Ea future internet ﬁw\p\py

Article
Turning Video Resource Management into
Cloud Computing

Weili Kou *, Hui Li and Kailai Zhou

School of Computer and Information, Southwest Forestry University, Kunming 650224, China;
yncq24212@163.com (H.L.); zk12@163.com (K.Z.)
* Correspondence: kwl@swfu.edu.cn; Tel.: +86-137-006-8673

Academic Editor: Dino Giuli
Received: 13 December 2015; Accepted: 12 July 2016; Published: 21 July 2016

Abstract: Big data makes cloud computing more and more popular in various fields. Video resources
are very useful and important to education, security monitoring, and so on. However, issues of their
huge volumes, complex data types, inefficient processing performance, weak security, and long times
for loading pose challenges in video resource management. The Hadoop Distributed File System
(HDEFS) is an open-source framework, which can provide cloud-based platforms and presents an
opportunity for solving these problems. This paper presents video resource management architecture
based on HDFS to provide a uniform framework and a five-layer model for standardizing the
current various algorithms and applications. The architecture, basic model, and key algorithms are
designed for turning video resources into a cloud computing environment. The design was tested by
establishing a simulation system prototype.

Keywords: video resources; big data; cloud computing; HDFS

1. Introduction

With the development of information technologies, tremendous challenges have emerged in
video resource management. Transferring this work into online service systems is a feasible solution
for resolving the problems. Video resources with huge amounts of volumes and complex data types
are a kind of typical big data, and are difficult for processing. Cloud services have been regarded
as a significant trend of technical industries and applications after the Web services era. Generally,
the framework of cloud services consists of infrastructures, operating systems, virtual machines,
storages, and cloud web application services. With the improvement of global network performance
over the past few years, research on sharing video resources with large volumes and complex data types
online based on cloud computing has attracted more and more attentions [1]. Video processing is a
notably data-intensive, time-consuming, and computing-intensive application. Upfront infrastructure
investment is usually costly, especially when dealing with applications where time-to-market is
a crucial requirement [2]. Traditionally, a great volume of video resources is generated, stored,
and managed on local servers daily. That obviously incurs some problems in keeping daily video
resources in data centers, such as limitations of bandwidth, storage space, overloading, reliability,
and scalability [3]. When the number of users online reaches a certain scale, the limitation of bandwidth
will greatly influence the accessing speeds of response servers. Meanwhile, data servers need to deal
with the loading balances between huge volumes of video resources and users, and bring buffer
a phenomenon. This paper proposes a novel architecture based on well-developed peer-to-peer
(P2P) technology and emerging cloud computing aiming to solve these issues. The architecture
exploits inherent characteristics of P2P and cloud computing to provide an economic, scalable, reliable,
and efficient model to manage video resources. This paper focused on architecture, components,
operation flows, and implementation of video resource management systems. Video resources always

Future Internet 2016, 8, 35; doi:10.3390/£i8030035 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/journal/futureinternet

Future Internet 2016, 8, 35 2 0of 10

being unavailable to users due to their huge volume makes the access speed slow and overloads the
storage media. The emergence of cloud computing provides a new solution to efficiently manage
video resources.

Hadoop is an open-source software framework that supports data-intensive distributed
applications, running off applications on large clusters of commodity hardware. It also transparently
provides both reliability and data motion to applications. Hadoop implements a computational
paradigm named Map/Reduce, where the application is divided into many small fragments of work,
each of which may be executed or re-executed on any node in computing clusters. In addition,
it provides a distributed file system that stores data across data nodes with very high aggregate
bandwidth. Both Map/Reduce and distributed file systems are designed to automatically handle
problems of node failures. It enables applications to work with thousands of computation-independent
computers and petabytes of data.

2. Related Work

Web systems based on traditional storage servers are mainly used for video resources management.
Low efficiency is the bottleneck of these systems. For improving the management efficiency, clusters
are used in the systems. With the increasing volumes, data types, and complex application scenarios of
video data (especially single video with a large size), current systems cannot meet their management
needs. At present, Hadoop-based cloud-computing technologies are extensively used in various
fields, such as video transcoding systems [4], data processing cross-platforms [5], and multimedia
conferences [6]. Scalable and fault-tolerant architecture that supports the parallel processing of large
volumes of video data is becoming increasingly necessary for flexible, robust, and efficient processing
of large volumes of data [2]. However, current video resource management systems make it difficult
to manage videos in big volumes. Additionally, these applications lack uniform architecture and
layer models to conveniently share resources and efficiently communicate each other. This paper
focuses on building a video resource management system serving various users in a cloud-computing
environment based on Hadoop Distributed File System (HDFS).

This paper tries to design a system that utilizes HDFS based on a cloud server. Thereby, HDFS
and the Map/Reduce framework are briefly introduced. Hadoop inspired by Google’s Map /Reduce
and Google File System (GFS) [7] is a software framework that supports data-intensive distributed
applications handling thousands of nodes and petabytes of data [8]. It can perform scalable and timely
analytical processing of large data sets to extract useful information. Hadoop consists of two important
frameworks: (1) (HDFS) (Figure 1), like GFS, is a distributed, scalable and portable file system written
in the Java programming language; (2) Map/Reduce (Figure 2) which is the first framework developed
by Google for processing large volumes of data sets [9].

The Map/Reduce paradigm is a framework for processing huge datasets of certain kinds of
distributable problems using a large number of computers (nodes), collectively referred to as a
cluster [10]. It consists of an initial Map stage, where a master node takes the input, chops it into
smaller or sub-problems, and distributes the parts to worker nodes, which process the information; next
is the Reduce stage, where the master node collects the answers to all the sub-problems and combines
them to produce the job output. A popular Map/Reduce implementation is Apache’s Hadoop, which
consists of one Job Tracker, to which client applications submit Map /Reduce jobs. The Job Tracker
pushes work out to available Task Tracker nodes in the cluster, which execute the Map and Reduce
tasks [11]. This paper proposes architecture for video resource processing and online management in a
HDFS-based cloud-computing environment, which is sufficiently flexible to be deployed in either a
private or public cloud environment.

Future Internet 2016, 8, 35 30f10

HDFS Architecture
Metadata (Name, replicas, ...):
Metadata ops /home/foo/data, 3, ...
g ol \
Block ops
Read Datanodes Datanodes
. = Replication B8
[H] PJ
- \ N /
NV _ Y
Rack 1 Wit Rack 2
Figure 1. The architecture of Hadoop File System (HDFS).
i . Combine
Userl : é
StartJobl 1 StopJobl

Service Store status and

esults

GetResult

User2

Stoplob2
Startlob2

Figure 2. The Map/Reduce paradigm.

3. The Video Resource Management System in HDFS-Based Cloud Computing

3.1. System Layers

The model of video resource management service systems (Figure 3) consists of five layers from top
to bottom: the client, middleware, application server, storage, and infrastructure layers. (1) The client
layer is responsible for receiving various requests of users and displaying results on available web
browsers, such as Internet Explorer (IE), Firefox, and Chrome. (2) The middleware layer is used to
manage computer resources and network communications. It is a connector between the client and
application layers, so applications can run across heterogeneous hardware and software platforms.

Future Internet 2016, 8, 35 4 0f 10

(3) The application service layer can implement all kinds of services including user management,
video searching, and video playing. (4) The storage layer virtualizes the infrastructure resources as a
file system and provides distributed data storage services for users. HDFS is employed to implement
the function of this layer. (5) The infrastructure layer consists of devices for computing, storing,
and communications (such as the hard disk and memory).

< Client Layer > Requests from Web browsers

{1

. omputer resources and network
Q\Alddleware LayeD Comp ..
communications

g

o Application Service (directory
Application L .
< ppiication ayeD management, video playback, etc.)

<L

< Storage Layer > Hadoop HDFS
L
@frastructure Lay@ Various hardwares

Figure 3. HDFS-based five-layer model for video resource management.

3.2. HDFS-Based Architecture of Video Resource Management

The model of video resource management systems (Figure 4) consists of clients, web clusters,
streaming media servers, and HDFS clusters. These components work cooperatively. Firstly, a user
sends a video playing request to web clusters by selecting a video listed on a web page through the
HyperText Transfer Protocol (HTTP); secondly, web clusters search the video information according
to the user’s request from the MySQL database, and return the search results to the HDFS clusters to
retrieving the video files; thirdly, video HDFS clusters send the video information to streaming media
servers; fourthly, streaming media servers read, compress, and fetch the video streaming data from the
HDEFS clusters; finally, clients get the continuous video stream from the streaming media servers.

v e
/,

Personal
Computers

\ () Web
Clusters
\ o
= .1
/ ‘\\ E@ }é HDFS Clusters

. . Streaming
e Mobile Phones .
I‘h’ Media Server

S

Portable
Computers

Figure 4. HDFS-based architecture of video resource management.

Future Internet 2016, 8, 35 50f 10

3.2.1. The Clients

The clients provide functions of video information searching, video playing control, etc.
Video detailed attributes are stored in Web Clusters, and maintained (such as update, upload,
and delete manipulations) by administrators. Users can get continuous streaming media information
that is encoded, compressed, and cached through sending a request to the HDFS server for access
to videos.

3.2.2. The Web Service Clusters

The web service cluster is a crucial part of the video resource service systems, as it is a direct
interface for users to search, upload, and play videos. The web clusters consist of Apache and Tomcat,
and load balancing is implemented by Apache, Tomcat and mod_jk. The advantages of the integration
of Apache and Tomcat are as follows: (1) It improves the performance of the whole video resource
service system. The dynamic web pages are processed by Tomcat, and the static web pages are
managed by Apache; (2) The integration of Apache and Tomcat can realize better load balancing of
video resource service systems, where the clients get responses from clusters instead of traditional
servers. For improving the performance of web servers, Apache as a proxy distributes client requests
to every Tomcat, and the web server as a cluster service processes client requests; (3) Applications and
fault tolerance are upgraded seamlessly. In the web server clusters environment, if a web server is
suspended, another available one will instantly instead and continue its affairs. The web server with
the newest version applications will automatically upgrade the one with the out-of-date in background,
and client users do not feel the updating process. The functions of the web clusters include releasing,
uploading, and playing videos online, etc. (1) The video-playing module provides video searching and
online playing services. When users submit a playing request to the video service system, the video
information is retrieved from MySQL database servers according to user requests and the results are
returned; (2) The video uploading function is improved. Users upload videos to web servers and
the system automatically stores the video attributes into MySQL database servers that can respond
to manipulation requests for retrieving video information from web servers such as query, update,
and delete. The videos are audited and stored in the HDFS clusters.

3.2.3. HDFS-Based Video Resource Clusters

The feature of writing once and reading many times is a main advantage of HDFS clusters, and is
very fit to applications needs of video resource management. A HDFS cluster is a distributed file
system that is made from a large amount of computers with low costs in resources and costs. HDFS
video resource clusters are used to store and manage the huge number of video resources, also a data
source of streaming media servers.

3.2.4. Streaming Media Servers

Streaming media servers are mainly used to provide video storage, playback, and related controls.
Reading video data from HDFS clusters according to user requests and sending them to the clients after
the streaming processing is the main task of streaming media servers. Streaming media servers that
are employed are the Routing Table Maintenance Protocol (RTMP), Red5 and Flowplayer to real-time
control video streaming, which includes playback, fast-forward, pause and so on. Interactions between
clients and streaming media servers are the main functions of streaming media servers in online
video service systems. (1) Client users get video playback resources from streaming media servers
through sending video playback requests to the web servers which retrieve video information from
MySQL and HDFS servers; (2) Streaming media servers fetch caches and play the video according
to the client user’s requests; (3) When streaming media servers receive a control command request
(such as playback, pause, and fast forward), it controls video streams in terms of commands of users;

Future Internet 2016, 8, 35

6 of 10

(4) When video streams are completely transferred or a stop command is sent by users, the streaming

media server shuts the connection and ends a playback period.
3.3. Key Algorithms
3.3.1. Pseudo Codes for Uploading Video Files from Local Servers to HDFS Clusters

public void copytoHDFS()
{
/ /Create configuration property object
Configuration conf = new Configuration();
/ /Fetch Hadoop configuration information
conf.addResource(new Path(str_conf));
/ /Create file sysytem object
FileSystem hdfs = FileSystem.get(conf);
/ /Get absolute path of local files
Path src = new Path(src_conf);
/ /Upload files to specified HDFS directories
Path dst = new Path(dst_conf);
//Upload files
hdfs.copyFromLocalFile(src, dst);
}

3.3.2. Pseudo Codes for Reading Video Information from HDFS Clusters by Streaming Media Servers

public void readFromHDFS
{
/ /Create configuration property object
Configuration conf = new Configuration();
/ /Create file system object
FileSystem hdfs = FileSystem.get(conf);
/ /Call FSDatalnputStream function
FSDatalnputStream hdfsInStream = fs.open();
/ /Declare a array
byte[] ioBuffer = new byte[10240];
/ /Read the length of the array
int readLen = hdfsInStream.read(ioBuffer);
// Start an array for writing data
while(readLen!=-1)
{
System.out.write(ioBuffer, 0, readLen);
readLen = hdfsInStream.read(ioBuffer);
}
/ /Close data stream
hdfsInStream.close();
/ /Close HDFS
fs.close();

Future Internet 2016, 8, 35

4. Experiments and Results

To verify the performance of this design, an experimental prototype of the video service system

was established in laboratories.

4.1. Facilities and Configurations

In the experiment, four personal computers were used to implement the design; three of them
were configured as data nodes of the HDFS for web clusters and streaming media servers. The details
of the configuration are shown in Tables 1 and 2, and the software installed on the web cluster servers

are listed in Table 3.
Table 1. Hardware and their parameters.
ID CPU Memory Hard Disk Node Type Roles
1 Namenode master ~ Web server for streaming medias
2 Intel(R) Web server
3 Pentium(R)4 2G 80GB Datanode slave /
4 CPU 3.06 GHz /
Table 2. Network configurations.
Node Type IP Address Host Name
Namenode, master 172.16.10.11/24 Hadoopl.com
Datanode, slave 172.16.10.12/24 Hadoop2.com
Datanode, slave 172.16.10.13/24 Hadoop3.com
Datanode, slave 172.16.10.14/24 Hadoop4.com
Table 3. Software installed on servers.
Host name IP address Software Version
apache-tomcat-7.0.39.tar.gz 7.0.39
httpd-2.2.24.tar.gz 2.2.24
Hadoopl.com 172.16.10.11/24 tomcat-connectors-1.2.37-src.tar.gz 1.2.37
jdk-6u35-linux-i586-rpm 6u35
apache-tomcat-7.0.39.tar.gz 7.0.39
Hadoop2.com 172.16.10.12/24 tomcat-connectors-1.2.37-src.tar.gz 1.2.37
jdk-6u35-linux-i586-rpm 6u35

4.2. The Experimental Results

4.2.1. Functional Testing

Figure 5 is a playlist of videos required by client users through the online video service system
based on HDEFS. Figure 6 is a video playback testing screenshot (00:52:35). The experiment shows that

the design proposed in this paper is feasible and easy implementable.

Future Internet 2016, 8, 35 8 of 10

HADOOP TEST
-—

Date:2013/06/07

ABC@126.com

Vedio List
Number OwerUser Vedio Name Vedio Size Process
1 ZHANG SAN Botanical 233408 Play
2 LI SI The C Programming Language 233408 Play
3 WANG WU Network Construct 233408 Play
4 LI MING ERDAS 233408 Play
5 ZHANG SAN | Computer Application Technology 233408 Play

ABC@126.com

Figure 5. A playlist of the video service testing.

Minimal Flowplayer setup

View commented source code to get familiar with Flowplayer installation.

&2 H
rﬁﬁi—‘.‘J can also be used to create this value =1
EEAS) - = To use one of the cursors predefined in the Microsoft® Win32@ APl the applcation
CET N T I o | BED ' ?:sf‘oﬁ:fw:‘; :zl:r:n:e parameter 1o NULL and the lpCursorName parameter to one
WAEEENERT O
o | value Meaning
& | IDC_AFPSTARTING Standard arrow and small hourglass
e [ARROW SRR iy
e | IDCESES Crosshar
| 1Ioc_rano windows 2000: Hand
pe iy | Ioc_HeELr Arow and question mark
g | Ioc_ieeam I-beam
e i | 1oc_icon Obsolete for applications marked version 4.0 or later.
wameraion [1Ioc_no Slashed crde
IDC_SIZE Obsclete for applications marked version 4.0 or later.
1 Use IDC_SIZEALL
- IDC_SIZEALL Four-pointed arrow pointing north, south, east, and
of mermbens.

)
L oadFiomFde method [HTMLPromctten otyect|
s omiieposton TSQL Server - DTER]

neshod % Hourglass

=
| 1oC_sizengsw

wiest

Double-pointed arrow pomting northeast and

| LoadFiels southwest

??‘2;:"' - | 1oc_sizens Double-pointed arrow pointing narth and south
FanT s on class | 1oc_sizemwse Double-ponted arrow ponting northwest and

jLosdFome | southeast

|LoacF 1ame t

‘:{E‘?':'m“ﬁm_m, | IDC_sizEWE Double-pomnted arrow pointing west and east

e, matiod 00 | 1I0c_upParrOW Vertical arrow

[1oc_warr

Figure 6. The video screenshot at time 00:52:35.

4.2.2. Performance Testing

Considering that the video resource service system is frequently used for data reading, the
download time ate calculated by Formula (1) was measured in different data sizes (MB) to verify
whether the HDFS-based system is fit to manage huge volumes of video resources. The testing result
(Figure 7) shows the download time rate of videos is decreasing with data size increasing, that is,
the HDFS-based video resource management system performed better in managing big data than

small, and videos are already very big in size. When the data size is more than 1000 MB, the download
time rate stabilizes at a certain level.

Future Internet 2016, 8, 35 90f 10

P = ti/ty 1)

where P represents the download time rate, t; is the average downloadtime (ms/MB) of the it" data
groupB, and t(is the download time (ms) of 1 MB.

1.0 <

0.9
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1
M

0.0 T T T T Oo—
1 10 100 1000 10000

Figure 7. The download time rate of videos decreases as the data size increases.

5. Conclusions

With the volume of video resources is becoming larger and larger and data types are more various
and complex, many difficulties have emerged in their management work. Fortunately, Hadoop poses
new chances to resolve these problems. This paper proposes architecture to manage video resources
based on Hadoop under a HDFS-based cloud-computing environment, and an experiment was done
to test the new design. The system is able to ensure uniform video resource management and a
high-performance processability by applying HDFS and Map/Reduce; thus, our system overcomes
the difficulties related to emerging and merging policies in distributed video resource management
service systems as well as to fault tolerance and load balancing management in large-scale distributed
systems by obeying Hadoop policies. Based on the experimental results, we also suggest optimal
Hadoop options for video resource management service systems in our cloud-based cluster servers.
The study shows that using Hadoop to build a distributed storage system for video resources can
enhance access speeds and save energy.

This paper is specifically interested in architecture that deals with huge volumes of video
resource management tasks, as most of the existing video resource management techniques do not
consider parallel computing. The architecture should adapt to different users working on different
platforms, and it should have a convenient, friendly, and simple user interface. The requirements of the
architecture are portability, being service oriented, flexibility and easy extension. Users can easily use
it through a web portal with a standard service-oriented interface. In the study, Map/Reduce could
achieve process optimization by distributing tasks among available computing resources. In what
follows, we will focus on the dynamic deployment of additional computer resources, as the means to
handle seasonal load variations.

Acknowledgments: This work is supported by the National Natural Science Foundation of China (No. 31400493),
the Yunnan Provincial Research Foundation for Basic Application Research, China (Grant No. 2011FB070),
the Research Center of Kunming Forestry Information Engineering Technology (Grant No. 2015FIB04), the Natural
Science Research Foundation of Education Bureau of Yunnan Province, China (Grant No. 2011Y282), and the
Teaching Research Foundation of Southwest Forestry University (No.YB201120).

Author Contributions: Weili Kou, Kailai Zhou, and Hui Li designed the concept of the article. Hui Li and
Weili Kou did the experiments and created the graphics. Weili Kou wrote the paper.

Conflicts of Interest: The authors declare no conflicts of interest.

Future Internet 2016, 8, 35 10 of 10

References

1.

10.

11.

Yang, C.-T.; Huang, K.-L.; Liu, J.-C.; Chen, W.-S. Construction of Cloud IaaS Using KVM and Open Nebula
for Video Services. In Proceedings of the 41st International Conference on Parallel Processing Workshops
(ICPPW), Pittsburgh, PA, USA, 10-13 September 2012; pp. 212-221.

Pereira, R.; Azambuja, M.; Breitman, K; Endler, M. An Architecture for Distributed High Performance Video
Processing in the Cloud. In Proceedings of the 3rd IEEE International Conference on Computer Science and
Information Technology (ICCSIT), Chengdu, China, 9-11 July 2010; pp. 482-489.

Wu, Y.-S.; Chang, Y.-S.; Juang, T.-Y.; Yen,].-S. An Architecture for Video Surveillance Service based on P2P
and Cloud Computing. In Proceedings of the 9th IEEE International Conference on Ubiquitous Intelligence
and Computing (UIC 2012), Fukuoka, Japan, 4-7 September 2012; pp. 661-666.

Garcia, A.; Kalva, H.; Furht, B. A study of transcoding on cloud environments for video content delivery.
In Proceedings of the 2010 ACM Multimedia Workshop on Mobile Cloud Media Computing, New York, NY,
USA, 25-29 October 2010; pp. 13-18.

Sun, B.-J.; Wu, K.-J. Research on Cloud Computing Application in the Peer-to-Peer Based Video-on-Demand
Systems. In Proceedings of the 3rd International Workshop on Intelligent Systems and Applications (ISA),
Wuhan, China, 28-29 May 2011; pp. 1-4.

Li, J.; Guo, R.; Zhang, X. Study on Service-Oriented Cloud Conferencing. In Proceedings of the 3rd IEEE
International Conference on Computer Science and Information Technology (ICCSIT), Chengdu, China,
9-11 July 2010; pp. 21-25.

Ghemawat, S.; Gobioff, H.; Leung, S.-T. The Google file system. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, Bolton Landing, NY, USA, 19-22 October 2003.

Srirama, S.N.; Jakovits, P; Vainikko, E. Adapting scientific computing problems to clouds using MapReduce.
J. Future Gener. Comput. Syst. 2012, 28, 184-192. [CrossRef]

Kim, M.; Cui, Y,; Han, S.; Lee, H. Towards Efficient Design and Implementation of a Hadoop-based
Distributed Video Transcoding System in Cloud Computing Environment. Int. |. Multimed. Ubiquitous Eng.
2013, 8, 213.

Web Technologies—Distributed Computing/Big Data 2016. Available online: http:/ /www.bogotobogo.com/
WebTechnologies/distributedcomputing.php (accessed on 14 July 2016).

Pereira, R.; Azambuja, M.; Breitman, K.; Endler, M. An Architecture for Distributed High Performance Video.
In Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD), Miami, FL,
USA, 5-10 July 2010; pp. 482-489.

® © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.future.2011.05.025
http://www.bogotobogo.com/WebTechnologies/distributedcomputing.php
http://www.bogotobogo.com/WebTechnologies/distributedcomputing.php
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	The Video Resource Management System in HDFS-Based Cloud Computing
	System Layers
	HDFS-Based Architecture of Video Resource Management
	The Clients
	The Web Service Clusters
	HDFS-Based Video Resource Clusters
	Streaming Media Servers

	Key Algorithms
	Pseudo Codes for Uploading Video Files from Local Servers to HDFS Clusters
	Pseudo Codes for Reading Video Information from HDFS Clusters by Streaming Media Servers

	Experiments and Results
	Facilities and Configurations
	The Experimental Results
	Functional Testing
	Performance Testing

	Conclusions

