
future internet

Article

A Review on Hot-IP Finding Methods and Its
Application in Early DDoS Target Detection

Xuan Dau Hoang 1,* and Hong Ky Pham 2

1 CyberSecurity Lab, Posts and Telecommunications Institute of Technology, Hanoi 100000, Vietnam
2 VNPT Software, Hanoi 100000, Vietnam; phamkyit@gmail.com
* Correspondence: dauhx@ptit.edu.vn; Tel.: +84-904-534-390

Academic Editor: Jiankun Hu
Received: 18 September 2016; Accepted: 20 October 2016; Published: 25 October 2016

Abstract: On the high-speed connections of the Internet or computer networks, the IP (Internet
Protocol) packet traffic passing through the network is extremely high, and that makes it difficult
for network monitoring and attack detection applications. This paper reviews methods to find the
high-occurrence-frequency elements in the data stream and applies the most efficient methods to find
Hot-IPs that are high-frequency IP addresses of IP packets passing through the network. Fast finding
of Hot-IPs in the IP packet stream can be effectively used in early detection of DDoS (Distributed
Denial of Service) attack targets and spreading sources of network worms. Research results show
that the Count-Min method gives the best overall performance for Hot-IP detection thanks to its low
computational complexity, low space requirement and fast processing speed. We also propose an
early detection model of DDoS attack targets based on Hot-IP finding, which can be deployed on the
target network routers.

Keywords: DDoS attack detection; Count-Min; Count-Sketch; Group Testing

1. Introduction

In network monitoring and attack detection applications, the collection and processing of data
packets passing through the network is a big challenge because the number of transferred packets is
huge, especially on high-speed connections. In addition, apart from the processing of information items
in packet headers, many applications also need to process the packet payloads. This causes significant
delays in the processing of data packets and can result in network traffic congestion. Therefore, it is
necessary to select suitable packet information items and appropriate processing methods to speed up
the processing of data packets.

In an IP (Internet Protocol) packet header, the source IP and destination IP are important
information for the transfer of the packet from the source host to the target host. In DDoS (Distributed
Denial of Service) attacks, a huge number of packets of fake requests are sent to the target host to
exhaust system resources or to flood the network connection. Since the destination IP of these packets
is the attacked target host, it is possible to detect a DDoS attack in the early stage by monitoring
high-frequency destination IPs in the target network router. Similarly, the monitoring can be done
in ISP (Internet Service Provider) routers to track source IPs of hosts that originate a large number
of packets. These IPs may be the addresses of hosts infected with network worms and these worms
are scanning the network for the next target hosts. IP addresses with a high occurrence frequency in
the IP packet stream are called Hot-IPs. Therefore, the problem of target detection of DDoS attacks or
the detection of network worm sources can be solved by monitoring the IP packet stream transferred
through the network to find Hot-IPs [1–3].

On a certain network connection, an IP packet stream is a sequence of IP packets, which can be
represented as S = {a1, a2, . . . , aM}, where there are M packets with N unique IP addresses. Suppose fi

Future Internet 2016, 8, 52; doi:10.3390/fi8040052 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/journal/futureinternet


Future Internet 2016, 8, 52 2 of 10

to be the occurrence frequency of the packet with IP address si in S, and then we have fi = {j|sj = si},
where 1≤ i≤ N and 1≤ j≤M. We also have f 1 + f 2 + . . . + fN = M and, given the occurrence frequency
threshold ϕ, the Hot-IP = {si|fi ≥ ϕ} [1,2].

The problem of finding Hot-IPs in the IP packet stream can be solved using algorithms for finding
elements with a high occurrence frequency in the data stream. There are a number of such algorithms,
including Majority, Frequent, Lossy Counting, Space Saving, Count-Sketch, Count-Min and Group
Testing [4–12]. Section 2 of this paper will briefly discuss these algorithms.

Huynh et al. [1,2] proposed to use the non-adaptive Group Testing method for fast finding of
Hot-IPs in the IP packet stream and to apply the results in the detection of DDoS attacks and network
worm spreading sources. Since the computational complexity of the Group Testing method (O(tN),
where N is the number of unique IP addresses and t is the number of tests) is relatively high, it is not
efficient for the processing of the IP packet stream in heavy traffic [1]. To solve this issue, they use the
Reed Solomon code concatenation method to construct the d-disjunct matrix m [1,2]. Thus, the storage
space of matrix m is significantly reduced and the computational complexity is also reduced, which is
equivalent to the polynomial time.

In this paper, we evaluate methods to find high-occurrence-frequency elements in the data stream
and apply them to find Hot-IPs in the IP packet stream passing through the network. Based on the
computational and space complexity evaluation results of each method, the most efficient method is
selected for use in the target detection model of DDoS attacks.

The rest of the paper is organized as follows: Section 2 reviews and compares methods for finding
high-occurrence-frequency elements in the data stream and applies them in finding Hot-IPs in the IP
packet stream. Section 3 presents the proposed target detection model of DDoS attacks and Section 4 is
our conclusion.

2. Hot-IP Finding Methods

2.1. Methods for Finding High-Occurrence-Frequency Elements

2.1.1. Majority

The Majority algorithm was proposed by Boyer-Moore in 1982 [4]. A common element is defined
as the element that has the number of occurrences greater than half of the total number of elements
in the data stream. The algorithm can be summarized as follows: Given the data stream P = {a1, a2,
. . . , am} and N is the number of unique elements. Assume f to be the frequency vector of N unique
elements, f = {f 1, f 2, . . . , fN} and f 1 + f 2 +, . . . + fN = m. A high-occurrence-frequency element j is
determined by j|fj > m/2. The Majority algorithm consists of two stages, including (1) finding elements
with a high occurrence frequency if they exist, and (2) checking if these elements are really common
elements based on their occurrence frequencies.

2.1.2. Frequent

The Frequent algorithm was proposed by Misra and Gries in 1982 [8]. The algorithm attempts
to find all elements that have an occurrence frequency greater than m/k, where m is the total number
of elements in the data stream and k is the number of high-occurrence-frequency elements to find.
It uses k pairs of elements and counters to monitor these k elements. Initially the k pairs are empty.
The main idea of the algorithm can be described as follows: for each element in the data stream,
if the element exists in k pairs, increase the element’s counter by 1. If the element does not exist in
k pairs and the number of pairs is less than k, add the new element into the k pairs and assign 1 to
its counter. Otherwise, decrease all counters and remove elements from k pairs if their counters are
0. At completion, the algorithm can find most k elements that have an occurrence frequency greater
than m/k.



Future Internet 2016, 8, 52 3 of 10

2.1.3. Lossy Counting

The Lossy Counting algorithm was proposed by Manku and Motwani in 2002 [7]. The algorithm
uses a data structure that has three attributes, including the element, L (lower bound) and H
(higher bound) to process the data stream. Assume that m is the total number of elements in the data
stream and k is the number of high-occurrence-frequency elements to find. Set P = H − L. For each ith
element in the data stream, if the element was stored in the data structures, set L← L + 1; otherwise,
create a structure for the element and set L = 1 and P = i/k. If H < i/k, the ith element is removed from
data structures. At completion, the algorithm can find k elements that have an occurrence frequency
greater than m/k.

2.1.4. Space Saving

The Space Saving algorithm was proposed by Metwally et al. in 2005 [11]. The algorithm uses a
data structure of k pairs, in which each pair consists of an element and its counter. Initially, the first k
unique elements are assigned to k pairs and their counters are assigned to their corresponding numbers
of occurrences. For the next element from the data stream, if the element is found in k pairs, increase
its counter by 1. Otherwise, replace the smallest counter element with the new element and increase
its counter by 1. At completion, the algorithm can find k elements that have an occurrence frequency
descending from high to low.

2.1.5. Count-Sketch

The Count-Sketch algorithm was proposed by Charikar et al. for the first time in 2002 and the
improved version of the algorithm was introduced in 2004 [12]. Sketch is a terminology used to
represent a data structure, or a linear mapping of the input frequency vector. Count-Sketch is used
to find k elements that have a high occurrence frequency in the data stream. Sketch data structure is
compact and the algorithm’s processing speed is fast.

Count-Sketch uses two input variables, where ε is the error rate and δ is the error probability.
To store counter variables in the processing, Count-Sketch uses an array sized w × d, where d is the
number of hash functions and w is the space size used by a hash function.

The Count-Sketch algorithm consists of three stages: Stage 1 is for variable initialization; Stage 2
is a loop to process the data stream; and Stage 3 is for processing of the output result. The details of
this algorithm can be found in [12].

2.1.6. Count-Min

The Count-Min algorithm was proposed by Cormode and Muthukrishnan in 2005 [5] to replace
other sketch-based methods, such as Count-Sketch. The aim of Count-Min is to provide a simple and
compact sketch data structure. Count-Min has been widely used in many computing areas thanks
to its simple sketch data structure. Count-Min’s data structure uses the linear reference system with
some random vectors. These vectors are defined by a simple hash function. The increase of the hash
function’s operating scope will increase the counting accuracy and reduce the error rate. Count-Min’s
data structure can be expanded or shrunk to fit each specific case without compromising the accuracy.

Count-Min’s data structure is a matrix of simple counting variables. The matrix has the width
w and depth d, including elements from CM[1,1] to CM[d,w]. Similar to other sketch-based methods,
Count-Min also uses ε as the error rate and δ as the error probability and the algorithm consists of
three stages: Stage 1 is for variable initialization; Stage 2 is a loop to process the data stream; and Stage
3 is for the calculation of occurrence frequencies of elements in the data stream. The details of this
algorithm can be found in [5].



Future Internet 2016, 8, 52 4 of 10

2.1.7. Group Testing

The Group Testing method was proposed by R. Dorfman in 1943 [9] to detect who was infected
with syphilis in the US Army in the Second World War with the minimum number of blood tests.
He first divided each soldier’s blood sample into many smaller samples, and then he formed groups
of soldiers and mixed their blood samples for each group to make group samples. Then, he carried out
a test for each group sample. If the group test result is negative, all samples in the group are negative.
If the group test result is positive, at least one sample in the group is positive. Repeat the procedure on
the samples of the positive group until the infected sample is found. Thus, the number of tests had
been decreased significantly. The purpose of the Group Testing method is to determine a sub-set of d
positive elements of a large set of N elements with the number of tests as small as possible [1].

Group Testing methods can be classified into two types: adaptive Group Testing and non-adaptive
Group Testing. In adaptive Group Testing, the next test is created based on the result of the previous
test. Therefore, tests of this method must be done in sequence. On the other hand, in non-adaptive
Group Testing, tests are independent and therefore tests can be processed in parallel to speed up the
process. In this research, we use the non-adaptive Group Testing method proposed by Kautz and
Singleton [9]. Non-adaptive Group Testing requires that all tests must be designed in advance and
then executed at the same time to produce the final result.

The problem of using the non-adaptive Group Testing method to find high-occurrence-frequency
elements in a data stream can be stated as follows: Given the data stream a of M elements, in which
there are N unique elements (M >> N), assume that there is a maximum of d high-occurrence-frequency
elements; we need to design t tests for N elements. Construct the binary matrix mtxN, where the
matrix’s columns represent elements and the matrix’s rows represent tests. If m[i][j] = 1, it means
that element j belongs to test i and if m[i][j] = 0, it means that element j does not belong to test i [9].
The details of the non-adaptive Group Testing method can be found in [9].

We adopt the non-adaptive Group Testing method to find d high-occurrence-frequency elements
used in [1,2,9], in which the d-disjunct matrix mtxN is built using the Reed Solomon code concatenation.
The binary matrix mtxN is the d-disjunct matrix if and only if the union of any d columns does not
contain any column in the matrix. The Reed Solomon code is the error-correcting code in the form of
[n, k]q, where q is the alphabet size, n is the block length and k is the message length. The relationship
among the three parameters is k < n ≤ q and it is often that n = q − 1. The construction procedure of
the d-disjunct matrix using the Reed Solomon code concatenation can be found in [1,2,9].

2.2. Application in Finding Hot-IPs

In this section, we evaluate the performance of the Count-Sketch, Count-Min and Group Testing
methods on finding Hot-IPs in IP packet streams extracted from the UCLA (University of California,
Los Angeles) data sets [13]. These methods have been widely used to find high-occurrence-frequency
elements in the data stream because they have low computational complexity and low space
requirements [1,2,4–7].

2.2.1. Experimental Data Sets and Parameters

The UCLA data sets [13] were collected from simulated DDoS attacks using DoS/DDoS attack
tools. Raw data of collected packets were processed, whereby each packet is converted into a record.
For TCP packets, each record consists of 11 fields, including Packet_TIME, IP_from, IP_to, PORT_from,
PORT_to, LENGTH, FLAG, SEQ_from, SEQ_to, ACK and WIN. In the experiments in this section,
the IP_from (source IP address) is used to find Hot-IPs.

The experimental data set extracted from the UCLA data sets [13] consists of 200,000 records
(also contains M = 200,000 source IP addresses), in which there are N = 2214 unique IP addresses.

For the Count-Sketch and Count-Min methods, select ε = 0.005, δ = 0.00000001 and the number of
IPs with the highest occurrence frequency k = 10.



Future Internet 2016, 8, 52 5 of 10

For the Group Testing method, select the maximum number of unique IPs L = 10,000, using the
Reed Solomon code RS[n = 15, k = 3]q = 16 and the code concatenation to construct the d-disjunct matrix
mtxN [5]. The d-disjunct value is computed as: d = (n − 1)/(k − 1) = (15 − 1)/(3 − 1) = 7.

We use a one-dimensional matrix CN to be the counter of the occurrence frequency of IP addresses
in the IP packet stream. An IP is considered a Hot-IP if C[i] > L/(d + 1).

2.2.2. Experimental Results

Table 1 shows the result of finding 10 source IP addresses that have the highest occurrence
frequency using the Count-Sketch and Count-Min methods. The IP occurrence frequencies found by
both methods are almost the same. If we set the occurrence frequency threshold for a Hot-IP as 10,000,
we get four Hot-IPs, which are at the top of the table (1.1.17.29, 1.1.6.6, 1.1.35.39 and 1.1.17.17).

Table 1. Result of finding 10 source IP addresses having the highest occurrence frequency using
Count-Sketch and Count-Min.

No IP Addresses Frequency (Count-Sketch) Frequency (Count-Min)

1 1.1.17.29 29,670 29,670
2 1.1.6.6 17,243 17,243
3 1.1.35.39 16,345 16,350
4 1.1.17.17 12,068 12,071
5 1.1.4.4 8996 8996
6 15.111.6.94 6573 6556
7 10.82.164.13 4295 4298
8 14.150.78.191 3895 3900
9 1.1.1.94 3727 3727
10 7.210.22.183 3432 3438

Table 2 shows the result of finding Hot-IPs using the Group Testing method. Since the purpose
of the Group Testing method is to find d Hot-IPs, the IP occurrence frequencies are not the output
parameters. It can be seen that the result of finding Hot-IPs using the Group Testing method is
equivalent to the results of the Count-Sketch and Count-Min methods.

Table 2. Result of finding Hot-IPs using Group Testing.

No Hot-IPs

1 1.1.17.29
2 1.1.6.6
3 1.1.35.39
4 1.1.17.17

2.3. Comparison of Hot-IP Finding Methods

As discussed in Section 2.2, the Count-Sketch, Count-Min and Group Testing methods are capable
of finding Hot-IPs correctly in the IP packet stream. In this section, we compare these methods based
on the following criteria: (1) algorithm complexity; (2) space requirements; and (3) processing time in
finding Hot-IPs.

2.3.1. Complexity of Algorithms

Count-Sketch

The space required for this algorithm is O(d × w + 2d) because the counter matrix has the size
of d × w and there are two hash functions for each row. Thus, the space required for the algorithm
is O (d× w + 2d) = O(ln

(
1
δ

)
× e
ε2 ). The processing time for each element is O (d) = O(ln 1

δ )



Future Internet 2016, 8, 52 6 of 10

and the average processing time for d elements is linear; therefore, the processing time required is
O (d) = O(ln 1

δ ) [12].

Count-Min

Count-Min uses a counter matrix sized d × w and d hash functions, thus the space required for
the algorithm is O (d× w) = O(ln 1

δ ×
e
ε ). The processing time for each element is O (d) = O(ln 1

δ )

and the average processing time for d elements is linear; therefore, the processing time required is
O (d) = O(ln 1

δ ) [6].

Group Testing

The polynomial space required for each counter is O(logN + logM) bit, which means the space
required for the t counter is (O(logN + logM) × t) bit [1]. Given t = O(d2logN) and d = O(logN),
the space required is O

(
log3N (logN + logM)

)
[1]. The d-disjunct matrix created using a linear

code concatenation (Reed-Solomon code, RS[n, k]q) requires a polynomial time of O(q2 × poly(logq)).
Thus, the processing time required is O(q2 × polylogq) [1]. The time required to find the Hot-IP is
poly(d) × tlog2t + O(t2) [1].

Table 3 presents the complexity of the Count-Sketch, Count-Min and Group Testing methods.

Table 3. Complexity comparison of Count-Sketch, Count-Min and Group Testing methods.

Method Count-Sketch Count-Min Group Testing

Space requirements O (d× w + 2d) = O(ln
(

1
δ

)
× e
ε2 ) O (d ∗ w) = O(ln 1

δ ×
e
ε ) O

(
log3N (logN + logM)

)
Processing time O (d) = O(ln 1

δ ) O (d) = O(ln 1
δ ) O(q2 × poly (log (t)))

Estimated Hot-IP finding time O (d) = O(ln 1
δ ) O (d) = O(ln 1

δ ) poly (d)× t× log2t + O
(
t2)

2.3.2. Comparison of Hot-IP Finding Time

We use data sets extracted from UCLA data sets [13] for our experiments. Our experimental
data sets have the numbers of records (also the IP addresses) gradually increased to measure the
processing time of the Count-Sketch, Count-Min and Group Testing methods. The sizes of the data sets
are gradually increased from 10,000 IP addresses to a maximum of 1,000,000 IP addresses. Because of
the differences in the input parameters and space required, we create three scenarios to compare
these three methods on two pairs, including (1) Count-Sketch and Count-Min; and (2) Count-Min and
Group Testing.

All experiments in this section are implemented in Java and run on a laptop machine with an Intel
core i5-M460 2.53 GHz CPU, 8 GB RAM on 64-bit Microsoft Windows 8. For each dataset, five runs are
executed and the average of processing time (excluding the time for I/O operations) is the final result.

1 Scenario 1: Compare Count-Sketch and Count-Min using the same initialization parameters
ε = 0.005 and δ = 0.00000001. The experiment result is shown in Table 5.

2 Scenario 2: Compare Count-Sketch and Count-Min using the same processing space.
For Count-Sketch, select ε = 0.01 and δ = 0.00005, and select ε = 0.00009 and δ = 0.00001 for
Count-Min. The experiment result is shown in Table 4.
It can be seen from Tables 4 and 5 that Count-Min is significantly faster than Count-Sketch in both
cases of using the same initialization parameters or using the same processing space.

3 Scenario 3: Compare Count-Min and Group Testing using the same matrix size. For Count-Min,
select ε = 0.00045 and δ = 0.00000001, and we have the counter matrix CM[19,6041]. For Group
Testing, select RS[15,3]16 and d-disjunct as 6000 (corresponding to 6000 unique IPs), and we have
d-disjunct matrix m[240,6000]. The experiment result is shown in Table 6.



Future Internet 2016, 8, 52 7 of 10

Table 4. Time for finding Hot-IPs of Count-Sketch and Count-Min using the same processing space.

Number of IP in Stream Count-Sketch (s) Count-Min (s)

10,000 0.019 0.014
50,000 0.078 0.058

100,000 0.135 0.112
200,000 0.294 0.201
300,000 0.382 0.318
400,000 0.531 0.458
500,000 0.674 0.547
600,000 0.758 0.608
700,000 0.898 0.715
800,000 0.998 0.811
900,000 1.127 0.934

1,000,000 1.260 1.014

Table 5. Time for finding Hot-IPs of Count-Sketch and Count-Min using the same initialization parameters.

Number of IP in Stream Count-Sketch (s) Count-Min (s)

10,000 0.093 0.019
50,000 0.152 0.071
100,000 0.271 0.162
200,000 0.445 0.301
300,000 0.637 0.433
400,000 0.849 0.616
500,000 1.038 0.744
600,000 1.202 0.832
700,000 1.400 0.998
800,000 1.731 1.155
900,000 1.876 1.308

1,000,000 2.050 1.374

Table 6. Time for finding Hot-IPs of Count-Min and Group Testing using the same matrix size.

Number of IP in Stream Count-Min (s) Group Testing (s)

10,000 0.019 0.023
50,000 0.084 0.077

100,000 0.159 0.143
200,000 0.377 0.354
300,000 0.442 0.388
400,000 0.625 0.497
500,000 0.761 0.625
600,000 0.897 0.822
700,000 1.035 0.916
800,000 1.207 1.047
900,000 1.377 1.224

1,000,000 1.558 1.307

The experimental results given in Table 6 show that Group Testing is slightly faster than Count-Min
in finding Hot-IPs in the IP packet stream. However, the space requirement of Group Testing is much
higher than that of Count-Min, even though they use the same width matrices because Group Testing
uses the d-disjunct matrix with a much larger number of tests t. Overall, Count-Min is more efficient
than Group Testing because its space requirement is much smaller than that of Group Testing while its
processing time is almost equivalent to that of Group Testing.



Future Internet 2016, 8, 52 8 of 10

3. Proposed Target Detection Model of DDoS Attacks

DDoS (Distributed Denial of Service) is the type of attack that makes the computer or network
system overload, and the system cannot provide the service, or has to stop working. While a DoS
attack is usually originated from one source, or a small number of sources, a DDoS attack is originated
from large number of sources distributed all over the Internet. In real DDoS attacks, network service
servers are “flooded” by a huge amount of requests sent from controlled hosts (also called zombies
or bots) distributed on the networks [14]. When the amount of requests is too large, the server is
overloaded and fails to handle incoming requests. Consequently, legitimate users are not able to access
the service provided by servers. Figure 1 illustrates a typical architecture of DDoS attacks.

Future Internet 2016, 8, 52  8 of 10 

 

There have been a number of proposed measures to defend against DDoS attacks over the last 

decade.  However,  until  now  there  has  not  been  any  solution  capable  of  DDoS  prevention 

comprehensively and effectively due to the complexity, scale and highly distributed nature of DDoS 

attacks [14–17]. These DDoS defense measures can be classified into three groups: (1) measures based 

on deployment location; (2) measures based on network protocols; and (3) measures based on the 

time of action. Group (1) consists of measures that are deployed at the sources or targets of DDoS 

attacks. On the other hand, group (2) includes measures that defend DDoS attacks at the IP, TCP/UDP 

(Transmission Control Protocol/User Datagram Protocol), or application layers. Based on the time of 

action, group 3 includes pre‐attack, in‐attack and post‐attack measures [14–17]. 

 

Figure 1. A typical architecture of DDoS attacks. 

Based  on  the  analysis  of  DDoS  architectures  and  the  Hot‐IP  finding  results  presented  in   

Section 2, we propose a DDoS target or victim detection model based on Hot‐IP finding, as shown in 

Figure 2. The IP addresses of service servers are the destination IP addresses of IP packets sent to 

these servers. Under a DDoS attack, these IP addresses usually have an extremely high occurrence 

frequency. Therefore,  if we deployed  a Hot‐IP/DDoS detector on  the  target network  router,  it  is 

possible  to  detect  the  signals  of  a DDoS  attack  early. Our DDoS  target  detection model  can  be 

deployed at the target host, or would be best at the router of the target network. 

 

 

Figure 2. DDoS target detection model based on Hot‐IP finding. 

In  the proposed model,  the Hot‐IP/DDoS detector deployed on  the  target network  router  is 

responsible for capturing and processing all IP packets sent to service servers. The detector uses the 

sliding window method on the IP packet stream to find destination IPs that have high occurrence 

IP Packet 

Router 

Hot-IP/DDoS 
Detector 

Server 1 

Server 2 

Server n 

IP Packet 

IP Packet 

IP Packet 

IP Packet 

Figure 1. A typical architecture of DDoS attacks.

There have been a number of proposed measures to defend against DDoS attacks over the
last decade. However, until now there has not been any solution capable of DDoS prevention
comprehensively and effectively due to the complexity, scale and highly distributed nature of DDoS
attacks [14–17]. These DDoS defense measures can be classified into three groups: (1) measures based
on deployment location; (2) measures based on network protocols; and (3) measures based on the
time of action. Group (1) consists of measures that are deployed at the sources or targets of DDoS
attacks. On the other hand, group (2) includes measures that defend DDoS attacks at the IP, TCP/UDP
(Transmission Control Protocol/User Datagram Protocol), or application layers. Based on the time of
action, group 3 includes pre-attack, in-attack and post-attack measures [14–17].

Based on the analysis of DDoS architectures and the Hot-IP finding results presented in Section 2,
we propose a DDoS target or victim detection model based on Hot-IP finding, as shown in Figure 2.
The IP addresses of service servers are the destination IP addresses of IP packets sent to these servers.
Under a DDoS attack, these IP addresses usually have an extremely high occurrence frequency.
Therefore, if we deployed a Hot-IP/DDoS detector on the target network router, it is possible to detect
the signals of a DDoS attack early. Our DDoS target detection model can be deployed at the target
host, or would be best at the router of the target network.

In the proposed model, the Hot-IP/DDoS detector deployed on the target network router is
responsible for capturing and processing all IP packets sent to service servers. The detector uses the
sliding window method on the IP packet stream to find destination IPs that have high occurrence
frequency. Count-Min is the method implemented for finding high-occurrence-frequency IPs in the
detector. A threshold of occurrence frequency for Hot-IPs is determined in advance to identify the



Future Internet 2016, 8, 52 9 of 10

possibility of a DDoS attack. The threshold is determined based on the type of network services and the
user access patterns when the system is in normal operation. Initial experiment results on a simulated
environment show that the detector is capable of quickly identifying Hot-IPs correctly and based on
that, it can detect DDoS attacks on network service servers.

Future Internet 2016, 8, 52  8 of 10 

 

There have been a number of proposed measures to defend against DDoS attacks over the last 

decade.  However,  until  now  there  has  not  been  any  solution  capable  of  DDoS  prevention 

comprehensively and effectively due to the complexity, scale and highly distributed nature of DDoS 

attacks [14–17]. These DDoS defense measures can be classified into three groups: (1) measures based 

on deployment location; (2) measures based on network protocols; and (3) measures based on the 

time of action. Group (1) consists of measures that are deployed at the sources or targets of DDoS 

attacks. On the other hand, group (2) includes measures that defend DDoS attacks at the IP, TCP/UDP 

(Transmission Control Protocol/User Datagram Protocol), or application layers. Based on the time of 

action, group 3 includes pre‐attack, in‐attack and post‐attack measures [14–17]. 

 

Figure 1. A typical architecture of DDoS attacks. 

Based  on  the  analysis  of  DDoS  architectures  and  the  Hot‐IP  finding  results  presented  in   

Section 2, we propose a DDoS target or victim detection model based on Hot‐IP finding, as shown in 

Figure 2. The IP addresses of service servers are the destination IP addresses of IP packets sent to 

these servers. Under a DDoS attack, these IP addresses usually have an extremely high occurrence 

frequency. Therefore,  if we deployed  a Hot‐IP/DDoS detector on  the  target network  router,  it  is 

possible  to  detect  the  signals  of  a DDoS  attack  early. Our DDoS  target  detection model  can  be 

deployed at the target host, or would be best at the router of the target network. 

 

 

Figure 2. DDoS target detection model based on Hot‐IP finding. 

In  the proposed model,  the Hot‐IP/DDoS detector deployed on  the  target network  router  is 

responsible for capturing and processing all IP packets sent to service servers. The detector uses the 

sliding window method on the IP packet stream to find destination IPs that have high occurrence 

IP Packet 

Router 

Hot-IP/DDoS 
Detector 

Server 1 

Server 2 

Server n 

IP Packet 

IP Packet 

IP Packet 

IP Packet 

Figure 2. DDoS target detection model based on Hot-IP finding.

4. Conclusions

Finding Hot-IPs in the IP packet stream flowing through the network can be used to detect
targets or victims of DDoS attacks, or spreading sources of network worms. It can also be used
in applications to monitor activities of network elements. This paper reviewed methods to find
high-occurrence-frequency elements in the data stream and applied them in finding Hot-IPs in the
IP packet flow passing through the network. Research results shows that Count-Min gives the best
overall performance thanks to its low computational and space complexity, and its fast processing
speed. We also proposed a Hot-IP finding-based model for early target/victim detection of DDoS
attacks, which can be deployed on the router of the target network.

This research can be extended in the following directions: (i) complete the Hot-IP–based detection
module and deploy it in the real environment; and (ii) optimize the Hot-IP finding module using
embedded processors to speed up the processing of IP packets to be able to monitor large bandwidth
network connections.

Acknowledgments: This work has been supported by the CyberSecurity Lab, Posts and Telecommunications
Institute of Technology, Hanoi, Vietnam.

Author Contributions: Xuan Dau Hoang raised the idea and initialized the project; Hong Ky Pham designed and
carried out the experiments under the supervision of Xuan Dau Hoang; Both authors analyze the data and results;
Xuan Dau Hoang wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huynh, N.C.; Nguyen, D.T.; Tan, H. Finding Hot-IPs in network using Group Testing method—A review.
In Proceedings of the 2012 International Conference on Green Technology and Sustainable Development
(GTSD2012), Ho Chi Minh City, Vietnam, 29–30 September 2012.

2. Huynh, N.C.; Nguyen, D.T.; Tan, H. Fast detection of DDoS attacks using Non-Adaptive Group Testing.
Int. J. Netw. Secur. Appl. 2013, 5. [CrossRef]

3. Simkhada, K.; Taleb, T.; Waizumi, Y.; Jamalipour, A.; Namoto, Y. Combating against internet worms in
large-scale networks: An autonomic signature-based solution. Secur. Commun. Netw. 2009, 2, 11–78.
[CrossRef]

4. Boyer, B.; Moore, J. A Fast Majority Vote Algorithm; Technical Report 35; Institute for Computer Science,
University of Texas: Austin, TX, USA, 1982.

http://dx.doi.org/10.5121/ijnsa.2013.5505
http://dx.doi.org/10.1002/sec.51


Future Internet 2016, 8, 52 10 of 10

5. Cormode, G.; Muthukrishnan, S. An improved data stream summary: The count-min sketch and its
applications. J. Algorithms 2005, 55, 58–75. [CrossRef]

6. Cormode, G.; Muthukrishnan, S. What’s hot and what’s not: Tracking most frequent items dynamically.
ACM Trans. Database Syst. 2005, 30, 249–278. [CrossRef]

7. Manku, G.; Motwani, R. Approximate frequency counts over data streams. In Proceedings of the 28th
International Conference on Very Large Databases, Hong Kong, China, 20–23 August 2002; pp. 246–357.

8. Misra, J.; Gries, D. Finding repeated elements. Sci. Comput. Program. 1982, 2, 143–152. [CrossRef]
9. Kautz, W.; Singleton, R. Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 1964, 4, 363–377.

[CrossRef]
10. Fischer, M.; Salzberg, S. Finding a majority among n votes solution to problem. J. Algorithms 1982, 3, 376–379.
11. MetWally, A.; Agrawal, D.; Abbadi, A.E. Efficient computation of frequent and top-k elements in data

streams. In Proceedings of the 10th International Conference on Database Theory; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 398–412.

12. Charikar, M.; Chen, K.; Colton, M. Finding frequent items in data streams. Theory Comput. Sci. 2004, 312,
3–15. [CrossRef]

13. UCLA CSD Traffic Traces. Available online: http://www.lasr.cs.ucla.edu/ddos/traces/ (accessed on
12 June 2016).

14. Hoang, X.D. DDoS attack classification and defence measures (Part 1). J. Inf. Commun. 2014, 483, 37–40.
15. Zargar, S.T.; Joshi, J.; Tippe, D. A survey of defense mechanisms against distributed denial of service (DDoS)

flooding attacks. IEEE Commun. Surv. Tutor. 2013. [CrossRef]
16. Hashmi, J.; Saxena, M.; Saini, R. Classification of DDoS Attacks and their Defense Techniques using Intrusion

Prevention System. Int. J. Comput. Sci. Commun. Netw. 2012, 5, 607–614.
17. Alenezi, M. Methodologies for detecting DoS/DDoS attacks against network servers. In Proceedings of

the Seventh International Conference on Systems and Networks Communications—ICSNC 2012, Lisbon,
Portugal, 18–23 November 2012.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1145/1061318.1061325
http://dx.doi.org/10.1016/0167-6423(82)90012-0
http://dx.doi.org/10.1109/TIT.1964.1053689
http://dx.doi.org/10.1016/S0304-3975(03)00400-6
http://www.lasr.cs.ucla.edu/ddos/traces/
http://dx.doi.org/10.1109/SURV.2013.031413.00127
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Hot-IP Finding Methods 
	Methods for Finding High-Occurrence-Frequency Elements 
	Majority 
	Frequent 
	Lossy Counting 
	Space Saving 
	Count-Sketch 
	Count-Min 
	Group Testing 

	Application in Finding Hot-IPs 
	Experimental Data Sets and Parameters 
	Experimental Results 

	Comparison of Hot-IP Finding Methods 
	Complexity of Algorithms 
	Comparison of Hot-IP Finding Time 


	Proposed Target Detection Model of DDoS Attacks 
	Conclusions 

