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Abstract: Queueing networks are used to model the performance of the Internet, of manufacturing
and job-shop systems, supply chains, and other networked systems in transportation or emergency
management. Composed of service stations where customers receive service, and then move to
another service station till they leave the network, queueing networks are based on probabilistic
assumptions concerning service times and customer movement that represent the variability of system
workloads. Subject to restrictive assumptions regarding external arrivals, Markovian movement of
customers, and service time distributions, such networks can be solved efficiently with “product form
solutions” that reduce the need for software simulators requiring lengthy computations. G-networks
generalise these models to include the effect of “signals” that re-route customer traffic, or negative
customers that reject service requests, and also have a convenient product form solution. This paper
extends G-networks by including a new type of signal, that we call an “Adder”, which probabilistically
changes the queue length at the service center that it visits, acting as a load regulator. We show that
this generalisation of G-networks has a product form solution.

Keywords: G-networks; internet; computer and network performance; queueing networks;
transportation tetworks; product form solutions

1. Introduction

Queueing models with “product form” solutions and their efficient computational algorithms [1,2]
are useful in many engineering fields including computer systems and networks [3,4], machine
learning [5–7], transportation systems [8,9], job-shop and manufacturing systems [10], and emergency
evacuation [11,12]. G-networks [13–15] are a significant extension of earlier queueing models [16].
They include “triggers” which re-route traffic [17] for load balancing among multiple servers, “negative
customers”, “batch removal” [18] of customers, and “string transitions” [19] which extend trigger
multiple steps of customer movements.

Starting from the G-network model, this paper discusses a new type of “customer” we call an
“Adder”. When a service ends at some node, the departing customer can be transformed into an Adder
which replaces the number of customers it finds, at the queue where it arrives, with a random number
of customers which depends on two probability distributions: (a) the probability that queue to which
it arrives was previously empty, and (b) an externally defined arbitrary probability distribution on the
non-negative integers, which depends on where the Adder comes from and which queue it targets.
We show that the resulting system obeys a system of non-linear traffic equations, and has a steady-state
joint probability distribution for the network with “product form” solution.

Future Internet 2017, 9, 34; doi:10.3390/fi9030034 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi9030034
http://www.mdpi.com/journal/futureinternet


Future Internet 2017, 9, 34 2 of 7

2. New Types of Customers: The Adders

In the model we consider, N distinct servers have queues where ordinary customers can line up
waiting for service, and the server handles them individually, in some order which does not depend
on the individual customers’ service needs. The service times of successive customers are independent
and identically distributed exponential variables at each of the queues, and the service rates for the
different queues are µi ≥ 0 for i = 1 , ..., N. Denote by (K1(t), ... , KN(t)) the queue lengths where Ki(t)
is the number of normal customers at queue i at time t, and let p(~k, t) = Pr[(K1(t), ... , KN(t)) =~k].

In addition to positive customers, negative customers, triggers, new types of customers that we
call Adders can arrive to a queue from some node (possibly the same one). External arrivals of positive
and negative arrivals occur according to mutually independent Poisson processes, with rates λ+

i , λ−i ,
respectively, and:

• Only positive customers can remain in a queue to wait for service. Negative customers, triggers
and adders disappear once they have accomplished their mission.

• Negative customers are a special case of triggers, since the customer they remove from a queue
will then directly leave the network rather than joining another queue.

• Positive customers, negative customers (including batch removal) and triggers, are covered in
early work [18] and lead to a “ product form” solution for the joint probability of network state in
equilibrium, provided external arrivals are Poisson processes, service times are independent and
identically distributed, and the movement of customers is described by a Markov chain.

After a positive customer ends its service at time t ≥ 0 at queue i, we will have Ki(t+) = Ki(t)− 1,
and then the customer can then leave the network with probability di, or it joins some queue j as:

• A positive customer with probability P+
ij ; hence Kj(t+) = Kj(t) + 1 and we can have Pii ≥ 0,

• A negative customer with probability P−ij , but we require that P−ii = 0, so that
Kj(t+) = max[0, Kj(t)− 1],

• A trigger that moves one positive customer from some other node j to node m, if there is at least
one such customer, with probability Qijm; we require that Qijm = 0 if i = j or i = m or j = m.
As a result Kj(t+) = max[0, Kj(t)− 1].1[Ki(t) > 0], and Km(t+) = Km(t) + 1[Ki(t) > 0, Kj(t) > 0],

• Finally as the new customer type, the Adder with probability PA
ij , and we have

di + ∑N
j=1 [PA

ij + P+
ij + P−ij + ∑N

m=1 Qijm] = 1 for each queue i.

Let wij(k), k ∈ {1, 2, ... } be a (possibly non-honest) probability distribution with ∑∞
k=1 wij(k) ≤ 1,

and let its generating function be: Wij(y) = ∑∞
k=1 wij(k)yk, |y| ≤ 1.

The Adder will replace the current number of customers at the queue where it arrives, by a random
number of customers which depends on the probability Rj(t) that the queue was busy just before the
Adder arrived, where Rj(t) ≡ Pr[Kj(t) > 0]. The queue length Kj(t+), just after the Adder arrives at j,
is a random variable whose probability distribution is:

Pr[Kj(t+) = x] ≡ γij(x, t) = [1− Rj(t)]Wij(Rj(t))(Rj(t))x, x > 0,

= 1− Rj(t)Wij(Rj(t)) i f x = 0,

so that:
Pr[Kj(t+) > 0] = Rj(t)Wij(Rj(t)). (1)

We immediately see the potential application of Adders, as a way to reduce queue length and
make the system more stable, since we have Pr[Kj(t+) > 0] ≤ Pr[Kj(t) > 0] since Wij(Rj(t)) ≤ 1.
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Chapman-Kolmogorov Equations

Let ~ei be the N-vector which is 0 everywhere, except in position i where it has the value 1:
~ei = (0, .. , 1, .. , 0). The Chapman-Kolmogorov equations, or “master equations” [20,21] for the
system we have defined are:

dp(~k, t)
dt

= −
N

∑
i=1

[
λ+

i + ( µi + λ−i )1{ki>0}

]
p(~k, t)

+
N

∑
i=1

λ+
i p(~k−~ei, t)1{ki>0} +

N

∑
i=1

( µidi + λ−i )p(~k +~ei, t)

+
N

∑
i=1

N

∑
j=1

µi p(~k +~ei −~ej, t)P+
ij 1{kj>0}

+
N

∑
i=1

N

∑
j=1

[µi p(~k +~ei +~ej, t)P−ij + µi p(~k +~ei, t)P−ij 1{kj=0}]

+
N

∑
i=1

N

∑
j=1

N

∑
m=1

µi p(~k +~ei + ~em −~ej, t)Qimj1{kj>0}

+
N

∑
i=1

N

∑
j=1

N

∑
m=1

µi p(~k +~ei, t)Qijm1{kj=0} +
N

∑
i=1

N

∑
j=1

∞

∑
y=0

µi PA
ij γij(k j, t)p(~k +~ei +~ej(y− k j), t).

3. The Product Form

Consider the following system of non-linear equations:

Λ+
i = λ+

i +
N

∑
j=1

[µjρjP+
ji + µjρjPA

ji ρiWji(ρi) +
N

∑
m=1

µjρjρmQjmi], (2)

Λ−i = λ−i +
N

∑
j=1

[ µjρjP−ji +
N

∑
m=1

µjρjQjim + µjρjPA
ji

1− ρiWji(ρi)

1− ρi
], (3)

ρi =
Λ+

i
µi + Λ−i

. (4)

Theorem 1. If the system of 3N Equations (2)–(4) have a solution with 0 ≤ ρi < 1, for i = 1, ... , N, then the
equilibrium probability for the G-network with Adders is:

p(~k) ≡ limt→∞Pr[K1(t) = k1, ... , KN(t) = kN ] =
N

∏
i=1

pi(ki), ki ≥ 0, (5)

where the marginal queue length probabilities are pi(ki) = limt→∞Pr[Ki(t) = ki] = (ρi)
ki(1 − ρi), ki ≥ 0.

A Simple Example

In the introduction we had mentioned that the G-network with Adders has a “stabilising” or load
reducing property, and we would like to illustrate this with a simple example before we develop the
proof of the Theorem. Consider a system with just a single queue, and assume that the arrival rate of
positive customers to this queue is identical to the service rate, so that λ = µ. Assume that there are
no negative customers arriving to the queue, nor any feedback of customers back to the queue after
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service, so that λ− = 0 and P+
11 = P−11 = 0. Also assume that there are no “true” departures so that

each customer after a service turns into an Adder, and we have PA
11 = 1.

Then (2)–(4) give us the utilisation factor for the queue that is expressed as:

ρ =
λ+ + µρ2W11(ρ)

µ + µρ
1−ρW11(ρ)

1−ρ

=

λ+

µ

1 + ρ
1−W11(ρ)

1−ρ

=
λ+

µ

1− ρ

1− ρW11(ρ)
≤ λ+

µ
, (6)

while if their were no Adders, and if each customer departed after service, the utilisation factor would
be larger at the value λ+

µ . Clearly, the average queue length with Adders will also be smaller than the
average queue length without Adders but where every customer departs the queue after a service.

Thus quite obviously and surprisingly, the queue without Adders and with ordinary departures
is less stable than a queue without any customer departures but with Adders.

4. Proof of the Theorem

Proof. We now write the Chapman-Kolmogorov equations in steady-state, with the term
γij(x) ≡ limt→∞γij(x, t), so that:

N

∑
i=1

[
λ+

i + ( µi + λ−i )1{ki>0}

]
p(~k)

=
N

∑
i=1

[λ+
i p(~k−~ei)1{ki>0} + ( µidi + λ−i )p(~k +~ei)] +

N

∑
i=1

N

∑
j=1

µi p(~k +~ei −~ej)P+
ij 1{kj>0}

+
N

∑
i=1

N

∑
j=1

[µi p(~k +~ei +~ej)P−ij + µi p(~k +~ei)P−ij 1{kj=0}] +
N

∑
i=1

N

∑
j=1

N

∑
m=1

µi p(~k +~ei + ~em −~ej)Qimj1{kj>0}

+
N

∑
i=1

N

∑
j=1

N

∑
m=1

µi p(~k +~ei) Qijm1{kj=0} +
N

∑
i=1

N

∑
j=1

∞

∑
y=0

µi PA
ij γij(k j)p(~k +~ei +~ej(y− k j)),

(7)

into which we substitute (5):

∑N
i=1

[
λ+

i + (µi + λ−i )1{ki>0}

]
= ∑N

i=1
λ+

i 1{ki>0}
ρi

+ ∑N
i=1(µidi + λ−i )ρi + ∑N

i=1 µi
ρi
ρj

P+
ij 1{kj>0}

+ ∑N
i=1 ∑N

j=1 µiρiρjP−ij + ∑N
i=1 ∑N

j=1 µiρiP−ij 1{kj=0}
+ ∑N

i=1 ∑N
j=1 ∑N

m=1 µi
ρiρm

ρj
Qimj1{kj>0}

+ ∑N
i=1 ∑N

j=1 ∑N
m=1 µiρiQijm1{kj=0} + ∑N

i=1 ∑N
j=1 µiρi1{kj=0}PA

ij
1−ρjWij(ρj)

1−ρj

+ ∑N
i=1 ∑N

j=1 µi
ρiρj
ρj

1{kj>0}PA
ij Wij(ρj).

(8)

Using 1{kj=0} = 1− 1{kj>0}, we regroup terms on the RHS to the LHS (left-hand-side) changing
sign, exchange some j’s and i’s, and use ρi in (4), and (3), yielding:

∑N
i=1

[
λ+

i +
Λ+

i
ρi

1{ki>0}

]
= ∑N

i=1
λ+

i 1{ki>0}
ρi

+ ∑N
i=1(µidi + λ−i )ρi + ∑N

i=1 µi
ρi
ρj

P+
ij 1{kj>0}

+ ∑N
i=1 ∑N

j=1 µiρiρjP−ij + ∑N
i=1 ∑N

j=1 µiρiP−ij + ∑N
i=1 ∑N

j=1 ∑N
m=1 µi

ρiρm
ρj

Qimj1{kj>0}

+ ∑N
i=1 ∑N

j=1 ∑N
m=1 µiρiQijm

+ ∑N
i=1 ∑N

j=1 µiρiPA
ij

1−ρjWij(ρj)
1−ρj

+ ∑N
i=1 ∑N

j=1 µi
ρiρj
ρj

1{kj>0}PA
ij Wij(ρj).

(9)
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With (2) we get:

N

∑
i=1

λ+
i =

N

∑
i=1

ρi[λ
−
i + µi[di +

N

∑
j=1

(ρjP−ij + P−ij + PA
ij

1− ρjWij(ρj)

1− ρj
+

N

∑
m=1

µi Qijm)]]. (10)

To show that (10) is the same as (4) we write ρi as: Λ+
i = ρi(µi + Λ−i ), in the LHS we use (2) and

the RHS (3), so that summing over i the result is:

N

∑
i=1

[
λ+

i +
N

∑
j=1

[µjρjP+
ji + µjρjPA

ji ρiWji(ρi) +
N

∑
m=1

µjρjρmQjmi ]
]

=
N

∑
i=1

[
ρiµi + λ−i +

N

∑
j=1

[µjρjP−ji +
N

∑
m=1

µjρjQjim + µjρjPA
ji

1− ρiWji(ρi)

1− ρi
]
]
.

(11)

Since 1 = di + ∑N
j=1[P

A
ij + P+

ij + P−ij + ∑N
m=1 Qijm] we have:

N

∑
i=1

[
λ+

i +
N

∑
j=1

[µjρjP+
ji + µjρjPA

ji ρiWji(ρi)] +
N

∑
j=1

N

∑
m=1

µjρjρmQjmi
]

=
N

∑
i=1

[
ρiµi[di +

N

∑
j=1

[PA
ij + P+

ij + P−ij +
N

∑
m=1

Qijm] ]

+ ρiλ
−
i +

N

∑
j=1

ρi[ µjρjP−ji +
N

∑
m=1

µjρj Qjim + µjρjPA
ji

1− ρiWji(ρi)

1− ρi
]]
]
.

(12)

Cancelling the term ∑N
i=1 ∑N

j=1 µjρj [ P+
ji + ∑N

m=1 ρiQjim ] on both sides, and transferring

∑N
i=1 ∑N

j=1 µjρjPA
ji ρiWji(ρi) with a negative sign to the RHS one obtains:

N

∑
i=1

λ+
i =

N

∑
i=1

[
ρiµidi + ρiλ

−
i +

N

∑
j=1

ρiµi[P−ij +
N

∑
m=1

Qijm]

+
N

∑
j=1

ρi[ µjρjP−ji +
N

∑
i=1

N

∑
j=1

µjρj[PA
ji + PA

ji
1− ρiWji(ρi)

1− ρi
− PA

ji ρiWji(ρi) ] ]
]
.

(13)

However

− 1 +
1− ρiWji(ρi)

1− ρi
+ ρiWji(ρi) = ρi

1− ρiWji(ρi)

1− ρi
.

Therefore (13), derived from (2)–(4), is identical to (10).

5. Conclusions

G-networks [22,23] have had numerous applications to Gene Regulatory Networks [24], Neural
Networks [25] as tools to develop complex Pattern Analysis algorithms [6] and to control routing
in packet networks [26,27]. Their transient behaviour [28] has been recently examined and other
applications are discussed in [7].

In this paper we introduce new types of customers, the Adders, in G-networks with negative
and positive customers, and triggers, and show that this generalised model has product form solution.
We indicate that Adders stabilise the network through a probabilistic modification of the queue length,
and illustrate this effect on a single server model. We expect that the introduction of Adders will lead
to significant new applications and developments.
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