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Abstract: In the age of the Internet of Things (IoT), more and more sensors, actuators and smart
devices get connected to the network. Application providers often combine this connectivity with
novel scenarios involving cloud computing. Before implementing changes in these large-scale
systems, an in-depth analysis is often required to identify governance models, bottleneck situations,
costs and unexpected behaviours. Distributed systems simulators help in such analysis, but they are
often problematic to apply in this newly emerging domain. For example, most simulators are either
too detailed (e.g., need extensive knowledge on networking), or not extensible enough to support
the new scenarios. To overcome these issues, we discuss our IoT cost analysis oriented extension of
DIScrete event baSed Energy Consumption simulaTor for Clouds and Federations (DISSECT-CF).
Thus, we present an in-depth analysis of IoT and cloud related pricing models of the most widely
used commercial providers. Then, we show how the fundamental properties (e.g., data production
frequency) of IoT entities could be linked to the identified pricing models. To allow the adoption of
unforeseen scenarios and pricing schemes, we present a declarative modelling language to describe
these links. Finally, we validate our extensions by analysing the effects of various identified pricing
models through five scenarios coming from the field of weather forecasting.

Keywords: cloud computing; Internet of Things; pricing; infrastructure as a service; DISSECT-CF;
cloud simulator

1. Introduction

Internet of Things (IoT) is a rapidly emerging concept where sensors, actuators and smart devices
are often connected to cloud systems. Clouds are used in scenarios in which data from a large set of
sensors is processed and often fed back to actuators or smart devices. As the number of devices with
connected sensors and actuators are reaching new heights every day, the way they are integrated to
the cloud computing ecosystem is also rapidly changing. As a result, IoT systems integrators often
need new experimental techniques—e.g., simulators—which allow them to understand the behaviour
of systems of previously unprecedented scale.

Recently, a wide range of IoT oriented simulators have risen [1–3]. Regrettably, these are use
case limited (e.g., they only focus on big data processing). In addition, they are often focused on very
specific sensors or sensor behaviour, neglecting the financial side of operating large scale IoT systems.
Finally, these simulators are rarely scaling to match the number of devices foreseen in IoT systems
of tomorrow.

In this paper, we lay the foundations for flexible and scalable modelling of IoT systems and
their related cost models through our extensions to the simulator: DIScrete event baSed Energy
Consumption simulaTor for Clouds and Federations (DISSECT-CF) [4]. The main contributions of
this paper are: (i) the analysis of operating costs of IoT scenarios by introducing a model of provider
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pricing schemes, (ii) the comparison of usage costs of a real world meteorological application at four
providers, (iii) the extension of a state-of-the-art simulator for modelling IoT sensors and applying
provider pricing models on them, and finally (iv) the evaluation of the considered meteorological
case study in the simulator. Although scaling the simulation over several nodes is a relevant topic
to meet the demands of the newest IoT scenarios, this topic is out of scope here as it was discussed
before by [5]. Similarly, detailed information on sensor produced data (e.g., how accurate it is) and
algorithmic reactions to the data are out of scope of this paper, as these would require such level of
detail that it would hinder our objective to support large scale IoT-Cloud systems.

One of the earliest use of connected sensors is from the field of weather forecasting. The findings
of the paper are evaluated through five weather forecasting scenarios: we used the public data available
on the sensors operated by the crowdsourced meteorological service of Hungary called Idokep.hu [6].
Using the extended DISSECT-CF, we set up an extensive network of simulated sensors (with over
400 devices encompassing over 3000 individual sensors) and evaluated data collection and analysis
techniques, as if they would be executed in a state-of-the-art infrastructure as a service system.

The structure of the paper is the following. First, in Section 2, we continue with the discussion of
the state of the art. Next, in Section 3, we discuss the extensions applied to the DISSECT-CF simulator.
Later, Section 4 discusses our weather forecasting case study and evaluates our extensions with real-life
scenarios. Finally, Section 5 concludes our work.

2. Related Work

There are many simulators available to examine distributed and specifically cloud systems.
Nevertheless, there are some more specific IoT simulators closer to our approach. Han et al. [2] have
designed the Devices Profile for Web Services Simulation Toolkit (DPWSim), which is a simulation
toolkit to support the development of service-oriented and event-driven IoT applications with secure
web service capabilities. Its aim is to support the OASIS (Organization for the Advancement
of Structured Information Standards) standard Devices Profile for Web Services. SimIoT [1] is
derived from the SimIC simulation framework [7]. It introduces several techniques to simulate the
communication between an IoT sensor and the cloud, but it is limited to compute activity modelling.

Moschakis and Karatza [8] introduce several simulation concepts for IoT systems. First, they show
how the interfacing between the various cloud providers and IoT systems could be modelled (even
including workload models) in a simulation. Unfortunately, they mainly discuss the behaviour of
cloud systems that support the processing of data originated from the IoT system. Silva et al. [9] deal
with the dynamic nature of IoT systems, they investigate fault behaviours and introduce a fault model
for such systems. Although faults are important, the scalability of the introduced fault behaviours and
concepts are insufficient for large scale systems.

Khan et al. [10] introduce a novel infrastructure coordination technique that supports the use of
larger scale IoT systems. They build on CloudSim [11] and provide customizations that are tailored
for their specific home automation scenarios and therefore limit the applicability of their extensions.
Zeng et al. [3] proposed IOTSim that supports and enables simulation of big data processing in IoT
systems limiting themselves to the MapReduce model. They also presented a real case study that
validates the effectiveness of their simulator.

In the field of resource abstraction for IoT, efforts aimed at the description and implementation
of languages and frameworks for efficient representation, annotation and processing of sensed data.
The integration of IoT and clouds has been envisioned by Botta et al. [12] and by Nastic et al. [13].
They argue that system designers and operations managers face numerous challenges to realize IoT cloud
systems in practice, due to the complexity and diversity of their requirements in terms of IoT resources
consumption, customization and runtime governance as well as context awareness [14]. We build on
these results and target our contribution in the field of cost modelling in IoT Cloud simulations.
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3. Cost Modeling in DISSECT-CF

We aim at supporting the simulation of thousands (or more) devices participating in previously
unforeseen/existing IoT scenarios that have not been examined before in more detail (e.g., in terms of
scalability, energy efficiency or management costs). As this aim requires a high performance resource
sharing mechanism, we have chosen to extend the DISSECT-CF [4] simulator because of its unified
resource sharing foundation.

DISSECT-CF is a compact open source simulator [15] focusing on the internals of IaaS
(Infrastructure as a Service) systems. Figure 1 presents its architecture including our extensions
(denoted with grey colour). There are six subsystems (encircled with dashed lines) implemented, each
responsible for a particular functionality: (i) event system—the primary time reference; (ii) unified
resource sharing—models low-level resource bottlenecks; (iii) energy modelling—for the analysis of
energy-usage patterns of resources (e.g., CPUs) or their aggregations; (iv) infrastructure simulation—for
physical/virtual machines, sensors and networking; (v) cost modelling—for managing IoT and cloud
provider pricing schemes, and (vi) infrastructure management—provides a cloud like API (Application
Programming Interface), cloud level scheduling, and IoT system monitoring and management.

Figure 1. The architecture of the extended DISSECT-CF simulator.

Our current extension performed within this work focuses on IoT and cost management.
We introduced the following new components to model IoT systems: Sensor, IoT Metering and
IoT Controller. Sensors are essential parts of IoT systems, and usually they are passive entities
(actuators could change their surrounding environment though). Their performance is limited by
their network gateway’s (i.e., the device which polls for the measurements and sends them away)
connectivity and maximum update frequency. Our network gateway model builds on DISSECT-CF’s
already existing Network Node model which allows changes in connection quality as well. Our model
of the Sensor component is used to define the sensor type, properties and connections to a cloud system.
IoT Metering is used to define and characterize messages coming from sensors, and the IoT Controller
is used for sensor creation and management.
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To incorporate cost management, we enabled defining and applying provider pricing schemes
both for IoT and cloud part of the simulated environments. These schemes are managed by the IoT
and Cloud Pricing components of the Cost modeling subsystem of DISSECT-CF, as shown in Figure 1.

3.1. IoT Pricing

In our simulation model, we aim to investigate certain IoT cloud applications; therefore, we need
to define and monitor the following parameters: the number of sensors or devices used, the total
number of messages (and their data) sent in a certain period of time, and the uptime and capacity of
virtual machines used to provide ingest services. Based on these parameters, we can estimate how our
application would be charged after operating its system for a certain amount of time at a concrete IoT
cloud provider.

The calculation of the prices depends on different methods. Some providers bill only according to
the number of messages sent, while others also charge for the number of devices used. The situation is
very similar if we consider the virtual machine rental or application service prices. One can be charged
after GB-hour (GigaByte-hour or uptime) or according to a fix monthly service price. This price also
depends on the configuration of the virtual machine or the selected application service, especially the
mount of RAM used or the number of CPU cores or their clock signal.

We considered the following, most popular providers as the base of our extension: (i) Microsoft
and its IoT platform called Azure IoT Hub [16], (ii) IBM’s Bluemix IoT platform [17], the services of (iii)
Amazon (AWS IoT) [18], and (iv) Oracle’s IoT platform [19]. We took into account the prices publicly
available on the websites of the providers and if it necessary we asked for clarifications via email.

3.1.1. Azure IoT Hub

Concerning the IoT side pricing, Azure IoT Hub charges one after the chosen edition/tier.
This means that there are intervals for the number of messages used in a month. Azure also comes
with some additional platform services when similarly to other providers, but we only kept the general
parts to allow the identification of common pricing components. There is a restriction for message sizes
that depends on the chosen tiers. One can choose from four tiers, Free, S1, S2, S3. Each of them vary in
price and the total messages allowed per day. Message and group size of the Free tier is significantly
more limited compared to the other tiers.

3.1.2. IBM Bluemix

IBM Bluemix IoT platform’s pricing follows the “pay as you go” approach. Bluemix only charges
after the MiB of data exchanged. They differentiate three categories in terms of data usage and each of
them comes with a different price per MiB. The more we transfer the less our price will be per MiB.

3.1.3. Amazon’s IoT platform

Amazon’s IoT platform can also be classified as a “pay as you go” service. Prices have two
components: publishing cost (the number of messages published to AWS IoT) and delivery cost
(the number of messages delivered by AWS IoT to devices or applications). A message is a 512-byte
block of data and the pricing in EU and US regions denotes 5 US dollars per million messages.
In addition, there is no charge for deliveries to some other AWS Services.

3.1.4. Oracle’s IoT Platform

Finally, we investigated pricing of the Oracle’s IoT solution. This pricing method is slightly
different from the three providers described before. It is more similar to Azure’s tiers than to the
completely “pay as you go” billing like in Bluemix. The information was gathered from and we
calculated with the so-called Metered Services. There are four product categories regarding the used
devices (wearable, consumer, telematics and business). Categories determine the monthly device
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price and the number of messages that can be sent by that particular type of device. In addition,
there is a restriction on how many messages can a particular type of device deliver per month. In case,
the number of messages sent by a device is more than the device’s category permits, an additional
price will be charged according to a predefined price per thousand of messages.

3.2. Cloud Pricing

Besides the IoT-side costs we had to investigate how the four providers calculate the cloud side
costs. Most providers have a simple method, which is the following: (i) to run an IoT application, one
needs at least one virtual machine (VM), container, compute service or application instance, which
has a fixed instance price in every month, or (ii) the providers consider the hour per price for every
instance the IoT application needs. The pricing scheme of these providers can be found on their
websites. We considered the Azure’s application service [20], the Bluemix’s runtime pricing sheet
under the Runtimes section [21], the Amazon EC2 On-Demand prices [22], and the Oracle’s compute
service [23] together with the Metered Services pricing calculator [24]. The cloud cost is based on either
instance prices (Azure and Oracle), hourly prices (Amazon) or the mix of the two (Bluemix) provider
uses both type of price calculating. For example, Oracle charges depending on the daily uptime of our
application as well as the number of CPU cores used by our VMs.

3.3. Configurable Cost Models

Based on these investigations, we created a cost model for IoT systems (represented by the IoT
Pricing component in Figure 1), in which the IoT usage prices can be represented in an XML (Extensible
Markup Language) format. Figure 2 shows its structure and the concrete values for the applied
categories. We use this description as a configuration file for implementing and executing cost-based
experiments in the simulator. We manage all prices in Euro. Some providers publish costs in US dollars
(like Amazon)—in these cases, we apply conversion; therefore, we also have to specify an exchange rate
to Euros. The first line contains the size and target attributes, which are used to define a VM/container
specification for the simulation, and name a provider to be used for price calculation, respectively. In the
second line, we define the pricing scheme for Bluemix, which is solely based on the data transferred.
From the 7th line, we define the scheme of Amazon, which the provider charges after the number of
messages sent. Here, we denoted that one million messages cost 5 dollars, and the exchange rate to Euros,
which is 0.95. The maximum size of a message is 512 bytes. From the 9th line, we define Oracle’s scheme.
It defines the maximum number of messages to be sent by a device (15,000), and a price for handling
a device from this category (0.93). Once additional messages need to be sent, there is an extra charge,
0.02 Euros per 1000 messages. The period attribute defines the time interval for monitoring in days.
Finally, from the 15th line, the Azure scheme is defined, which restricts the number of messages to be sent
in a day (6,000,000) and the message size (4 KiB), and defines a monthly price for this service (421.65).
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<iotproviders>
<bluemix calculate="false">

<price-per-MB mbfrom="1" mbto="499999">0.00097</price-per-MB>
<price-per-MB mbfrom="450000" mbto="6999999">0.00068</price-per-MB>
<price-per-MB mbfrom="7000000" mbto="-1">0.00014</price-per-MB>

</bluemix>
<amazon price="5" messagecount="1000000" exchangerate="0.95"

calculate="true">512</amazon>
<oracle calculate="false" period="31">

<messages-per-month-per-device>15000</messages-per-month-per-device>
<deviceprice-per-month>0.93</deviceprice-per-month>
<am-messages-per-month-per-device>1000</am-messages-per-month-per-device>
<am-deviceprice-per-month>0.02344</am-deviceprice-per-month>

</oracle>
<azure calculate="false" period="1">

<price-per-month>421.65</price-per-month>
<messages-per-day>6000000</messages-per-day>
<messagesize-per-KB>4</messagesize-per-KB>

</azure>
</iotproviders>

Figure 2. Cost model of IoT providers.

To handle both IoT and cloud costs, we created another cost model that represents the cloud
usage prices (represented by the Cloud Pricing component in Figure 1). Figure 3 shows the XML
structure and the cost values for the applied categories. This configuration file contains some providers
(for example, the amazon element starting in the second line), and the defined values are based on
the gathered information from the providers’ public websites discussed before. We specified three
different sizes for applicable VMs (named small, medium and large). This XML file has to contain at
least that size category, which was defined by the size attribute in the IoT XML provider configuration
file. As we can see from the fourth line to the seventh line, a category defines a virtual machine with
the given ram and cpucores attributes, and we state the virtual machine prices with the instance-price
and hour-per-price attributes. If we select the Amazon provider with a small category, then, in the
scenarios, a virtual machine will have 1 CPU core and 2 GB of RAM, and the usage of this virtual
machine will cost 0.296 Euro per hour.
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<cloudproviders>
<amazon>

<medium>
<ram>8589934592</ram>
<cpucores>2</cpucores>
<instance-price>18.15</instance-price>
<hour-per-price>0.094</hour-per-price>

</medium>
</amazon>
<oracle>

<medium>
<ram>16106127360</ram>
<cpucores>2</cpucores>
<instance-price>139</instance-price>
<hour-per-price>0</hour-per-price>

</medium>
<large>

<ram>16106127360</ram>
<cpucores>4</cpucores>
<instance-price>268</instance-price>
<hour-per-price>0</hour-per-price>

</large>
</oracle>
<bluemix>

<large>
<ram>4294967296</ram>
<cpucores>8</cpucores>
<instance-price>0</instance-price>
<hour-per-price>0.296</hour-per-price>

</large>
</bluemix>

</cloudproviders>

Figure 3. COST model of Cloud providers.

4. Implementation and Validation

Based on the generic, architectural plans introduced in Section 3 we implemented a model
of a real-world IoT system in the extended DISSECT-CF simulator. As meteorology and weather
forecasting were pioneers of sensor networks, our choice for the real-world system was a crowdsourced
meteorological service [6]. This service is one of the most popular websites on meteorology in Hungary
providing weather updates every 10 minutes and forecasts for up to a week. Our aim in this section is
to evaluate the likely behaviour of the data collection and pre-filtering techniques behind the system
and analyse the potential costs of utilising cloud provided IoT processing facilities for these operations.

Figure 4 details our implementation, which revolves around the classes of the Application
and the Station (these are implementations of the IoT Controller and Sensor components from
Figure 1). The Station acts as a gateway of interconnected sensors, while the Application implements
custom IoT cloud use cases by examining various management and processing algorithms of sensor
data in VMs of a specific cloud environment. Station provides the sensors’ network connection
(e.g., towards the VMs used by the Application) and optimises their bandwidth utilisation by caching
and bundling outgoing metering data. This caching behaviour is governed by the Application’s
tasksize attribute.
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Figure 4. IoT extension classes for DISSECT-CF.

The Provider class is the implementation of the IoT Pricing and Cloud Pricing components of
the architecture shown in Figure 1). In the previous section, we defined our proposed cost model
with two XML-based, declarative modelling language schemes for representing and configuring
IoT and cloud side costs of certain providers. These samples can be used to assign pricing to the
corresponding entities within the simulation, and the Provider class is responsible to load (i.e., read)
and manage these values for cost calculations. It can be specified for each simulated IoT cloud system
and which provider (thus pricing scheme) to be used for the calculation. If one needs to define a new
IoT provider (other than the ones introduced), then the abstract class of Provider needs to be extended
with an overridden method called: IoTCostCounter(). This extension can use the existing elements of
the XML to define its new scheme. If a completely new method is needed for cost calculation, then the
relevant XML parsing must also be done by the extension. To define a new cloud provider, one has to
change the target and the size attributes (defined in the IoT provider XML file) and keep it in sync with
the cloud provider XML file. This could entail the overriding of the CloudCostCounter() method.

Figure 5 depicts the data representation of stations in our model. Stations have unique identifiers
(i.e., a name) representing a weather station. Their lifetime can be specified with the tag time by
defining their starttime (the time of their first activity) and stoptime (the time of their last activity).
These details are configured for each use case specifically. The cardinality of the station’s supervised
sensor set is set via sbnumber. Alongside the set cardinality, one can also specify the average data size
produced by one of the sensors in the set.
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<Application tasksize=’250000’>
<Station>
<name count=’1’>Szeged</name>
<freq>60000</freq>
<snumber size=’50’>7</snumber>
<time starttime=’500’ stoptime=’1000’>
1000

</time>
<maxinbw>100</maxinbw>
<maxoutbw>100</maxoutbw>
<storagebw>100</storagebw>
<torepo>sztakilpdsceph</torepo>
<storage>60000</storage>
<ratio>1</ratio>

</Station>
</Application>

Figure 5. XML-based description of IoT systems.

In our experiments, sbnumber and size are set according to specifications of the weather stations
on sale by idokep.hu. They sell these to improve the service’s sensor network and weather predictions via
crowd sourcing. These stations have sensors to monitor at most the following environmental properties:
(i) air and dew point temperature (in ◦C); (ii) humidity (%); (iii) barometric pressure (hPa); (iv) rainfall
(mm/hour and mm/day); (v) wind speed (km/h); (vi) wind direction; (vii) and UV-B level. In summary,
data packets from a single station are estimated to be approximately 50 bytes/measurement [25].

To set up more stations with the same properties, one can use the count option in the name tag.
This option allows experiments to determine how the Application reacts to various sized sensor
swarms. To realistically represent the modelled weather service, we set this value to 503 as this is their
currently operated station count Station count collected on 01/04/2017. Data generation frequency
(freq) could be set for the sensor set (in milliseconds). The station’s caching mechanism is influenced
with the tag ratio. This defines the amount of data to be kept at the local storage relative to the
average dataset produced by the sensors at each data generation event. If the cached data in the local
storage (i.e., storage) overreaches its limit, the station models the transfer of the data to the cloud
storage (specified in the torepo tag). The station’s network bandwidth to the outside world is specified
by the tags maxinbw and maxoutbw.

In the implementation, the Cloud class is used to specify and set up a cloud environment
(i.e., allows the simplified creation and configuration of IaaSService objects). The alternative,
to-be-evaluated scenarios should be defined by the Application class. The VmCollector class can be
used to manage the VMs backing the Application’s computing activities. Its two important methods
are: (i) VmSearch() matches tasks with free VMs—i.e., defines the load balancing strategy of the
application; and the (ii) generateAndAdd() can be used to deploy a new VM—i.e., it provides the
implementation for the auto-scaler for the application.

Next, we detail the generic steps followed by our Application implementation which has XML
based customisation for application behaviour. This inner working is also depicted in Figure 6.
By executing a simulation, the following steps are taken:

• Step 1: Set up the cloud using an XML. As we expect meteorological scenarios will often use
private clouds, we used the model of a Hungarian private infrastructure (the LPDS (Laboratory
of Parallel and Distributed Systems) Cloud of MTA SZTAKI (Institute for Computer Science and
Control, Hungarian Academy of Sciences).
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• Step 2: Set up the necessary amount of stations (using a scenario specific XML description) with
the previously listed eight sensors per station.

• Step 3: Load the VM parameters from XML files, which also describe the cloud and IoT costs.
Start the Application to deploy an initial VM (generateAndAddVM()) for data processing and to
start the metering process in all stations (startStation()).

• Step 4: The stations then monitor (Metering()), save and send (startCommunicate()) sensor data
(to the cloud storage) according to their XML definition. Parallel to this, CloudCostCounter()
and IoTCostCounter() methods estimate the price of IoT and cloud operation, based on the
generated data and processing of those data. The process of cost calculation depends on the
chosen provider. If provider pricing is not time-dependent, like in case of Bluemix, we have
to pay only after data traffic, then this loop is executed only once, at the end of the simulation.
Otherwise, if the provider cost is time-dependent, the time interval for the measurements is given
in the period attribute, as shown in Figure 2. This interval represents the frequency value to be
used by the extended provider class, and the corresponding cost counter methods are executed in
all cycles.

• Step 5: A daemon service checks regularly if the cloud repository received a scenario specific
amount of data (see the tasksize attribute in Figure 5). If so, then the Application generates the
ingest compute tasks, which will finish processing within a predefined amount of time.

• Step 6: Next, for each generated task, a free VM is searched (by VmSearch()). If a VM is found,
the task and the relevant data is sent to it for processing.

• Step 7: In case there are no free VMs found, the daemon initiates a new VM deployment and
holds back the not yet mapped tasks.

• Step 8: If at the end of the task assignment phase, there are still free VMs, they are all
decommissioned (by turnoffVM()), except those that are held back for the next rounds
(this amount can be configured and even completely turned off at will).

• Step 9: Finally, the Application returns to Step 5.

Figure 6. Sequence diagram of the application.
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Evaluation with Five Scenarios

In this sub-section, we reveal five scenarios addressing questions likely to be investigated with the
help of extended DISSECT-CF [26]. Namely, our scenarios mainly focus on how resource utilization
and management patterns alter based on changing sensor behaviour and how do these affect the
incurred costs of operating the IoT system (e.g., how different sensor data sizes and varying number
of stations and sensors affect the operation of the simulated IoT system). Note, the scope of these
scenarios is solely focused on the validation of our proposed IoT extensions and thus the scenarios are
mostly underdeveloped in terms of how a weather service would behave internally.

Before getting into the details, we clarify the common behavioural patterns, we used during all of
the scenarios below (these were the common starting points for all scenarios unless stated otherwise).
First of all, to limit simulation runtime, all of our experiments limited the station lifetimes to a single
day. The start-up period of the stations were selected randomly between 0 and 20 min. The task
creator daemon service of our Application implementation spawned tasks after the cloud storage
received more than 250 KiB of metering data (see the tasksize of Figure 5). This step ensured the
estimated processing time of 5 min/task. The cloud storage was completely run empty by the daemon:
the last spawned task was started with less than 250 KiB to process—scaling down its execution time.
The application was mainly using Bluemix Large VMs (see Figure 3). Finally, we disabled the dynamic
VM decommissioning feature of the application (see step 8 in Section 4).

In scenario No1, we varied the amount of data produced by the sensors: we set 50, 100 and 200 bytes
for different cases (allowing overheads for storage, network transfer, different data formats and secure
encoding etc.). We simulated all stations of the weather service for 24 h. We also investigated how
the costs of the IoT side changed, if we would use one of the four IoT providers defined before.
The measurement results can be seen in Figures 7 and 8, and Table 1. For the first case with 50 bytes of
sensor data, we measured 0.261 MiB of produced data in total, while in the second case of 100 bytes we
measured 0.522 MiB, and in the third of 200 bytes we measured 1.044 GBs (showing linear scale up).
In the three cases, we needed 12, 27 and 28 VMs to process all tasks, respectively. With the preloaded
cloud parameters, the system is allowed to start maximum 28 virtual machines; therefore, in the first
case of 50 bytes, our cloud cost was 48.839 Euros, in the second case of 100 bytes, the cloud cost was
103.896, and finally, in the last case, our cloud cost was 217.856 Euros. The lessons learnt with this
scenario is that, if we use more than 200 bytes per message, we need stronger virtual machines (also a
larger cloud with stronger physical resources) to manage our application because, in the third case, the
simulation runs for more than 24 h (despite the sensors were only producing data for a single day),
which increased our costs using time-dependent cloud services. Finally, Table 1 shows how much
virtual machines needed to process all of generated data for all test cases, and how much tasks were
generated for the produced data.

Figure 8 presents a cost comparison for all considered providers. We can see that Oracle costs are
much higher than the other three providers in all cases (50, 100, 200 bytes messages). The main cause
for this issue is that Oracle charges after each utilized device, which is not the case for other providers.
Our initial estimations show that only such an IoT cloud system operation is beneficial with Oracle
that has at most 200 devices and transfers 1–2 messages per minute per device.

In scenario No2, we wanted to examine the effects of varying sensor numbers and varying
sensor data sizes per stations to mimic real world systems better. Therefore, we defined a fixed case
using 744 stations having seven sensors each, producing 100 bytes of sensor data per measurement,
and a random case, in which we had the 744 stations with randomly sized sensor set (ranging between
6–8) and sensor data size (50, 100 or 200 bytes/sensor). The results can be seen in Figures 9 and 10 and
Table 2. As we can see, we experienced minimal differences; the random case resulted in slightly more
tasks. Furthermore, there are minimal differences between the cost of IoT providers, but we can see
that even the small configuration differences can cause bigger variations of the costs, like in the case of
Amazon. Table 2 shows how much virtual machines needed to process all generated data, and how
many tasks were generated by the produced data in fixed and random cases.
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Figure 7. Number of virtual machines in scenario No1.
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Table 1. Used VMs, number of task and produced data in scenario No1.

Amount of Data (Byte) Number of VMs Number of Tasks Produced Data (GB)

50 12 1153 0.261
100 27 2299 0.522
200 28 4486 1.044

Table 2. Used Virtual Machines (VMs), number of tasks and produced data in scenario No2.

Station Type Number of VMs Number of Tasks Produced Data (GB)

fixed 28 1555 0.348
random 28 1561 0.352
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Figure 10. Cost of the providers in scenario No2.

In scenario No3, we examined two sensor data generation frequencies. We set up 600 stations
and defined cases for two static frequencies (1 and 5 min). In real life, the varying weather conditions
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may call for (or result in) such changes. In both cases, the sensors generated our previously estimated
50 bytes. The results can be seen in Figures 11–13 and in Tables 3–5. The generated data in total: 0.321 GiB
for 1 min frequency, 0.064 GiB for 5 min frequency. In this scenario, we used the three categories
(small, medium and large) of the Azure cloud provider for both data generation frequencies. The first
category contains 1 core and 1.75 GiB memory, the second contains two cores and 3.5 GiB memory,
and finally we defined a virtual machine with eight cores and 14 GiB memory for the third category.
The application needs more than 1400 tasks to process all generated data by the stations with 1 min
frequency, while the data generated by stations with 5 min frequencies needed almost 300 tasks to
process them. For this work, the application deployed 75 VMs with the small category by the Azure
cloud provider in the 1 min case, and 10 VMs in the 5 min case. For medium category VMs, we needed
41 in the 1 min case, and five VMs in the 5 min case. Finally, 15 large category VMs needed to process in
time for the 1 min case, but only one virtual machine was necessary to process all data generated in the
5 min case. As we can see from the results, the cheapest choice for operating the IoT side is Bluemix.

To summarize, with this scenario, we have shown how small changes in the system parameters
can affect the number of the virtual machines needed for sensor data processing, and the measurements
also reflected how these parameters affect the final usage prices. Tables 3–5 show the detailed costs of
the three test cases. The IoT costs are the same in all cases, but, from the cloud side costs, we can see
that the stronger virtual machine we use, the more we should pay to operate the system.

Table 3. IoT costs with a small VM category in scenario No3.

VM Category Small

Interval 1 min 5 min
Azure cloud cost 20.039 4.200

IoT provider Bluemix Amazon Oracle Azure Bluemix Amazon Oracle Azure
IoT side cost 0.31948 32.80 4464.00 4215.5 0.06371 6.5436 4464.00 4215.5

Sum 20.35848 52.839 4484.039 4235.539 4.26371 10.7436 4468.2 4219.7

Table 4. IoT costs with a medium VM category in scenario No3.

VM Category Medium

Interval 1 min 5 min
Azure cloud cost 32.538 5.45

IoT provider Bluemix Amazon Oracle Azure Bluemix Amazon Oracle Azure
IoT side cost 0.31948 32.80 4464.00 4215.5 0.06371 6.5436 4464.00 4215.5

Sum 32.85748 65.338 4496.538 4248.038 5.51371 11.9936 4469.45 4220.95

Table 5. IoT costs with a large VM category in scenario No3.

VM Category Large

Interval 1 min 5 min
Azure cloud cost 62.667 7.128

IoT provider Bluemix Amazon Oracle Azure Bluemix Amazon Oracle Azure
IoT side cost 0.31948 32.80 4464.00 4215.5 0.06371 6.5436 4464.00 4215.5

Sum 62.98648 95.467 4526.667 4278.167 7.19171 13.6716 4471.128 4222.628
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Figure 11. Results of scenario No3.

	0

	10

	20

	30

	40

	50

	60

	70

	80

Small Medium Large

N
um

be
r	o

f	v
irt

ua
l	m

ac
hi

ne
s

Category	of	the	virtual	machine

interval	1min
interval	5min

Figure 12. Number of virtual machines in scenario No3.



Future Internet 2017, 9, 47 16 of 21

	200

	400

	600

	800

	1000

	1200

	1400

	1600

Small Medium Large

N
um

be
r	o

f	t
as

ks

Category	of	the	virtual	machine

interval	1min
interval	5min

Figure 13. Number of tasks over time in scenario No3.

In the three scenarios executed so far, the main application was responsible for processing the sensor
data in the cloud and checked the repository for new transfers in every minute. In some cases, we
experienced that only a small amount of data has arrived within this interval (i.e., task creation frequency).
Therefore, in scenario No4, we examined what happens if we widen this interval to 5 min. We executed it
with 487 stations. The results can be seen in Figures 14–17. In this scenario, we used the Oracle cloud
provider pricing to calculate the cloud side costs for the running virtual machines. In this simulation we
had three categories: 75 (small), 139 (medium) and 268 Euros (large) for one instance of a VM, and we
wanted to know which provider offers the cheapest prices if we use 1 min frequency or 5 min frequency
for task generation. In all six test cases, we had similar IoT costs as shown in Figure 14, and the best
provider is Bluemix with 0.259 Euros. Figure 16 shows that we can save money if we choose the small
category with 1 min interval or the small category of 5 min interval because they have the cheapest cloud
costs with 2175.0 Euros. The disadvantage of these categories (which was presented by Figure 15) is
that we needed more time to process all generated data than in the case of the other categories. Finally,
in Figure 17, we can see that the number of tasks is almost equal, but we needed different numbers of
virtual machines to process these tasks. We can summarize that increasing the processing time is not
always the best solution for application management and for saving money.
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As we model a crowdsourced service, we expect to see a more dynamic behaviour regarding the
number of active stations. In the previous cases, we used a static number of stations per experiment,
while in our final scenario, No5, we ensured the station numbers to dynamically change. Such changes
may occur due to station or sensor failures, or even by sensor replacement. In this scenario, we
performed these changes by specific hours of the day: from 12:00 a.m. to 5:00 a.m., we started
200 stations, from 5:00 a.m. to 8:00 a.m., we operated 700 stations, from 8:00 a.m. to 4:00 p.m., we
scaled them down to 300, then from 4:00 p.m.to 8:00 p.m. Up to 500, finally, in the last round from
8:00 p.m. to 12:00 a.m., we set it back to 200. In this experiment, we also wanted to examine the effects
of VM decommissioning; therefore, we executed two different cases, one with and one without turning
off unused VMs. In both cases, we set the tasksize attribute to the usual 250 KiB. The results can
be seen in Figure 18. We can see that, without turning off the unused VMs from 6:00 p.m., we kept
15 VMs alive (resulting in more over provisioning), while, in the other case, the number of running
VMs dynamically changed to the one required by the number of tasks to be processed.
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Table 6 shows what happens with the application operating costs, if we do not turn off the unused,
but still running virtual machines. The cheapest IoT provider is Bluemix with 51.98 Euros, and we
can save almost 38 Euros using the VM turnOff function. If we used Oracle as the cloud provider,
we would pay for a virtual machine instance of the smallest category 75 Euros, resulting in 1125 Euros
for operating the cloud side of our application.
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Figure 18. Results of scenario No5.

Table 6. Cloud and IoT costs in scenario No5.

IoT Provider Bluemix Amazon Oracle Azure

IoT side cost 0.18 18.92 14136.00 421.65
VM function ON OFF ON OFF ON OFF ON OFF

Bluemix cloud cost 51.80 89.39 51.80 89.39 51.80 89.39 51.80 89.39
Sum 51.98 89.58 70.72 108.31 14187.80 14225.39 473.45 511.04

As a summary, in this section, we presented five scenarios focusing on various properties of IoT
cloud systems. We have shown that, with our extended simulator, we can investigate the behaviour and
operating costs of these systems and contribute to the development of better design and management
solutions in this research field.

5. Conclusions

Distributed systems simulators are not generic enough to be applied in newly emerging domains,
such as IoT Cloud systems. These simulators are often limited in their details, extensibility and support
for the to be modelled IoT devices. Therefore, in this paper, we introduced a method to show how
generic IoT sensors could be modelled in a state-of-the-art cloud simulator. We showed how the
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fundamental properties of IoT entities can be represented in the simulator, and proposed an XML
based, declarative modelling language to describe the behaviour of various sensors.

We also enabled the investigation of operating costs of IoT scenarios by introducing a model of
provider pricing schemes to the simulator. Finally, we validated our extensions in the simulator by
executing five different scenarios of simulated IoT systems provisioning a meteorological service.

Our future work will address investigations on non-frequency based sensor data production to
allow more influence on when and what kind of data is produced by a particular sensor. In addition,
an initial model for sensors and actuators on geographical location will be proposed. As a result, the
simulations could incorporate moving devices that could change their behaviour according to their
locations (e.g., modelling of network quality changes based on location).

Supplementary Materials: This paper described the behaviour and features of DISSECT-CF version 0.9.8.
Its source code is open and available (under the licensing terms of the GNU LGPL 3) at the following website:
https://github.com/kecskemeti/dissect-cf.
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