations and
duty cycles can be found. Therefore, conspicuous peak powers, like 11 kW peak power, are investigated
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in terms of its pulse duration and duty cycle. For 11 kW peaks, an average pulse duration of 2 s at
an average duty cycle of 0.03 occurs. Besides 2 and 10 s pulse durations, also 5 s is as pulse duration
considered, hence following instructions of [1], ESS for MHEV applications should enable maximum
power for 5 s.

The 48 V systems of LFPHE and LICPHC are built as prototypes. For the 48 V EDLC system,
a commercially available product is used. Energy and power densities are identified by the
abovementioned regime and are presented in Table 2 along with measured capacities for a 1 A DIS after
a 1 C CCCV CHG regime. Data acquisition, control, and analysis are accomplished using LabVIEW®

(National Instruments Corporation, Austin, TX, USA). Four HEA-PSI91000-030U3 (HEIDEN electronics
GmbH, Pürgen, Germany) are used as sink and four HEA-ELR91500-030 (HEIDEN electronics GmbH,
Pürgen, Germany) are used as load. Data acquisition hardware components include one Q.gat_IP
controller (Gantner Instruments Test & Measurement GmbH, Darmstadt, Germany), Q.bloxx_A107
(Gantner Instruments Test & Measurement GmbH, Darmstadt, Germany) with four universal analog
input channels, and Q.bloxx_A127 (Gantner Instruments Test & Measurement GmbH, Darmstadt,
Germany) with four voltage input channels.

Table 2. Technical data of 48 V energy storage system (ESS) under study.

System/Parameter Topology Voltage Range (V) Capacity (Ah) eESS (Whkg−1) pESS (Wkg−1)

LFPHE 14S8P 32.0–48.5 22.45 103.08 99.67
LICPHC 13S1P 30.7–47.5 3.46 21.69 1328.20 *
EDLC 18S1P 0.1–48 2.22 1.47 538.55 *

* Maximum current could not be supplied due to test bench limitation (max 120 A). A higher pESS is possible.

4.2. Model Validation and Virtual Concept Study

4.2.1. Model Validation

The model is validated by using the normalized-root-mean-square error (NRMSE) method. Firstly,
simulated and measured voltages Ucell of the cell model during dynamic load profiles are validated.
Secondly, the model accuracy in terms of ILIB, ISC and terminal voltage UHESS of each HESS within
C2C campaign for a constant load followed by a pulse load profile is investigated. At last ILIB, ISC

and the terminal voltage on S2S level UHESS are also validated by experiments of the S2S campaign.
Calculated errors of ILIB and ISC are normalized to the range of maximum measured current in CHG
and DIS of each. Voltage errors are normalized to the arithmetic mean value of measured terminal
voltages UHESS or Ucell respectively. Finally, NRMSE of SC and LIB are summarized as overall model
accuracy by calculating arithmetic mean errors of current and voltage for each validation campaign.

4.2.2. Virtual Concept Study for Two Mild Hybrid Electric Vehicle (MHEV) Scenarios (Gen1–Gen3)

In the virtual concept study, the performance of HESS and commercial ESS using high-power or
high-energy should be compared within realistic scenarios. The first study shall represent nowadays
requirements for MHEV ESS. These are start-stop, regenerative braking, and acceleration tasks. For this
simulation, the load profile of Figure 5a from the United States Advanced Battery Consortium (USABC)
is used. The second study represents future tasks of MHEV, which involve additionally pure electric
inner city driving. Thus, the given acceleration (a) and velocity (v) profiles of the worldwide harmonised
light vehicles test procedure (WLTP) are converted into a power profile (Pv) by Equation (10) and using
parameters of Table 3.

Table 3. Parameters for load profile computation for Gen3 emulation.

Mass of Vehicle
mv (kg)

Gravitational
Acceleration g

(ms−2)

Rolling
Resistance

Cr (-)

Density of
Air ρair
(kgm−3)

Drag
Coefficient

Cd (-)

Cross-Sectional
Area Afront

(m2)

ESS Max
Chg/Dis

Power (kW)

1615 9.81 0.01 1.22 0.30 2.30 25
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The Energy Management System (EMS) controls how a MHEV splits the power supply to the
combustion engine (CE) and/or the ESS (see Equation (11)). Thus, a first-order approach is assumed
following the regime described in Table 4 to emulate PESS which is plotted along with v in Figure 5b.
The input parameter Iload (t) of the model is computed by PESS (t)/48 V.

Pv =
(
mv·a + mv·g·Cr +

1
2
ρair·Cd·Afront·v2

)
v (10)

Pv = PCE + PESS (11)

Table 4. Energy Management System (EMS) for mild hybrid electric vehicle (MHEV) application of
Gen 3.

Mode Condition Description

Inner City Driving v < 50 kmh−1 Pv is powered by ESS

Engine Mode 50 kmh−1 < v < 70 kmh−1 Pv is powered by ESS and CE Linear decrease of
PESS at 50 kmh−1 to 0 kW at 70 kmh−1 is assumed

Freeway Mode v > 70 kmh−1 Pv powered by CE
Regenerative Braking a < 0 Until 25 kW ESS is getting charged
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Life Cycle Profile proposed by United States Advanced Battery Consortium (USABC) for nowadays
Gen1 mild hybrid electric vehicle (MHEV); (b) velocity profile of worldwide harmonised light vehicles
test procedure (WLTP) and computed ESS power to emulate future Gen3 MHEV with inner-city
driving mode.

The model-based investigation is divided into several studies, which are comparing weight and
volume of a HESS and its competitive ESS as well as the charge throughput QTP and the root mean
square of the current IRMS of a single cell within a HESS and its competitive ESS.

As a unit for comparison the performance index (Θ) shall be introduced, which should emphasize
the differences in dimensions (weight and volume) and also in terms of the stress of a LIB cell within
both systems. Herein the relative deviation of the considered value of the hybrid system (XHESS)
to the value of the battery-only system (XESS) is calculated by Equation (12). Positive values of the
performance index Θ emphasis advantages of the HESS over the ESS and negative values correspond
to the contrary statement.

Θ =
(XESS −XHESS)

XESS
·100% (12)
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The number of serial cells is determined by the system voltage of 48 V whereas the number of
parallel cells is dictated by the maximum C-Rate for each technology and the maximum peak of Iload.
In general, those LIBs are not typical representatives of commonly used LIBs in automotive applications.
However, the principal objective of this study is to determine if there are possible configurations of
HESS with high energy cells that can compete with high power ESS. Another objective is to determine
how existing ESS can be improved by a passive hybridization and which technology match suits best.

A number of virtual HESS and ESS are set up according to the following tables. Tables 5 and 6 are
containing the setups of several HESS by using different supercapacitor technologies within the Gen1
and Gen3 scenarios for LCO and LFPHE hybrid systems, which compete with battery-only systems ESS
consisting of the same LIB equivalent technology. Two types of hybrid systems are set up which focus
on design criteria like weight and volume. The index HESSmin indicates hybrid systems, which are the
lightest in their technology match whereas HESSv shall label systems, which have approximately the
same volume as its battery-only counterpart. Table 7 contains setups of HESS systems for Gen1 and
Gen3 scenarios, which are competing against energy storage systems setup of the presented LFPHP

high power cell.
Besides the analysis of operational behavior, it shall also be part of the discussion, whether

the analyzed hybrid systems meet power to energy and energy density targets of Gen1 and Gen3
applications. Therefore, requirements in terms of weight, maximum power, and energy are summarized,
and energy density, as well as P/E ratio, is calculated with respect to these values. Maximum weight
and power for Gen1 applications are already given in [1]. As Gen3 applications are still in development
and technical guidelines like for Gen1 are missing, maximum power value is taken from industry
goals [2]. As 48 V MHEV for Gen3 applications should be able to fulfill tasks of nowadays FHEV
applications, target values for the maximum weight are taken from USABC goals for HEV battery [11].
The energy consumption within inner city driving is for an electric car approximately 0.17 kWhkm−1 [18],
hence a range for the installed energy was chosen to allow driving distances within cities of 6 until
approximately 30 km. Target specifications for Gen1 and Gen3 applications are listed in Table 8.
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Table 5. Technical data of virtual LFPHE (H)ESS concept study within Gen1 and Gen3 scenarios.

Characteristic/Profile Gen1–HEV Gen3–WLTP

EDLC LICSHC LICPHC ESS EDLC LICSHC LICPHC ESS

LIB bank (xSyP)
HESSmin/HESSv

14S6P/14S67P 14S1P/14S69P 14S2P/14S69P -/14S77P 14S39P/14S160P 14S37P/14S170P 14S34P/14S170P -/14S174P

SC bank (xSyP)
HESSmin/HESSv

18S7P/18S1P 13S8P/13S2P 13S9P/13S2P - 18S6P/18S1P 13S8P/13S1P 13S11P/13S1P -

Weight (kg)
HESSmin/HESSv

75.18/89.45 27.19/88.61 33.97/89.13 -/91.62 104.73/200.12 70.03/205.55 79.07/205.81 -/207.05

Volume (l)
HESSmin/HESSv

52.16/40.78 16.29/38.72 18.77/38.72 -/38.80 61.77/87.66 34.34/87.65 38.84/87.65 -/87.69

Capacity (kWh)
HESSmin/HESSv

1.11/9.55 0.49/9.84 1.80/9.85 -/11.64 5.84/22.81 5.70/24.23 6.67/24.24 -/25.05

Internal Resistance (mΩ) 50% SOC

LIB HESSmin 91.25 547.52 273.76 7.11 14.03 14.80 16.10 3.15
SC HESSmin 1.23 2.11 3.32 - 1.44 2.11 2.71 -
LIB HESSV 8.17 7.93 7.93 - 3.42 3.22 3.22 -
SC HESSV 8.64 8.45 14.95 - 8.64 16.90 29.90 -
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Table 6. Technical data of virtual LCO (H)ESS concept study within Gen1 and Gen3 scenarios.

Characteristic/Profile Gen1–HEV Gen3–WLTP

EDLC LICSHC LICPHC ESS EDLC LICSHC LICPHC ESS

LIB bank (xSyP)
HESSmin/HESSv

12S7P/12S86P 12S2P/12S65P 12S1P/12S65P -/12S125P 12S66P/12S248P 12S59P/12S272P 12S60P/12S272P -/12S284P

SC bank (xSyP)
HESSmin/HESSv

18S6P/18S2P 13S6P/13S6P 13S8P/13S6P - 18S5P/18S1P 13S6P/13S1P 13S9P/13S1P -

Weight (kg)
HESSmin/HESSv

62.35/68.97 20.25/56.94 28.65/58.50 -/72.00 86.61/152.56 53.48/159.92 66.15/160.18 -/163.58

Volume (l)
HESSmin/HESSv

43.54/31.58 12.25/25.10 15.99/25.10 -/25.50 48.56/57.61 23.87/57.46 30.00/57.46 -/57.93

Capacity (kWh)
HESSmin/HESSv

0.87/8.49 0.45/7.04 1.40/7.08 -/15.44 6.48/24.50 6.38/29.43 7.10/29.43 -/33.39

Internal Resistance (mΩ) 50% SOC

LIB HESSmin 147.23 515.33 1030 8.25 15.62 17.45 17.18 3.63
SC HESSmin 1.44 2.82 3.74 - 1.73 2.82 3.32 -
LIB HESSV 11.98 15.86 15.86 - 4.15 3.78 3.79 -
SC HESSV 4.32 2.82 4.98 - 8.64 16.90 29.90 -

Table 7. Technical data of virtual (H)ESS concept study within Gen1 and Gen3 scenarios versus LFPHP.

Characteristic/HESS LCO-LICSHC LFPHE-LICSHC LFPHP-LICSHC ESS LFPHP LFPHP-LICSHC ESS LFPHP

Gen1–HEV Gen1–HEV Gen1–HEV Gen1–HEV Gen3–WLTP Gen3–WLTP

LIB bank (xSyP) 12S2P 14S1P 14S2P 14S23P 14S12P 14S53P
SC bank (xSyP) 13S6P 13S8P 13S4P - 13S4P -

Weight (kg) 20.25 27.19 15.10 24.47 25.60 56.39
Volume (l) 12.25 16.29 8.90 11.59 13.90 26.71

Capacity (kWh) 0.45 0.49 0.41 2.90 1.43 6.36

Internal Resistance (mΩ) 50% SOC

LIB 515.33 547.52 187.21 16.28 31.20 7.06
SC 2.82 2.11 4.22 - 4.22 -
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Table 8. Target specification for 48 V mild hybrid electric vehicles in Gen1 and Gen3 application.

Characteristic Gen1 [1] Gen3 [2,11,18]

Maximum weight (kg) <8 <40
Maximum power (kW) 11 25

Energy (kWh) 0.3 1–5
Energy density (Whkg−1) * 37.5 25–125

P/E ratio * 37 25–5

* Calculated based on given weight and power values.

5. Results

5.1. Experimental Results

The measured load current Iload and LIB current ILIB for all C2C systems under study are presented
in Figure 6 along with the measured temperature of the LIB. Generally it can be seen that during
discharge pulses the battery current ILIB is in comparision to the charging phases tremendously reduced.
The degree of current distribution between the LIB and the SC differs between the hybrid systems.
As an example, it can be seen in Figure 6d that in the LCO-LICPHC system the LCO cell is barely
stressed during pulse discharging and constant charging periods in which the LICPHC cell takes most
of Iload. In comparision to that, in almost all hybrid systems using EDLC the LIB takes almost the
complete load Iload during charging and approximately the half of the current load Iload during pulse
discharging periods. During pulse discharging the temperature of the LIB is approx 25 ◦C and rises to
a maximum of approx 30 ◦C during constant charging periods.

Energy density and power density of HESS spread for a pulse duration PD of 10 s with duty
cycle D of 0.5 from 9.5 up to 55.4 Whkg−1 and 9.7 to 65.8 Wkg−1 on C2C level (see Figure 7a). Highest
energy and power density values are achieved by HESS existing of LFPHE and LICPHC (55.4 Whkg−1;
65.8 Wkg−1). Considering LCO HESS, using LICPHC are leading to the highest eESS for LCO HESS
as well.

In the comparison of LFPHE-EDLC HESS on C2C to S2S level, it can be seen that power and energy
density increase by more than a factor of 5. In the case of LFPHE-LICPHC HESS, the factor of increasing
power and energy density is approximately 1.5 and with 84.5 Whkg−1 and 110 Wkg−1 highest values
of energy and power density of all HESS are achieved for 10 sec pulse duration at a duty cycle of 0.5.

Changing the pulse duration PD from 10 to 2 s at a duty cycle D of 0.03, power density increases
for both HESS in S2S campaign by maintaining constant energy density at the same time (see Figure 7b).
Power densities at 2 s pulse duration are for LFPHE-EDLC HESS 169 Wkg−1 and for LFPHE-LICPHC

HESS 194 Wkg−1, whereas for LFPHE-LICPHC HESS the difference in power density between 5 s and
2 s pulse duration is only approximately 10 Wkg−1. Compared to 48 V LFP ESS, it is an increase in
power density up to a factor of 1.9 by a reduction of energy density up to 14%. Maximum temperature,
which arised within the LFPHE 48 V system has been 34.8 ◦C at the test pulse test procedure with 10 s
PD and 0.5 D regime.
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5.2. Model Validation

Exemplary profiles of the validation campaign for the cell and the system model on a C2C and
S2S level are given in Figure 8. The average overall accuracy of the model for each campaign, and the
number of considered errors is presented in Table 9. Voltage error increases from 1.95% for the cell
model CM up to 3.44% for S2S analysis. The model error of the electrical current shows a similar trend.
Herein, the mean error increases from C2C analysis to S2S analysis from 6.33% to 7.42%.
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Figure 8. Measured and simulated currents and terminal voltage profiles; (a,b) measured and simulated
voltage behavior of lithium-ion cobalt oxide (LCO); (c,d) modeled and measured current profile of
LFPHE-LICSHC HESS of C2C campaign along with system voltage UHESS; (e,f) modeled and measured
current profile of LFPHE-EDLC hybrid of S2S campaign along with measured terminal voltage UHESS.

Table 9. Average overall model accuracy for cell model (CM), cell to cell analysis (C2C), and system to
system analysis (S2S) analysis given as normalized-root-mean-square error (NRMSE).

Campaign Number of Errors Voltage (%) Current (%)

CM 6 1.95 -
C2C 12 2.94 6.33
S2S 4 3.44 7.42
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5.3. Results of the Virtual Concept Study

The analysis of the performance index Θ within the Gen1 scenario is presented in Figure 9,
whereas Figure 9a,b is presenting LFPHE and LCO hybrid systems with minimized system dimensions
(HESSmin), and Figure 9c,d is showing the results of the performance index for systems that have
approximately the same volume (HESSv) as their competitor battery-only system. It is shown in
Figure 9a,b that by using LIC technology a reduction of up to 60% in weight and volume is possible for
both LIB technologies under study. However, the single cell stress within the LIB bank is up to 60%
higher than in the competitive battery-only system. An exception is hybrid systems using the parallel
LIC technology. Herein, approximately same stress levels are achieved as in the battery-only system.

The hybrid systems using LCO as LIB bank are slightly more stressed than hybrid systems using
LFPHE. Using the classical EDLC technology for a hybrid system leads to a reduction in weight but
the required volume is up 70% higher (in case of LCO-EDLC) than for its counterpart. Increasing the
hybrid system to the approximately same volume as its battery-only counterpart leads generally to a
reduction of the single cell stress within the LIB bank.

The highest reductions are achieved for LCO-LICSHC and LCO-LICPHC hybrid systems with more
than 30% in charge throughput QTP and current stress IRMS. In the case of the LFPHE hybrid systems,
using the serial or even the parallel LIC, a reduction of up to 20% is possible. A hybrid system made up
of EDLCs with approximately the same volume of its battery counterpart and without overstraining
the LIB-bank is only possible by using LFPHE.

World Electric Vehicle Journal 2019, 10, x  15 of 20 

5.3. Results of the Virtual Concept Study 

The analysis of the performance index Θ within the Gen1 scenario is presented in Figure 9, 
whereas Figure 9a,b is presenting LFPHE and LCO hybrid systems with minimized system 
dimensions (HESSmin), and Figure 9c,d is showing the results of the performance index for systems 
that have approximately the same volume (HESSv) as their competitor battery-only system. It is 
shown in Figure 9a,b that by using LIC technology a reduction of up to 60% in weight and volume is 
possible for both LIB technologies under study. However, the single cell stress within the LIB bank 
is up to 60% higher than in the competitive battery-only system. An exception is hybrid systems using 
the parallel LIC technology. Herein, approximately same stress levels are achieved as in the battery-
only system. 

The hybrid systems using LCO as LIB bank are slightly more stressed than hybrid systems using 
LFPHE. Using the classical EDLC technology for a hybrid system leads to a reduction in weight but 
the required volume is up 70% higher (in case of LCO-EDLC) than for its counterpart. Increasing the 
hybrid system to the approximately same volume as its battery-only counterpart leads generally to a 
reduction of the single cell stress within the LIB bank.  

The highest reductions are achieved for LCO-LICSHC and LCO-LICPHC hybrid systems with more 
than 30% in charge throughput QTP and current stress IRMS. In the case of the LFPHE hybrid systems, 
using the serial or even the parallel LIC, a reduction of up to 20% is possible. A hybrid system made 
up of EDLCs with approximately the same volume of its battery counterpart and without 
overstraining the LIB-bank is only possible by using LFPHE. 

 
Figure 9. Performance index comparison of hybrid systems using different LB and SC technologies 
and design criteria for Gen1 applications versus battery-only systems using same LIB technology; 
(a,b) performance index of lightest hybrid systems; (c,d) performance index of volume equivalent 
hybrid systems. 

Figure 9. Performance index comparison of hybrid systems using different LB and SC technologies
and design criteria for Gen1 applications versus battery-only systems using same LIB technology;
(a,b) performance index of lightest hybrid systems; (c,d) performance index of volume equivalent
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Figure 10 presents the results of the Gen3 scenario analysis. Moreover, here a tremendous reduction
of the system dimensions in weight and volume can be achieved compared to the battery-only system.
In Figure 10a,b it can be seen that LFPHE hybrid systems and LCO hybrid systems achieve a weight
and volume reduction from 20% up to 60% depending on the used supercapacitor technology.

Moreover, here the small system size leads to an increase in single cell stress compared to the
battery-only system. The current is for all hybrid systems between 30% and 80% higher than their
battery-only counterpart. The charge throughput QTP within the LCO hybrid systems is 50% to 70%
higher than in the LCO battery systems and is quite similar for the LCO-EDLC and LCO-LICSHC

hybrid. Within the LFPHE hybrid systems, the single cells get approximately up to more than 100%
stressed than in the LFPHE battery system.

Moreover, the Gen3 scenario hybrid systems with approximately the same volume as their
battery-only counterpart tend to a reduction of charge throughput QTP and root mean square current
IRMS. In the case of the LCO hybrids, the single cells within the LCO bank are exposed to the same
charge throughput as in the LCO battery system. Simultaneously the root mean square current IRMS

is reduced up to 6% using serial or even parallel LIC. In case of using EDLC, the root mean square
current is for a cell within the LCO bank 4% higher than in the LCO battery system.

The LFPHE hybrid systems tend to similar results as LCO hybrid systems within this scenario.
The only differences are that besides the root mean square current, also the charge throughput QTP is
reduced up to 4% by using LIC. Using EDLC leads to an increased charge throughput of 2%.
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The results of the comparison of hybrid systems using high energy cells versus high power
systems within Gen1 applications are presented in Figure 11a. Generally, the single cell stress is in
both hybrid systems reduced up to 60% less than in the competitive LFPHP system, but only the
LCO-LICSHC hybrid meets the requirements to not exceed the system dimension of the LFPHP system.

Figure 11a shows the performance index of a LFPHP-LICSHC hybrid system within Gen1 and
Gen3 applications versus a LFPHP system. Moreover, here it can be seen that even for Gen1 and Gen3,
a reduction of the system dimension is possible. Depending on the scenario, weight and volume are
reduced between 20% and 50%. In Gen1, the single cell stress is reduced up to 20% whereas for Gen3
scenario the single battery cell is up to 50% more strained than in the competitive LFPHP system.

World Electric Vehicle Journal 2019, 10, x  17 of 20 

The results of the comparison of hybrid systems using high energy cells versus high power 
systems within Gen1 applications are presented in Figure 11a. Generally, the single cell stress is in 
both hybrid systems reduced up to 60% less than in the competitive LFPHP system, but only the LCO-
LICSHC hybrid meets the requirements to not exceed the system dimension of the LFPHP system.  

Figure 11a shows the performance index of a LFPHP-LICSHC hybrid system within Gen1 and Gen3 
applications versus a LFPHP system. Moreover, here it can be seen that even for Gen1 and Gen3, a 
reduction of the system dimension is possible. Depending on the scenario, weight and volume are 
reduced between 20% and 50%. In Gen1, the single cell stress is reduced up to 20% whereas for Gen3 
scenario the single battery cell is up to 50% more strained than in the competitive LFPHP system. 

 
Figure 11. (a) Performance index for hybrid systems using high energy cells versus battery-only 
systems with LFPHP high power cells within Gen1 application; (b) comparison of hybrid systems using 
LFPHP-LICSHC setup versus battery-only LFPHP system within Gen1 and Gen3 application. 

Finally, the hybrid systems and the battery-only systems shall be classified concerning their 
gravimetric energy density P/E ratio. The results are given in Figure 12, which also highlights the 
target areas for Gen1 and Gen3 values. 

At first sight, hybrid systems, which are designed to achieve the same volume (HESSv) as their 
battery-only counterpart, diverge to areas where their battery-only counterpart is located. Those 
systems achieve approximately the same P/E ratio as the LIB technology that is used, but 
simultaneously, a lack in energy density compared to its single LIB-ion technology occurs. In case of 
using LCO as LIB bank, the energy density is up to 40% reduced compared to the corresponding LCO 
battery-only system. Considering LFPHE battery-only and HESS systems, energy density is less than 
10% reduced. 

However, minimized hybrid systems (HESSmin) are lifting the P/E ratio of the single LIB 
technology into the desired target areas. The high energy cells of this study LFPHE and LCO are able 
to fulfill partially Gen1 conditions concerning P/E ratio and energy density by a passive hybridization 
with a serial LIC. Furthermore, it should be emphasized that hybrid systems using LFPHP-LICSHC 
fulfill the target areas of Gen1 and Gen3 applications. 

Figure 11. (a) Performance index for hybrid systems using high energy cells versus battery-only
systems with LFPHP high power cells within Gen1 application; (b) comparison of hybrid systems using
LFPHP-LICSHC setup versus battery-only LFPHP system within Gen1 and Gen3 application.

Finally, the hybrid systems and the battery-only systems shall be classified concerning their
gravimetric energy density P/E ratio. The results are given in Figure 12, which also highlights the
target areas for Gen1 and Gen3 values.

At first sight, hybrid systems, which are designed to achieve the same volume (HESSv) as their
battery-only counterpart, diverge to areas where their battery-only counterpart is located. Those
systems achieve approximately the same P/E ratio as the LIB technology that is used, but simultaneously,
a lack in energy density compared to its single LIB-ion technology occurs. In case of using LCO as
LIB bank, the energy density is up to 40% reduced compared to the corresponding LCO battery-only
system. Considering LFPHE battery-only and HESS systems, energy density is less than 10% reduced.

However, minimized hybrid systems (HESSmin) are lifting the P/E ratio of the single LIB technology
into the desired target areas. The high energy cells of this study LFPHE and LCO are able to fulfill
partially Gen1 conditions concerning P/E ratio and energy density by a passive hybridization with a
serial LIC. Furthermore, it should be emphasized that hybrid systems using LFPHP-LICSHC fulfill the
target areas of Gen1 and Gen3 applications.
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6. Discussion

Experimental and model-based investigations have shown that passive HESS can be a suitable
approach for present and future generations of MHEV. However, several factors that influence the
performance of a HESS have to be considered. The experimental campaign highlighted the influence
of the HESS setup on its performance. Besides the influence of technology matching on cell level,
improvements in power and energy density of the same composition up to a factor 5 on system level
are possible. Furthermore, the characteristic of the pulse load profile influences the performance of
a HESS. Shorter pulse lengths are leading to higher power densities. In general, a hybridization of
LIB with LIC technologies leads to better performances than the other HESS. In comparison to HESS
using EDLC, the energy density is improved by similar voltage levels of LIB and LIC combined with
an improved energy density of LIC over EDLC. Power density is improved, hence LIC are able, due to
their higher amount of energy density, to get charged/discharged for a longer period of time until the
LIB has to take most part of the load. With this, higher current loads are possible without overstraining
the LIB.

Within the experiment the best performance is shown by the 48 V LFPHE-LICPHC HESS.
In comparison to the LFP battery-only system, an increase in power density up to a factor of
1.9 can be achieved. This comes with the drawback of a loss in energy density by 14%.

The model-based campaign has proven that the used approach of a universal model for the
different technologies is quite accurate on cell and system level. It is clear that the model error increases
from cell to system level as the number of external factors increase due to the increased complexity
from ESS to a single cell. Still, the maximum error of 7% within eight different HESS setups using five
different technologies is quite satisfying when taken the high dynamics in current and voltage into
account that exist within a passive HESS under pulse current load. Moreover, most model errors arise
in low SOC area (<10%) in which high voltage dynamics occur.

The virtual concept study shows for both scenarios that the HESS approach is quite suitable
for MHEV applications. The system dimensions can be minimized up to 60% and even HESS using
high-energy cells can compete with high power systems in Gen1 applications. Nevertheless, the
system layout and technology matching have an extreme influence on the P/E ratio and energy density.
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A hybridization can shift P/E ratio and energy density values into areas which are suitable for desired
applications which cannot be met by a technology on its own.

It has been shown that HESS with approximately the same dimensions as its LIB counterpart have
also a quite similar P/E and energy density characteristics but less battery stress, whereas minimized
HESS have to endure higher battery stress, which is still within data sheet limitations. Impacts on aging
shall be analyzed in future studies along with standardized layout criteria for optimal HESS design.

7. Conclusions

In this work, passive hybrid energy storage systems were investigated on cell and system level for
different lithium-ion and supercapacitor technologies within pulse load applications. The hybrid energy
storage system performance was influenced by the technology match and also by the characteristics
of the pulse profile. In addition, a universal model and its parameterization for lithium-ion and
supercapacitor technologies were presented and its validity on cell and system modeling was proven.
A virtual concept study for two generations of mild hybrid electric vehicles was shown. In general,
passive hybrid energy storage systems show a better power to energy ratio along with less necessary
weight and volume than competitive battery-only energy storage systems, especially in high dynamic
profiles. For pure electric driving scenarios, passive hybrid energy storage systems still show a better
power to energy ratio, but lithium-ion batteries have to endure a higher charge throughput than their
competitive battery-only energy storage systems. Impacts on aging behavior shall be part of further
studies as well as a proposal of a design process for hybrid energy storage systems.
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