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Abstract: The Windows Operating System (OS) is the most popular desktop OS in the world,
as it has the majority market share of both servers and personal computing necessities. However,
as its default signature-based security measures are ineffectual for detecting zero-day and stealth
attacks, it needs an intelligent Host-based Intrusion Detection System (HIDS). Unfortunately, a
comprehensive data set that reflects the modern Windows OS’s normal and attack surfaces is not
publicly available. To fill this gap, in this paper two open data sets generated by the cyber security
department of the Australian Defence Force Academy (ADFA) are introduced, namely: Australian
Defence Force Academy Windows Data Set (ADFA-WD); and Australian Defence Force Academy
Windows Data Set with a Stealth Attacks Addendum (ADFA-WD: SAA). Statistical analysis results
based on these data sets show that, due to the low foot prints of modern attacks and high similarity
of normal and attacked data, both these data sets are complex, and highly intelligent Host based
Anomaly Detection Systems (HADS) design will be required.
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1. Introduction

Intrusion Detection Systems (IDS), specifically Host based Anomaly Detection Systems (HADS),
have received a great deal of attention over the past decade due to their capability to detect zero-day
and stealth attacks at the OS level [1,2]. There are three main components of a HADS: a data source
(DS); feature selection and construction (FSC); and a decision Engine (DE) [3]. For an IDS design and
evaluation, it is critical to have a comprehensive and public data set (e.g., one that can be related to
a DS) commensurate with the targeted OS. In the IDS research community, for nearly two decades,
relevant IDS algorithms have been generally tested using the publicly available benchmark data set
KDD 98. Unfortunately, the KDD data set was compiled in 1998 which has lost the comprehensiveness
and qualitative factors [4,5]. To tackle this, an ADFA-Linux Data Set (ADFA-LD) has recently been
created [4]. However, both these data sets (e.g., KDD 98 and ADFA-LD) are LINUX oriented; and not
applicable for a Windows based IDS.

In order to protect the largest OS market share (i.e., Windows OS) from the highly sophisticated
threats such as zero-day attacks, stealth attacks, data exfiltration and Distributed denial of service
(DDoS) attacks [6], following the “defence in depth philosophy”, the first step is to develop a
comprehensive windows based IDS data set [7]. Although Windows OS has protection methods
such as signature-based anti-viruses (AV), Address Space Layout Randomization (ASLR), and Data
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Execution Prevention (DEP) [3], AVs are logically unable to detect zero-day attacks and stealth
attacks can bypass these protection mechanisms [8,9]. Moreover, data exfiltration and DDoS attacks
are acknowledged that the recent wave of cyber threat which can be encounter through anomaly
detection mechanism [10,11].

In this paper two Windows OS-based IDS data sets targeting zero-day and stealth attacks are
provided, which are being released publicly for the IDS research community. These data sets are
available at the link [12]. In the following sections, firstly, we provide descriptions of these data sets,
including their design purposes, rationales for their generation environments, their logic for audit
data selection, and reasons for the selection and construction of attacks. Secondly, their structures
and formats, and a way of using them to design HIDS for windows OS, are discussed. Finally, we
provide a preliminary analysis of both data sets by the use of following two methodologies:

(a) The evaluation of the complexity of the data sets through frequency distribution method
(see Section 5.1), which identify the frequency distributions of audit data (i.e., DLL calls) among
normal and attacked data. Its purpose is to identify the natural similarity between attacked and
normal data that is likely to assist in the design of an HIDS decision engine.

(b) Evaluating the complexity of the data sets through anomaly detection frame work by the use
of several machine learning algorithms integrated with the novel feature selection scheme
(see Section 5.2).

2. ADFA-WD

The main intention behind the generation of this data set was to fill the gap created by the
unavailability of IDS data sets for Windows OS. It generally contains identified Windows-based
vulnerability-oriented zero-day attacks. This section provides details of the ADFA-WD.

Purposes of Design: (i) to establish common evaluation standards for the Windows IDS research
community; (ii) to incorporate a reflection of the modern sophisticated threads associated to Windows
OS; (iii) to express the generic Windows OS endpoint; and (iv) to ensure the manageability, scalability
and generality of the audit data set.

Rational for Generation Environment: the OS selected as the targeted host was Windows XP
Service Pack 2 which does not have ASLR and DEP protection. The major reason for adopting
this OS was to incorporate a defence-in-depth consideration which requires overlapping security
controls to be optimized in isolation [13]. The targeted host also includes an FIP server, web server
and management tool, a streaming audio digital radio package, wireless and Ethernet networking
connectivity and a fake wireless access point. The purpose of setting up a variety of connectivities
was to provide a representative network-based attack surface.

Logic of Audit Data Selection: nine core DLL calls (ntdll.dll, kernel32.d1l, user32.dll, comctl32.dll,
ws2 32.d1l, mswsock.dll, msvert.dll, msvepp.dll, and ntoskrnl.dll) were selected as audit data for both
data sets based on three major considerations:- firstly, the audit data should be capable of representing
system behaviour; secondly, it should have the capability to reflect modern threat vectors; and thirdly,
we needed to consider its effectiveness in achieving efficient training and testing at the decision
engine of HIDS.

Reasons for Selection and Construction of Attacks: in ADFA-WD, for attack construction,
the relationships between vulnerabilities identified by CVE [14] and current attack vectors are
considered. There are 12 known vulnerabilities exploited using automated hacking tools such as
Metasploit [3] and the attack vectors includes TCP ports, browser attacks, Web based vectors and
malware attachments. Basically, the major reason for selecting these attacks and crafting them was to
realize the modern general threads which have been reported in the literature for the Windows OS.
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3. ADFA-WD: SAA

The stealth attack-oriented Windows OS-based data set is actually an extension of ADFA-WD
(Table 1). Its main goal was to establish a common standard evaluation data set for validating the
resistivity of future HIDS against Windows based stealth attacks.

Table 1. Compositions of Data Sets.

Data Sets Normal Training  Normal Validation Attack
ADFA-WD 356 traces 1828 traces 5773 traces
ADFA-WD:SAA same as above 863 traces

Purposes of Design: (i) to examine the Windows OS characteristics in order to provide a much
more permissive environment than that of the LINUX OS for stealth attacks; and (ii) to realize the
bypassing of stealth attacks from signature based protection such as AVs.

Rational for Generation Environment: as it is acknowledged, stealth attacks are often specific to a
program. The remainder of the generation environment was the same as ADFA-WD apart from two
additional specific targeted programs, Icecast V2.0 and CesarFTP V0.99g, which could provide attack
vectors for conducting stealth attacks.

Selection and Construction of Attacks: ADFA-WD: SAA was compiled by crafting three stealth
attacks, namely; Doppelganger, Chimera, and Chameleon (note: Chameleon was conducted as
both network and malware) considering the two targeted programs discussed above. The general
process for conducting these stealth attacks comprises three hacking steps: firstly, an available specific
targeted program resource is utilized: secondly, the targeted program’s resource utilization sequence
during normal operation is identified; and, finally, the resource utilization sequence is shuffled
according to the particular malicious activity [3].

4. Structures, Formats and Utilization of Data Sets

The audit data (i.e., nine core DLL calls) was collected by running the Procmon [3] program to
capture all DLL while various normal and attack activities were conducted. Each captured process
trace contained DLL calls, with all traces provided by the extension .GHC. In Table 1, the structures
of both data sets are described.

In order to use both data sets for the HADS design, normal training data traces could be used for
training, normal validation data traces are used to measure the False Positive Rate (FPR) and attack
data traces are used to measure the Detection Rate (DR) and False Negative Rate (FNR). On the other
hand, while designing the signature-based Host IDS, a mixture of normal and attack data traces could
be utilized for training, normal validation data for measuring the FPR, and attack data traces that are
not used in training can be used for estimating the DR and FNR.

5. Data Analysis

In this section, analysis of both data sets ( ADFA-WD and ADFA-WD: SAA) are provided.
They were designed to answer the following two questions regarding both data sets: (i) how could
the similarity or discrimination between their attacked and normal data be measured; (ii) what were
their levels of complexity, i.e., did they represent sophisticated attacks? To answer the first question,
a frequency distribution method was adopted and, for the second, a complete anomaly detection
frame work is implemented using machine-learning algorithms and feature construction method,
to measure the complexity in terms of accuracy and error.

5.1. Complexity Analysis through Frequency Distribution Method

We observed that in both data sets, each process consisted of nine selected DLL calls, of which
seven different ones constituted a trace. This phenomenon depends on process execution, resource
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utilization and audit data selection. We further calculated the frequency percentage of the each
distinct DLL for both data sets by the use of adding the DLLs of particular DLL and then divided by
total number of DLLs. It is noticed that the frequencies of DLLs in attacked and normal data are very
close to each other. For instance, the frequency percentages of kernel32.dll, in the total normal data
of both data sets is 70.12, abnormal data of ADFA-WD has 74 and abnormal data of ADFA-WD:SAA
has 67.69. Moreover, the complete percentages of audit data frequency distributions among normal
and attacked data is provided for both data sets in Figure 1.
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Figure 1. Audit data frequency distribution map.

It can be observed from Figure 1, that ADFA-WD had less similarity between attacked and
normal data, which reflects the existence of a mid-level hacking, but in ADFA-WD: SAA a high
similarity is observed which shows a highly skilled hacking presence. Further, it can be observed
that the attacked and normal data in both data sets, in terms of frequency distribution map, are very
close to each other and indicates the binary classification complexity.

5.2. Complexity Analysis through Anomaly Detection Frame Work

In the IDS domain it is observed that, one of the way to evaluate the complexity of the IDS
data set is the utilization of anomaly detection or signature detection framework, where most of
the frameworks are equipped with the machine learning algorithms. For instance, in [15-17] the
authors utilized several machine learning algorithms as the part of anomaly detection framework,
while the evaluation of ADFA-LD IDS data set [4]. Therefore, we implemented an anomaly detection
frame-work for conducting a complexity analysis, by the use of machine-learning tool box in Matlab
R2014a, Intel corei-7 @ 3.40 GHz processor with a 64-bit operating system and 16 GB of RAM.
The framework is shown in the Figure 2 where it actually reflects the typical anomaly detection
process or binary classification method assisted with machine -learning algorithms. Both data sets
can be utilized at the data set entity point.

After the acquisition of a process trace, a novel Distinct Dynamic Link Library Count (DDLLC)
was introduced and applied as a scheme for constructing a Feature Vector (FV) for the trace. It is
elaborated in Figure 3, in which each trace is transformed to the feature vector consisting of the count
of distinct DLL calls.

In order to generate a profile of the behaviors of traces and later classify test traces, we adopted
the Support Vector Machine (SVM) with linear and RBF kernels [18], k-Nearest Neighbour
(KNN) [19], Extreme Learning Machine (ELM) [20], Artificial Neural Network (ANN) [21] and an
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improved version of the Naive Bayes (NB) classifier [22] from Microsoft research. Algorithm 1
shows the binary classification task for N traces, where N represents the total number of training

and test traces.

Figure 2. Anomaly detection frame work for the data sets complexity analysis.

o [)
!

Training or test traces
acquisition

=

Feature
construction

L

Normal training traces behaviour profile
generation using machine learning
algorithms

U

Classifying test traces e.g. whether normal

or abnormal

Feature
vector

Trace

/
/

\\ kernel32
/

ntdlldll user32.dll mdlldll kernel32.dll kernel32.d1l kemel32.dll user32.dll

- |user32.dll user32.dIl kemel32.d1l kemel32.d1l comet!32.dll ws2_32.dIl mswsock dll
[ msvert.dil msvert.dll msvert.dll kemel32dll kenel32.dIl kernel32.dIl kernel32.dII
/ kernel32.dll  kemel32.dll kernel32.dll kemel32.dll kemel32dll kernel32.dll

kernel32.d1l ntdI1dll nediLdll ntd1ldil ntdll.dll awdILdlluser32.dIl cometi32.dll

N/

ntdll

user32

cometl32

wi2_32 | ms

wsock

msvert

msvepp

ntoskml

7

3

2

1

1

0

0

Figure 3. Distinct Dynamic Link Library Count (DDLLC) feature construction scheme.

In Algorithm 1 FM represents the feature matrix of size N rows and 9 columns, that is, 356 rows
and 9 columns because the data set ADFA-WD has 356 normal training traces and each trace will
have 9 features or attributes through DDLLC accordingly. The feature matrix for N traces can be

formulated as:

FM"I (traces) = ZfilZ]?:l (FV*)

)



Future Internet 2016, 8, 29 60f8

where j is the counter to the dimensions of FM and for implementing the scheme of DDLLC. In line 1,
Algorithm 1 inputs feature matrices of the training and test traces, with lines 2 to 5 designed to
construct a profile of normal traces behaviors using any machine learning algorithm respectively.
Note that each algorithm has its own key properties while learning feature matrices and classifying
test traces. SVM classifies data points of feature matrix into two classes through maximizing the
margin of the hyper plane by first transforming the data points in a linear or circular way. In KNN
the distance between points in the FV is measured and, based on close distance, traces are placed
into either one of two classes (e.g., 0 or 1, normal or abnormal). In ANN, each data point in an FV is
considered an input and then the initial weight w of each FV, i.e., w.FV, is calculated. The activation
function (i.e., the sigmoid function) is applied on w.FV to fit the ANN output with the actual value
(i.e., 0 or 1 about traces). In ELM, a single hidden layer feedforward neural network selects randomly
hidden layers and determines the output weight w.FV required to fit the target output relevant to a
trace in FM. In contrast to the traditional ANN, the hidden layers do not need to be tuned iteratively
and the activation functions are adoptable. Moreover, in NB, data points in the FV and class labels
are processed according to their conditional probability to estimate the maximum likelihood of each
trace in the FM.

Algorithm 1 Building Profile and Classification of traces

Require: FM'™" && FMtest

1: I« [(FM'™™", Iabel]

2: Build_Profile'™" «+{1}&&({SVMI | KNN| | ANNI | ELM| | NB}
3:fori=1toN do

4: Learn [Build_Profile'® |« Trace;e(FM'*!) is -normal- or- abnormal
5: end for

Each adopted ML algorithm is tested with different possible parameter values and the results
with optimum ones are displayed in the Table 2. The libSVM with the parameters n = 5
(cross validation value), s = 0 (default type of SVM)), t = 2 (radial basis kernel function), d = 5 (degree in
kernel function), g = 0.14 (as we have 7 features of each trace so 1 divided by the 7) and rest all on
default values. Similarly, KNN with k = 5 (e.g., k-fold cross validation), ELM with number of hidden
neurons = 50 , activation function = radbas, value to normalize DLL count = max DLL count plus 5
(e.g., this value is used to divide each feature instance of FM in the ELM case to normalize the data
points between 1 and —1), and ANN with i = 21 (i shows the number of neurons) and activation
function = sigmoid. The DR, FAR and the processing time of each algorithm along with DDLLC
feature construction scheme are calculated with these parameters.

Table 2. Complexity of data sets using DDLLC as feature construction.

Algorithms ADFA-WD ADFA-WD-SAA
DR% FAR% Processing Time DR% FAR% Processing Time
SVM 64 13 55 61 18 52
KNN 59 16 12 53 23 12
ANN 48 10 32 42 12 34
ELM 69.3 15 72 65 21 72
NB 72 12 55 68 14 48

In Table 2 the result actually reflects the complexity of both data sets, mainly in terms of accuracy.
The DR was obtained by dividing the number of traces detected as attack by the total number of test
attack traces. The FAR is a joint average error related to an FNR and FPR [3]. An FNR was obtained
by dividing the number of incorrectly detected traces as attacks by the total number of test attack
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traces, and FPR by dividing the number of incorrectly detected traces as attacks by the total number
of normal validation traces. Therefore, FAR was given by:

FAR = (FPR + FNR)/2 x 100

It can be observed that both the linear and non-linear classifiers were unable to achieve the
optimum performance for either data set for three main possible reasons: firstly, both data sets
included sophisticated attacks, which resulted in a high similarity between the data points of normal
and attacked traces; secondly, the feature construction scheme DDLLC was unable to assist classifiers
in ascertaining natural differences between attacked and normal traces; and thirdly, an un-normalized
distance was observed in the data points of the FV for all traces, which might have affected the
classification capability of a particular classifier. Moreover, it can be observed in Table 2 that
all the classifiers performed better for ADFA-WD than ADFA-WD-SAA which demonstrates the
sophistication of stealth attacks.

6. Conclusion

In order to tackle the challenge of zero-day and stealth attacks on Windows OS, in this paper two
major contributions in the domain of HADS were discussed. Firstly, two comprehensive Windows
OS- based data sets (ADFA-WD and ADFA-WD: SAA) with informative description were compiled
and released for the IDS research community. Secondly, a preliminary analysis using the frequency
distribution method and machine learning algorithms integrated with a novel DDLLC based feature
construction methodology was performed. The results demonstrated that, in order to design an
effective HADS for Windows OS, attention must be paid to the selection/construction of features
and adaption of the decision engine due to the observed complexity of the data sets. The work in
this paper was supported by the Australian Research Council (ARC) linkage projects LP100200538
and LP110100602.
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