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Abstract: Intrusion detection system (IDS) is a well-known and effective component of network
security that provides transactions upon the network systems with security and safety. Most of
earlier research has addressed difficulties such as overfitting, feature redundancy, high-dimensional
features and a limited number of training samples but feature selection. We approach the problem
of feature selection via sparse logistic regression (SPLR). In this paper, we propose a discriminative
feature selection and intrusion classification based on SPLR for IDS. The SPLR is a recently developed
technique for data analysis and processing via sparse regularized optimization that selects a small
subset from the original feature variables to model the data for the purpose of classification. A linear
SPLR model aims to select the discriminative features from the repository of datasets and learns
the coefficients of the linear classifier. Compared with the feature selection approaches, like filter
(ranking) and wrapper methods that separate the feature selection and classification problems, SPLR
can combine feature selection and classification into a unified framework. The experiments in this
correspondence demonstrate that the proposed method has better performance than most of the
well-known techniques used for intrusion detection.

Keywords: sparse logistic regression (SPLR); intrusion detection system (IDS); computer network
security; data mining (DM); machine learning (ML)

1. Introduction

As the proliferating growth of computer network activities and sensitive information on network
systems increases, more and more organizations are becoming susceptible to a wider variety of attacks.
The question of how to protect network systems from intrusion, disruption, and other anomalous
activities from unwanted attackers becomes paramount [1]. The conventional intrusion prevention
systems such as firewalls, access control, and secure network protocols (SNP) and encryption
techniques cannot always protect network systems because the possibility of malicious traffic being
injected into the system. The intrusion detection system (IDS) [2] is an essential element of security
infrastructure that is useful in detecting and identifying the threats as well as tracking the intruders.
In 2016 and mid-2017, a joint report was published by Internet Organized Crime Threat Assessment
(IOCTA), the fourth annual presentation of the cybercrime threat landscape by Europol’s European
Cybercrime Center (EC3). It is mentioned that how cybercrime proceeds to grow and emerge, taking
new trends and directions, as shown in some of the attacks of the unprecedented scale of late 2016 and
mid-2017 [3].

Future Internet 2017, 9, 81; doi:10.3390/fi9040081 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi9040081
http://www.mdpi.com/journal/futureinternet


Future Internet 2017, 9, 81 2 of 15

The trend is now moving towards the use of a combination of several separate attacks to create
a sophisticated and more effective attack. Therefore, many researchers have been focusing on the
solution of the IDS challenge that can be used to develop detection models to reduce the number
of false alarm rates and recognize new attacks. IDS can be described as a security system that
automatically monitors the network activities and analyzes the network events so that the unauthorized
attempts to access/manipulate the system resource can be identified. Furthermore, if examining of
connections/events are considered, there are two kinds of IDS encounters: misuse detection system
and anomaly detection system [4].

1. Misuse detection system (MDS): MDS can be identified as signature-based or knowledge-based
intrusion detection system. It is based on loading all features of known attacks in the repository.
However, the signature of attacks are known and defined priori and IDS attempts to identify the
behavior as either normal or abnormal via analyzing the network connection sample to known
intrusion pattern recognized by human specialists. The MDS has very low false positive rate and high
classification accuracy. On the other hand, MDS cannot detect new or unknown attacks [5].

2. Anomaly detection system (ADS): ADS can identify an attack based on significant deviation
from normal activity of network system. Suppose that an intrusion could be identified by analyzing
deviation from a normal or suspicious behavior(s) of a monitored object. However, it is very important
to identify the entity’s normal behavior correctly. Therefore, different data samples analyzed via
processes on the same network. Different features would be selected from analyzed data samples.
The selected features may represent one of the prominent factors. Although input features have
sufficient knowledge about the normal and abnormal users; despite the fact that usually ADS detects
novel or unknown attacks for the system but usually it has high false positive rates [6].

Recently, several IDSs have been recommended that mainly target rule-based systems, because
their performance depends on the rules identified by the security experts [7]. However, the volume of
network traffic is extensive therefore the process of encoding rules is mostly inadequate as well as slow.
Hence, security experts need to modify the rules or implement new rules by a specific rule-driven
language. Nowadays, one serious challenge for IDS is feature selection (FS) from network traffic data
and researchers employed feature selection techniques for the classification problems [8]. However,
several algorithms are sensitive to feature selection because the raw data format of network not being
suitable for detection. Therefore, feature selection is a significant method of improving classification
accuracy, reduce the unnecessary or redundant input features and contributing a better understanding
of important features and the underlying process that generated the datasets.

It can be said that there is a need to overcome the other problems such as feature redundancy,
high-dimensional features, and overfitting. Moreover, another problem for IDS is dealing with
imbalanced datasets, such as the majority of the samples belong to Probe and denial of service (DoS)
attacks, while very few samples belong to user-to-root (U2R) or remote-to-user (R2L) attacks due
to this problem, often the classifier obtains the redundant and biased samples, while in real world
the minority attacks are usually more dangerous than majority attacks. Furthermore, a single IDS
can examine enormous amounts of information containing redundant and erroneous features, while
at this stage, IDS encounters some difficulties such as noise and increased classifier time to tackle
aforementioned problems. An effective IDS is needed to reduce false alarm rates and at the same time,
it is also required to be effective in identifying the attacks as well as manage high detection rates and
reduce the time.

In order to overcome aforementioned problems, we employ a feature selection algorithm that
can give an estimate about discriminative features for the IDS classification. In this paper, we are
proposing a data mining algorithm called (SPLR) with `1-Regularization for misuse intrusion detection
system problem. The SPLR is a recently developed technique used for classification; the SPLR has been
widely employed in several applications such as computer vision, pattern recognition problem, signal
processing [9] and now in the intrusion detection system.

The major contributions of this work are summarized as,
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(1) We employ a unique framework, the sparse logistic regression (SPLR) for an intrusion detection
system (IDS). The SPLR has not been applied by any other researcher in the domain of IDS,
as per our knowledge.

(2) The SPLR reduces the cost function for IDS classification with a sparsity constraint.
(3) Regularization through SPLR, feature selection has been mapped into penalty term of sparsity

optimization in order to select more effective and interpretable features for IDS classification.
(4) The SPLR has shown different characteristics that are exceptionally suitable for IDS such as high

classification accuracy (detection rate [DR]) and training time to build a model and average
training time per sample etc.

2. Related Work

In an effort to arm on the threat of future unknown cyber-attacks, considerable work has gone
into investigating and growing intrusion detection systems to help filter out associated malware,
exploits, and vulnerabilities. Since the early 2000s, there have been many successful applications that
incorporated data mining (DM) and machine learning (ML) methods for the IDS. Since then, many ML
and DM algorithms were specifically designed for the purpose. DM algorithms examine the valuable
information within large volume of data by analytically discovering underlying major trends, patterns,
and associations from the data as reported in [10,11]. Therefore, an artificial neural network (ANN) can
be used to solve multiclass problems for the IDS using a classic multilayer feed-forward NN trained
with a back-propagation algorithm to predict intrusions [12]. Many other (ML) methods have been
used in IDS domains, such as Decision Trees, SVM and Random Forests [13]. The algorithms have
estimated the performance of a set of pattern recognition, however the performance shows that certain
classification algorithms are specifically efficient for a given attacks category while others lag behind.
Moreover, they have also suggested a multiclassifier model for IDS [14] employed by the Random
Forests technique in NIDSs (network intrusion detection systems). Furthermore, Farid et al. [15]
conducted an empirical investigation on independent hybrid data mining algorithms to improve the
classification accuracy of Decision Tree and Naïve Bayes for multiclass problems. Koc and Sarkani [16]
proposed a framework of a network intrusion detection system based on data mining algorithm via
the KDD’99 dataset; the research study claim that hidden naïve Bayes (HNB) model can be applied to
IDS that involves a variety of issues such as correlated features and high data stream volume.

Nowadays, in the domain of network security (IDS), machine learning (ML), data mining (DM),
and feature selection (FS) performs significant roles because many researchers are working on that
domain to improve the performance of learning algorithms before applying in the different fields such
as text mining, computer vision, and image processing etc. [17]. Feature selection is usually used for
many reasons such as increased efficiency of the learning algorithm, achieving a high accuracy rate
and getting easiness for classification problems [18]. Moreover, FS determines appropriate subset from
the original dataset in order to minimize the impact of irrelevant and redundant features without
greatly decreasing the accuracy of the classifier. However, several issues that remain to be addressed
in feature selection; first, redundancy in datasets and combination process for FS techniques through
any learning algorithm; second, an isolation and redundant feature selection as well as ineffective
features selection from datasets—these problems lead to difficult stages for any learning algorithm.
Furthermore, the Very Fast Decision Tree (VFDT) based on Hoeffing tree [19], uses information gain
or gaini index for feature selection; it includes many refinement processes while training the model.
The VFDT separates the features that are not promising before training the model. Though the accuracy
of VFDT is low, the computational cost is high as well as error rate is high due to the complexity of tree.

The most notable feature selection techniques such as, filter: applied as a ranker to rank all
features without any classifier and wrapper: that uses a classifier to examine the features first [20].
The wrapper contributes good performance in small sets and the filter technique less expensive from a
computational point of view [21]. Although, the association between feature selection and algorithm
is not yet well managed, there is a need to be filled. Therefore, the regularized learning algorithms
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such as SVM [22], boosting [23], and sparse logistic regression (SPLR) have had a powerful impact in
the domain of feature selection and classification problems. Figure 1 displays a network architecture
scenario for the IDS to protect the server machines such as file server, web server, and file transfer
protocol (FTP) server as well as proxy server from internal and external intrusions. Here, two IDSs are
installed; the first one is internal intrusion detection system (IIDS) and second is external intrusion
detection system (EIDS).
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Figure 1. Network Architecture for IDS.

3. Sparse Logistic Regression (SPLR)

The goal of the sparse modeling is to select discriminative features for the IDS classification
problem, while reducing the redundant and irrelevant features in order to obtain the high accuracy
for the system. Suppose a prediction problem with N samples and y1, y1, y1, . . . , yn is outcomes.
The features xi

j, where i = 1, 2, 3, . . . , N, j = 1, 2, 3, . . . , R and R is the input number of variable, let X
represent the N × R input matrix and Y represent the R× 1 output matrix.

When the values y ∈ {+1,−1} class labels with (+1) corresponding to normal and (−1)
corresponding to attack (abnormal). Logistic regression (LR) is a probability conditional model
and can be defined as,

p(yi = + 1/w, xi) =
1

1 + exp(−wT xi)
(1)

For the attack classification problem, the values of (y = +1/xi) correspond to the probability.
It means that the decision to assign the category would be based on the probability estimate with a
threshold based on maximizing the expected effectiveness.

Y =

{
+1 p ≥ 0.5
−1 p ≤ 0.5

Maximum likelihood estimation of the parameter w corresponds to minimization of the
negative log-likelihood.

l(w) = −
n

∑
i=1

ln(1 + exp(−wTxiyi)) (2)

In many of the earlier works in the domain, the regularized logistic regression provides exceptional
analytical performance across a range of fields such as text classification and image classification [24].
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Different constraints on w is extensively studied. In order to overcome this problem, we employ
sparsity constraint. One of the prominent sparse regression models is the least absolute shrinkage
and selection operator (LASSO) proposed by Tibshirani [25], which utilize `1 regularizations; it can be
defined as in (3).

w∗ = arg mix
w
|y− Xw|2 + λ|w|1 (3)

|w|1 =
R

∑
j=1
|w|1 (4)

It has been proved that `1 regularization has the ability to estimate the feature selection into
the loss function minimization [21]. The SPLR assume that the input features/variables are closely
independent, meaning not highly correlated, which denotes the finest structure of input features. It can
be said that a reasonable solution may be achieved in practice.

In this work, we employ `1-regularized logistic regression for discriminative feature selection and
intrusion classification for the IDS via a sparse model as in Equation (5). Accordingly, for the purpose
of feature selection, we have added a sparse regularization for the minimization of,

f (w) = l(w) + λg(w) (5)

Here, g(w) = ‖w‖1 is the `1-norm regularization and λ is a regularization parameter.
As the direct approach to solving the logistic regression l(w) is ill-posed and may lead to
overfitting in the classification results, a standard technique in avoiding overfitting is the sparse
regularization/constraint which assumes λ > 0. The solution to the `1 norm regularized logistic
regression can be interpreted in a Bayesian framework as the maximum a posteriori probability
estimate of l(w). Figure 2 shows the taxonomy of discriminative feature selection and classification
via SPLR.
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Figure 2. Sparse logistic regression (SPLR) (Lasso) feature selection. The Xi are the feature sets. The w
is sparse coefficient vector and white element in w the stand for zero elements (sparse data) and rest of
all are selected feature.

Optimization of Algorithm Subsection

The objective Function (5) is a convex function. Solving the coefficient w is a regularized convex
optimization problem. The illustration for `1-norm regularization is shown in Figure 3. Here,
the elliptical contour of this method is shown through full curves and at the center ordinary logistic
regression w estimates. However, the constraints area is the rotated square. The `1-norm regularization
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is the first place that the contour touches the square. In the last decade, regularized convex optimization
has been intensely studied and led to many efficient results [26]. In short, these approaches can seem
as a natural extension of the gradient technique. Here an objective function is to be minimized that
leads to a non-smooth component. In this paper, the accelerated proximal gradient descent method is
used, which reduces computational cost and leads to linear convergence [27]. Suppose a regularized
convex optimization problem of (5), with a cost function l(w) and a regularization function λg(w),
the accelerated proximal gradient method solve this iteratively and every iteration, indexed by j + 1,
it comprises of two key stages.
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Here, the first stage is a descent step for the function l(w), in order to accelerate the convergence,
we start the first step from search point, and then the adaptive backtracking line search scheme is
used to determine the step size. This involves starting with a relatively large estimate of step size with
respect to the search direction and repeatedly shrinkage in the step size (backtracking) until reduce of
object function is achieved. Which is an affine combination of w(j+1) and w(j).

sj = wj + αj(wj − w(j+1)) (6)

u(j+1) = s(j) + t(j)∇ f (s(j)) (7)

Here, αj is a tuning parameter. The approximate solution w(j+1) will be measured as a gradient
step. Now, adaptive backtracking line search [28] is used to select a proper step size t(j).

The second stage is to project uj into regularized space while a proximal operator is applied,
the proximal operator is defined as

prox(λ)g(u) = argmin(u)(
1
2
|u− w|22 + λg(u)) (8)

For `1-regularization, an analytical solution for every variable w can be derived as,

w(j+1) = proxλ(u(j+1))

= sgn(u(j+1))max(
∣∣∣u(j+1)

∣∣∣− λ, 0)
(9)

Repeatedly applying the accelerated gradient method and proximal operator the convergence of
the algorithm leads to the optimum results. This technique is effective corresponding to the accelerated
gradient descent and analytical solution of the proximal operator. A detailed summary of SPLR
algorithm shown in Algorithm 1.
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Algorithm 1. Pseudo code for SPLR (Lasso) Algorithm.

Input: Sparse function f (.) and sparse regularization function g(.) with regularization parameter λ.
Initialize: Step size t(0) and affine combination parameter w(0)

Output: Optimum Result w̌

• w← 0; j← 0
• j← j + 1;
• Compute the search point sj by Equation (6)

• Compute the gradient descent point u(j+1) by Equation (7) with adaptive step size.

• Apply the proximal operator to compute w(j+1) by Equation (8)

• Update t(j+1) and w(j+1) for next iteration.

• Repeat the above steps till the change between w(j+1) and w(j) is smaller than a threshold.

• Return w(∗) = w(j+1)

4. Experimental Results and Discussion

Here in this section, the experimental results are presented and it is mentioned that how we
evaluated the effectiveness of SPLR approach for this paper. Figure 4 shows a taxonomy of a novel
framework technique about training and testing phases for discriminative feature selection and
classification. In the first stage, have training sets with different λ values by an n-fold cross validation
scheme and achieve a sparse vector that contains few nonzero coefficients with the sparse model. Then,
go to the second phase of testing and intrusion classification.
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4.1. KDD Cup 1999 Dataset

The third international KDD ’99 dataset has been used to build a network intrusion detector
(IDS) in order to identify and distinguish between normal and abnormal events in the context of
the network systems. It can be argued that the KDD ’99 dataset that we have used in our analysis
may not be an ideal representative of the existing networks of contemporary world; however this is
a sensible choice due to the lack of public intrusion detection datasets in the computer networking
research community. We believe that the dataset can be applied as an effective benchmark dataset
for the general problem of security analysis to help networking researchers to work with different
ML techniques in order to perform intrusion detection. Moreover, the Defense Advanced Research
Project Agency (DARPA) evaluated a program for the IDS that was set up for a network environment



Future Internet 2017, 9, 81 8 of 15

in 1998. Moreover, a TCP/IP dump packet for LAN (local area network) has been carried out by
Massachusetts Institute of Technology (MIT’s) Lincoln lab to examine the performance of different IDS
methods by using the dataset [29]. Therefore it can be said that the dataset has been used as a realistic
type of network systems by many researchers in the field. Soon after that, many researchers paid
significant attention towards the IDS domain. The KDD ’99 dataset contains five classes, one normal
class, and rest of all are attacks such as DOS, Probe, U2R, and R2L. The number of attacks contained in
the training datasets is 22 and 16; additional attacks are included into the test datasets. The probability
of attacks in both (training & testing) is different. Therefore, it makes the most realistic environment
for IDS experiments. The number of KDD ’99 samples are listed in Table 1 and list of 41 features in
Table 2, while Table 3 shows attack categories.

Table 1. KDD ’99 dataset descriptions.

Class Training Samples Testing Sample

Normal 972,780 60,592
Denial of Service (DoS) 3,883,370 237,594

Probe 41,102 2377
Remote-to-Local (R2L) 16,347 8606

User-to Root-(U2R) 52 70
Total Samples 4,898,430 311,028

Table 2. Feature list of KDD ’99.

S.No Attributes S.No Attributes

1 Duration 22 is_guest_login
2 protocol_type 23 count
3 Service 24 srv_count
4 Flag 25 serror_rate
5 src_byte 26 srv_serror_rate
6 dst_bytes 27 rerror_rate
7 land 28 srv_error_rate
8 wrong_fragmnet 29 same_srv_rate
9 urgent 30 diff_srv_rate

10 Hot 31 srv_diff_host_rate
11 num_failed_logins 32 dst_host_count
12 logged_in 33 dst_host_srv_count
13 num_compromised 34 dst_host_srv_rate
14 root_shell 35 dst_host_diff_srv_rate
15 su_attempted 36 dst_host_same_src_port_rate
16 num_root 37 dst_host_srv_diff_host_rate
17 num_file_creations 38 dst_host_serror_rate
18 num_shells 39 dst_host_svr_serror_rate
19 num_access_files 40 dst_host_rerror_rate
20 num_outbound_cmds 41 dst_host_srv_rerror_rate
21 is_hot_login

Table 3. KDD ’99 attack descriptions.

Attack Classes Training Dataset Attacks (22)

Denial of Service (DOS) Back, Land, neptune, pod, smurf, teardrop
Remote to Local (R2L) ftp_write, guess_passwd, imap, multihop, phf, spy, warezclient, warezmaster

User To Root (U2R) buffer_overflow, perl, loadmodule, rootkit
Probing ipsweep, nmap, portsweep, satan
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4.2. Experiment Design

Table 1 shows the KDD ’99 data sets. For our experiment, we have selected a number of random
samples from the original KDD ’99 dataset as used in [19]. An extracted 1,774,985 instances as a
training set listed in Table 4 and 67,688 instances of the independent testing set. Table 4 also shows
the percentage of each class. The most of the important parameter for the performance evaluation of
IDS is detection rate (DR). This parameter measures the number of correctly detected attacks from a
total number of attacks as defined in Equation (10). Then, the false alarm rate (FAR) measures the ratio
between the numbers of normal connections that are incorrectly misclassified as attacks and a total
number of normal connections defined in Equation (11).

Table 4. Dataset descriptions.

Class Training Samples % of Occurrence

Normal 812,814 75.6
Denial of Service 947,267 22.9

Probe 13,853 1.29
R2L 997 0.089
U2R 54 0.0047

Total Samples 1,774,985 100

Furthermore, it should be noted that the parameter λ in the SPLR determines the degree of
sparsity. An increase in λ corresponds to a decrease in non-zero coefficients (selected feature variables)
while the degree of sparsity can be measured by Equation (12).

DR =
Number o f correctly Attacks Detected

# Number o f Attacks
(10)

FAR =
False Positive

#Number o f Normal connections
(11)

Sparsity =
Number o f discarded f eatures

#number o f f eatures
(12)

Here, the proposed technique (SPLR) is assessed with the similar training and testing datasets
(1,074,985) as were used in [19,30,31]. The proposed SPLR feature selection technique is compared
against the KDD ’99 in order to show the potential in classification with better performance than [19]
as well as other classifier models. However in the experimental results, we provide the discriminative
feature selection and classification accuracy by SPLR as shown in Figure 5a,b respectively. Furthermore,
Figure 5a presented the OCA and along with degree of sparsity at various λ settings, if λ1 = 0.1 then
the degree of sparsity is high (few features are selected as shown in Figure 5b, however at the same
parameter values the detection accuracy by SPLR is high (0.9786).



Future Internet 2017, 9, 81 10 of 15
Future Internet 2017, 9, 81  10 of 14 

 

 
Figure 5. (a,b) Overall Classification Accuracy (OCA) and Feature Selection (FS) along with degree of 
sparsity by SPLR on KDD ’99. 

4.3. Experimental Results  

The SPLR-based FS performs better than VFDT [19] on the KDD ’99 dataset because the VFDT 
only considers the 20 selected feature sets for classification, while the proposed approach selects 
descriptive features and classification simultaneously. This specifies that SPLR has an exceptional 
capability to extract essential and rich information for the IDS. Moreover, we discuss the performance 
of feature selection via SPLR, Figure 6a–d, and contrast the plots of the resulting selected features 
against the variation of sparsity. When the value of the parameter λ declines, so does the degree of 
sparsity. The SPLR first increases and remains stable as is shown in Figure 6a–d. The nonzero, 
selected features identified by the model (SPLR) are: 3, 7, 18, 20, 21, 33, and 34; the rest are sparsity 
or discarded features as shown in Figure 6a. The selected features are: service, land, num_shells, 
num_outbound_cmds, is_hot_login, dst_host_srv_count, and dst_host_srv_rate. It may be possible 
that these features are not enough for the classifier to detect different attacks/intrusions. Hence, the 
features 18, 20, and 21 have less impact. Furthermore, we have selected the rest of the 38 features 
based on the values of λ; the most significant features for building the pattern for detecting intrusion 
into the system is feature 3 (service type such as http, ftp, and telnet). In other words, the intrusions 
are sensitive to the service type.  

According to the domain knowledge, feature 7 is the most perceptive feature for land attacks, 
although land attacks belong to the category of DOS attacks. In Figure 6a–c, the features 
wrong_format (8) and same_serv_rate (29) are the most contributing features to detect the DOS 
attack. Moreover, Tcp fragmentation (teardrop attack) also belongs to the DOS attack as it prevents 
reassembly protocols from fixing together fragmented user define protocol (UDP) traffic packets that 
may be sent across the network to the assigned destination by rebooting the targeted host. DoS attacks 
send a lot of traffic to the same service in order to block the communication channel and therefore 
count, src bytes, flag etc. can be considered among the contributing features for such an attack. 
Features 20 (number of outbound commands in an FTP session) and 21 (hot login to indicate if it is a 
hot login) do not show any distinction for intrusion detection in the training sets. Additionally, if the 
same service sends an Internet control Message Protocol (ICMP) and echo replies to the same 
destination IP address then this may point to a smurf attack (count, srv count), i.e., a DoS where its 
effect is slowing down the network. If the source IP or destination IP address and port numbers are 
similar with TCP connection flags, then it should be considered as network intrusion type Neptune 
(DoS) and it slows down the server response. In order to detect the probe attacks des_host_srv_rate, 
srv_rerror_rate types of features required to detect probe attack and these features are easily selected 
by SPLR as shown in Figure 6. Probe attacks belong to scanning the open ports and running service 
upon a live host during an attack. Moreover, if there is an attempt to launch the probe attack and the 
duration of connection increase then it means that a normal connection and the amount of data bytes 
in one connection sent by the intruder will be large. 

Figure 5. (a,b) Overall Classification Accuracy (OCA) and Feature Selection (FS) along with degree of
sparsity by SPLR on KDD ’99.

4.3. Experimental Results

The SPLR-based FS performs better than VFDT [19] on the KDD ’99 dataset because the VFDT only
considers the 20 selected feature sets for classification, while the proposed approach selects descriptive
features and classification simultaneously. This specifies that SPLR has an exceptional capability to
extract essential and rich information for the IDS. Moreover, we discuss the performance of feature
selection via SPLR, Figure 6a–d, and contrast the plots of the resulting selected features against the
variation of sparsity. When the value of the parameter λ declines, so does the degree of sparsity.
The SPLR first increases and remains stable as is shown in Figure 6a–d. The nonzero, selected features
identified by the model (SPLR) are: 3, 7, 18, 20, 21, 33, and 34; the rest are sparsity or discarded features
as shown in Figure 6a. The selected features are: service, land, num_shells, num_outbound_cmds,
is_hot_login, dst_host_srv_count, and dst_host_srv_rate. It may be possible that these features are not
enough for the classifier to detect different attacks/intrusions. Hence, the features 18, 20, and 21 have
less impact. Furthermore, we have selected the rest of the 38 features based on the values of λ; the most
significant features for building the pattern for detecting intrusion into the system is feature 3 (service
type such as http, ftp, and telnet). In other words, the intrusions are sensitive to the service type.

According to the domain knowledge, feature 7 is the most perceptive feature for land attacks,
although land attacks belong to the category of DOS attacks. In Figure 6a–c, the features wrong_format
(8) and same_serv_rate (29) are the most contributing features to detect the DOS attack. Moreover, Tcp
fragmentation (teardrop attack) also belongs to the DOS attack as it prevents reassembly protocols
from fixing together fragmented user define protocol (UDP) traffic packets that may be sent across the
network to the assigned destination by rebooting the targeted host. DoS attacks send a lot of traffic
to the same service in order to block the communication channel and therefore count, src bytes, flag
etc. can be considered among the contributing features for such an attack. Features 20 (number of
outbound commands in an FTP session) and 21 (hot login to indicate if it is a hot login) do not show
any distinction for intrusion detection in the training sets. Additionally, if the same service sends an
Internet control Message Protocol (ICMP) and echo replies to the same destination IP address then this
may point to a smurf attack (count, srv count), i.e., a DoS where its effect is slowing down the network.
If the source IP or destination IP address and port numbers are similar with TCP connection flags,
then it should be considered as network intrusion type Neptune (DoS) and it slows down the server
response. In order to detect the probe attacks des_host_srv_rate, srv_rerror_rate types of features
required to detect probe attack and these features are easily selected by SPLR as shown in Figure 6.
Probe attacks belong to scanning the open ports and running service upon a live host during an attack.
Moreover, if there is an attempt to launch the probe attack and the duration of connection increase
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then it means that a normal connection and the amount of data bytes in one connection sent by the
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The R2L and U2R attacks have been investigated by content features. The content features that
can be considered as a num_failed_login, su_attempt, is_guest_login. Similarly, the contributing
features of R2L attack are service, is_guest_login, su_attempt. The guess_passwd attack belongs to R2l
attack when an attacker trying to login to a machine, however, he/she is not allowed to access login
information of a system. On the other hand, U2R attacks detect when an intruder logs in as a system
administrator and generates quite a significant of files and a number of modifications to access control
files. The num root is one of the most contributing features for the U2R intrusion. However, the results
show that the proposed technique selects a discriminative feature potentially for the classifier. In the
proposed scenario, for the KDD ’99 datasets, the classification accuracies either reach or come close to
the greatest possible values when the sparsity is between 85% and 95% i.e., 5% to 20% of the features
are selected as was shown previously in Figure 6, From these figures, one can make the interesting
observation that the accuracy of the SPLR is higher when the degree of sparsity is high. It means,
the SPLR can achieve a better result with limited features.

Moreover, the running time of proposed technique is 11.6 s and the average time per sample is
0.000001 (s). While the optimization technique for the sparse model is an iterative process, in every
iteration the computational costs are O(N × P), where N the number of training samples and P is the
number of feature variables. In this experiment, it is observed that the average training time of SPLR is
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better than VDFT. Once the sparse classifier is trained, then the testing step is very fast because only a
single linear decision function is to be executed irrespective of the size of the training instances.

4.4. Classification Detection Rate

The performance comparison and experimental results are described in the Tables 5 and 6.
The results of the proposed method are compared with the experimental results of [19,29–31] in Table 5,
whereas Table 6 presents the results of different classifiers. The comparison is performed based on
three factors such as data sizes, detection rate and average training time per sample. It can be observed
from the results that the SPLR model is much more effective due to the comparable classification
accuracies. There are some other observations from the Table 5 that need to be highlighted. First, if the
KDD’99 datasets are used, the SPLR has achieved better performance in detection rate (97.6%) and
the FAR is 0.34%. However, it takes less training time (11.6 s) to build a model while the average
training time per sample is (0.000001 s) than the VFDT method. Second, considering the fact that other
classifiers such as genetic programming, multivariate adaptive regression splines, naïve Bayes and
VFDT are good classifiers, the proposed (SPLR) classifier shows an impressive performance in terms
of feature selection, improve classification accuracy, detection rate, training time and average training
time per sample. Third, it needs to be emphasized that the SPLR’s model-based classifier can perform
discriminative feature selection during the classifier training phase, which provides an interesting and
integrated solution for IDS classification problems.

Table 5. Experimental performance comparison of SPLR with other classifier models.

Algorithms Size of Training
Dataset

Size of Testing
Dataset DR (%) Train

Time (s)
Average Training

Time per Sample (s)

VFDT [19] 1,074,985 67,688 93.83 39.88 0.000003
SPLR 1,074,985 67,688 97.65 11.6 0.000001

Bayes Net [29] 49,596 15,437 90.62 6.28 0.00001
J48 [29] 49,596 15,437 92.06 15.85 0.00003

LBK [29] 49,596 15,437 92.22 10.63 0.00002
C4.5 [30] 49,596 15,437 92.06 15.85 0.0003

Fuzzy Logic [31] 49,596 15,437 91.65 192.16 0.0038
SPLR 49,596 15,437 98.26 7.5 0.000001

Table 6. Performance Comparison of SPLR with other classifier models.

Algorithm Size of Training
Datasets

Size of Testing
Datasets DR (%) Train

Time (s)
Average Training

Time per Sample (s)

SVM [32] 1,132,365 73,247 57.6 62,424 18.14
GP [33] 24,780 311,028 96.7 6480 0.2615

ANN [12] 4947 3117 92.27 780 0.1576
MARS [34] 11,982 11,982 96.46 30.66 0.0025

Naïve Bayes [35] 65,525 65,525 95 1.89 0.0013
I T I [36] 169,000 311,029 92.38 18 0.00002

PD Tree [37] 444,458 49,384 46.67 48.8 0.00002
K-Means [38] 55,000 25,000 86 13 0.00002
Apriori [35] 444,458 49,384 87.5 18.94 0.000005

SPLR 1,074,985 67,688 97.65 11.6 0.000001

5. Conclusions and Future Work

In this work, we have applied the SPLR model to achieve discriminative feature selection
and subsequently improve attack classification for intrusion detection system (IDS). The first and
major contribution of this work is to address high-dimensional datasets. The proposed method
controls overfitting and feature redundancy by simultaneously carrying out the feature selection and
classification. This enables the investigation of detailed discriminative features. Secondly, the proposed
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classifier has been compared to state-of-the-art algorithms. The SPLR method shows some impressive
characteristics and encouraging results. Our experimental results suggest that classification with
the proposed feature selection method performs better than other classification models. The sparse
model allows the combination of feature selection and classification into a unified framework by
minimizing the combined empirical loss and penalization on the sparsity of feature variables. As a
result, the running times of the SPLR method are linear with respect to the training samples and feature
variables. The feature selection and prediction cost are also better than other methods suggested in the
literature on the subject.

As a future work, we think that the promising results of our experiments encourage for carrying
out further research into the effects of different classifiers as well as the exploration of recent
developments in the IDS domain.
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