
Article

Priority Queues with Fractional Service for Tiered
Delay QoS

Gary Chang *,† and Chung-Chieh Lee †

Received: 28 October 2015; Accepted: 14 December 2015; Published: 29 December 2015
Academic Editor: Fernando Cerdán

Department of EECS, Northwestern University, Evanston, IL 60201, USA; cclee@ece.northwestern.edu
* Correspondence: garychang2008@u.northwestern.edu; Tel.: +1-312-804-1731
† These authors contributed equally to this work.

Abstract: Packet scheduling is key to quality of service (QoS) capabilities of broadband wired and
wireless networks. In a heterogeneous traffic environment, a comprehensive QoS packet scheduler
must strike a balance between flow fairness and access delay. Many advanced packet scheduling
solutions have targeted fair bandwidth allocation while protecting delay-constrained traffic by
adding priority queue(s) on top of a fair bandwidth scheduler. Priority queues are known to cause
performance uncertainties and, thus, various modifications have been proposed. In this paper, we
present a packet queueing engine dubbed Fractional Service Buffer (FSB), which, when coupled
with a configurable flow scheduler, can achieve desired QoS objectives, such as fair throughputs and
differentiated delay guarantees. Key performance metrics, such as delay limit and probability of
delay limit violation, are derived as a function of key FSB parameters for each delay class in the packet
queueing engine using diffusion approximations. OPNET simulations verify these analytical results.

Keywords: quality of service; modeling; simulation; diffusion approximation; broadband routers

1. Introduction

Packet scheduling is central to high-speed routing networks that leverage statistical multiplexing
of traffic flows to maximize bandwidth efficiency. In these networks, bandwidth contention arisen
from traffic burstiness may result in occasional congestion at a packet router or a network access point.
During periods of congestion, a well-designed packet scheduler is needed to allocate bandwidth to
competing traffic flows from various classes of users and applications to maintain their required or
contracted quality of service (QoS) levels, in terms of queuing delay, packet loss, or throughput. In this
environment, QoS contracts can only be fulfilled with a non-zero probability of violation.

A great deal of packet scheduling research has focused on fair allocation of bandwidth [1–4].
These contributions emphasize the throughput aspect of QoS and deal primarily with flow scheduling.
In these cases, the scheduler essentially treats packets solely on the QoS status of their owner flows.
One drawback of flow schedulers is that delays of individual packets are not accounted for and, thus,
access delays for short-lived traffic flows are not protected. Furthermore, packet retransmissions may
occur due to excessive packet delays even when the flow-level fairness is maintained. As Internet and
mobile applications become increasingly bandwidth demanding and multimedia driven, maintaining
fairness while providing protection for delay sensitive multimedia data plays an important role in
modern network design and management.

As packets associated with different traffic flows may have similar delay limits as determined by
the flow scheduler, they can be grouped and treated equally as a delay class. One simple approach to
differentiate delays between classes is to use priority queues. However, strict priority queues are known
to cause highly uncertain delays on all classes except the highest. To provide meaningful packet delay

Future Internet 2016, 8, 1; doi:10.3390/fi8010001 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com


Future Internet 2016, 8, 1 2 of 15

protections, every delay class must receive a certain fraction of service relative to the higher-priority
classes to prevent starvation when higher priority classes present heavy loads. This notion of fractional
service is the main motive of this work.

We shall present a two-stage packet scheduling architecture that can be tailored to satisfy both
flow-level throughput fairness and packet-level delay protections. The first stage is a buffer-less flow
scheduler of which the responsibility is to classify packets based on their flow QoS. No specific flow
QoS strategies will be assumed except that each classified packet is given a delay limit associated
with its assigned delay class. The second stage is a packet queueing engine that uses as many buffers
as delay classes to queue classified packets. Its responsibility is to protect the delay guarantee of
each delay class such that it is met with a sufficiently high probability. This paper focuses on the
second stage: the packet queueing engine. We shall present and analyze the packet queueing engine
dubbed Fractional Service Buffer (FSB) that allows a fraction of lower-priority (higher-delay-limit)
traffic class to advance their queueing priority at every higher-priority packet arrival. The fraction,
in conjunction with the buffer size, determines a delay limit and a delay-violation probability associated
with each delay class. Basically, our approach adds a fair queueing component to the conventional
static priority queues, such that the lower-priority traffic may improve their priority over time and
thus will not be shut out by higher-priority traffic.

The rest of this paper is organized as follows. In Section 2, we cite some related literatures in flow
scheduling and priority-queueing schemes. In Section 3, we present the two-stage FSB architecture
and its fractional service algorithm. In Section 4, we analyze the FSB under heavy traffic conditions
using a combination of queue aggregation technique and diffusion approximations. In Section 5,
we demonstrate the accuracy of our analytical results from Section 4 using simulations. In Section 6,
we discuss the relationship between the system parameters and desired QoS levels and how tradeoffs
between different QoS levels can be achieved. In Section 7, we provide a concrete design example on
tuning the FSB system parameters.

2. Related Works

In terms of providing better packet delay for each traffic flow, the scheduler in [5] separates traffic
flows with substantially different bandwidth requirements into different groups. Then, a time-stamp
based scheduler is used to schedule the service of each group while a round-robin scheduler is
used to service flows within a group. However, due to its round-robin structure, there is an inherit
dependency between the allocated bandwidth of a flow and the queueing delay of the flow’s packets [6].
Furthermore, only the first packet of each flow can receive a delay protection.

In [6], the authors presented a two-stage architecture that separates the dependencies between
bandwidth allocations and packet delays. The first stage is a number of rate regulators that shape
the traffic of each flow while the second stage is a number of strict priority queues that queue the
regulated packets of each flow. Delay protections are achieved using an admission control policy that
monitors the occupancy level at each priority queue. This implementation requires one buffer per
flow to regulate each flow’s packets, in additional to the priority queues. These flow buffers require a
separate management algorithm to ensure efficient usages of the memory space [7].

Class-based schedulers, on the other hand, have a far simpler approach in managing the memory
space. In the Relative Differentiated service (RD) [8] framework, packets are grouped into M + 1 classes
of service where Class-i packets receive better performance metrics than Class-i + 1 packets for all
0 ď i < M. One simple way of realizing RD is to use strict priority queues where the highest priority
class is assigned to the highest priority queue and each queue is serviced in the order of their priority.
However, such a method does not provide any means for adjusting the quality of each priority class
and no delay protections can be offered to lower priority classes.

In terms of overcoming the inflexibilities of strict priority queues, the authors of [8] presented a
delay-ratio idea for determining service orders of each priority class. Specifically, they defined a delay
ratio between every pair of service classes and the scheduler strives to maintain these service ratios



Future Internet 2016, 8, 1 3 of 15

at their target levels. In this manner, the relative service quality in terms of packet delays between
classes is maintained, regardless of the load of higher-priority classes. The authors also applied
their delay-ratio idea to existing queueing disciplines, such as Generalized Processor Sharing [9] and
Waiting-Time Priority [10], to deliver controllable service qualities. This approach only offers a single
dimension in QoS provisioning, namely the delay-ratio between classes. Separate mechanisms are
required to ensure the fairness and maximum delay of each traffic class [11].

Other related literature, such as delay-dependent priority jumps [12], deals with this strict priority
issue by prioritizing each packet based on its delay limit and tagging the packet with its entry time.
The priority of a packet is increased if the maximum queueing delay of the packet in a priority
queue is reached. This method requires tagging and updating timestamps of packets to accomplish
priority increases.

In [13], the authors presented several priority-jumping policies for systems with two priority
classes. Each policy has a unique criterion for increasing the priority of lower priority packets. They
concluded that each policy has its pros and cons and no single policy is a clear winner. The system that
bases its priority increase criterion on the arrival of higher priority packets is the most “self-adaptive”
to different traffic conditions. However, obtaining an exact analytical expression for this system is
“extremely difficult”.

3. Fractional Service Buffers

Although commonly referred to as “packet schedulers”, throughput-based schedulers are
essentially flow schedulers. Examples of these include Deficit Round Robin (DRR) [14], Weighted
Round Robin (WRR), and Weighted Fair Queueing (WFQ) [9] schedulers. However, throughput
contracts are meaningful for traffic flows rather than individual packets. Service order of packets
is determined solely by flows’ QoS attributes in a flow scheduler. Typically, a flow scheduler uses
one queue for each active traffic flow and serves these flow queues with a scheduling discipline to
fulfill their throughput contracts. In any of these scheduling solutions, packet delays of a given traffic
flow vary with the flow’s packet arrival pattern and the overall system load. As a result, while the
throughput of a traffic flow is protected, individual packet delays are not. For short traffic flows, the
throughput may not be a meaningful QoS metric since their durations are just a few packets. The quality
of these short flows’ services is better represented by their packet delays. Because the majority of
traffic flows in the Internet are short [15], packet delays of these flows are a critical contributor to user
experience. Furthermore, in a TCP dominated network environment, excessive packet delays may
lead to TCP retransmissions thus increasing the duration of congestion.

We are presenting a two-stage packet scheduling architecture where the first stage schedules
traffic flows and the second stage protects packet delays. In Figure 1, a buffer-less flow scheduler
classifies each input packet into a delay class based on its owner flow’s QoS status, while a subsequent
packet queueing engine strives to protect the delay limit associated with each class. The flow scheduler
maintains flow throughput by specifying a delay limit on each packet. For example, suppose the
flow scheduler classifies packets by using a token bucket mechanism with load-adaptive token rates.
Instead of physically maintaining a token bucket for each flow in the flow scheduler, the flow scheduler
can simply compute the delay limit of each incoming packet based on its flow’s token rate and its
available tokens, if any. The packet is mapped accordingly to a delay class based on its delay limit and
then sent to the packet queueing engine. Actual packet delay will not reach the specified delay limit
unless the system is fully loaded. As such, flows will likely receive more bandwidth than specified by
the token bucket algorithm.



Future Internet 2016, 8, 1 4 of 15

Future Internet 2016, 8 4 

 

 

In [13], the authors presented several priority-jumping policies for systems with two priority classes. 

Each policy has a unique criterion for increasing the priority of lower priority packets. They concluded 

that each policy has its pros and cons and no single policy is a clear winner. The system that bases its 

priority increase criterion on the arrival of higher priority packets is the most “self-adaptive” to different 

traffic conditions. However, obtaining an exact analytical expression for this system is “extremely difficult”. 

3. Fractional Service Buffers 

Although commonly referred to as “packet schedulers”, throughput-based schedulers are essentially 

flow schedulers. Examples of these include Deficit Round Robin (DRR) [14], Weighted Round Robin 

(WRR), and Weighted Fair Queueing (WFQ) [9] schedulers. However, throughput contracts are 

meaningful for traffic flows rather than individual packets. Service order of packets is determined solely 

by flows’ QoS attributes in a flow scheduler. Typically, a flow scheduler uses one queue for each active 

traffic flow and serves these flow queues with a scheduling discipline to fulfill their throughput contracts. 

In any of these scheduling solutions, packet delays of a given traffic flow vary with the flow’s packet 

arrival pattern and the overall system load. As a result, while the throughput of a traffic flow is protected, 

individual packet delays are not. For short traffic flows, the throughput may not be a meaningful QoS 

metric since their durations are just a few packets. The quality of these short flows’ services is better 

represented by their packet delays. Because the majority of traffic flows in the Internet are short [15], 

packet delays of these flows are a critical contributor to user experience. Furthermore, in a TCP 

dominated network environment, excessive packet delays may lead to TCP retransmissions thus 

increasing the duration of congestion. 

We are presenting a two-stage packet scheduling architecture where the first stage schedules traffic 

flows and the second stage protects packet delays. In Figure 1, a buffer-less flow scheduler classifies 

each input packet into a delay class based on its owner flow’s QoS status, while a subsequent packet 

queueing engine strives to protect the delay limit associated with each class. The flow scheduler 

maintains flow throughput by specifying a delay limit on each packet. For example, suppose the  

flow scheduler classifies packets by using a token bucket mechanism with load-adaptive token rates. 

Instead of physically maintaining a token bucket for each flow in the flow scheduler, the flow scheduler 

can simply compute the delay limit of each incoming packet based on its flow’s token rate and its 

available tokens, if any. The packet is mapped accordingly to a delay class based on its delay limit and 

then sent to the packet queueing engine. Actual packet delay will not reach the specified delay limit 

unless the system is fully loaded. As such, flows will likely receive more bandwidth than specified by 

the token bucket algorithm. 

 

Figure 1. Two-stage packet scheduling architecture. Figure 1. Two-stage packet scheduling architecture.

The simple token bucket algorithm mentioned above for the flow scheduler is merely an example
of associating flow throughputs with packet delays. Advanced algorithms, such as WFQ, WF2Q [14]
and Least Attained Service [15], which map flow throughputs into packet delays, are also suitable
candidates. A flow scheduling policy, in conjunction with the delay protection provided by the packet
queueing engine, provides configurable parameters for network operators to tune the desired level
of QoS. The key in a configurable QoS scheduler is the packet queueing engine that offers multiple
classes of delay protections, where the delay protection of each class can be quantified based on the
traffic parameters given by a flow scheduling policy and an admission control policy. In this paper,
we are leaving open the flow scheduling policy while assuming that the flow scheduler assigns each
packet a delay class according to some selected flow QoS principles. We shall focus on the design
and analysis of the packet queueing engine, dubbed the Fractional Service Buffers (FSB), of which the
objective is to deliver the packet delay limit of each delay class.

The FSB employs M + 1 FIFO buffers, dubbed Buffer-0, Buffer-1, . . . , Buffer-M, to accommodate
M + 1 classes of classified packets. An arriving Class-i packet is placed in Buffer-i so long as this does
not result in a buffer overflow. Basically, Class-0 corresponds to the most delay-sensitive packets and
Class-M the least delay-sensitive packets as determined by the flow scheduler. A Class-i packet has a
delay limit τi to be protected by the FSB, where τ0 < τ1 < . . . < τM.

Strict priority queues can be used to differentiate service qualities of multiple classes of traffic.
However, strict priority queues, by itself, cannot protect the throughput or the delay of lower-priority
classes when higher-priority classes present heavy traffic. Furthermore, the relative service level
between traffic classes cannot be quantified or adjusted. The FSB serves its buffers in a strict priority
order as well, but it employs a fractional service algorithm (FSA) to “move” packets between buffers
in a controlled fashion thus achieving delay guarantees. In the FSB, Class-0 has the highest service
priority while Class-M the lowest. Buffer-i earns a unit fractional credit whenever there is a packet
arrival from the flow scheduler at ANY of the higher-priority buffers, i.e., Buffer-0, Buffer-1, . . .
Buffer-(i ´ 1). Once the credit accumulates to one full credit, the packet at the head of Buffer-i is
“moved” to Buffer-(i ´ 1). The credit balance of Buffer-i is then reset to zero. While packet sizes may be
used to determine flow fairness in the flow scheduler, packets of different sizes are treated equally by
the FSB. We will elaborate on how the FSA moves packets between queues such that a lower-priority
class effectively shares a fraction of service with its higher-priority counterpart.

The FSB maintains a credit counter for each buffer except Buffer-0. For every packet arriving
at Buffer-i, each lower-priority buffer, Buffer-(i + k), 1 ď k ď M ´ i, receives a unit fractional credit
of ηi`k = 1/(m(i + k)), regardless of the size of the arriving packet. In other words, Buffer-i receives a
credit 1/(mi) whenever a packet arrives at one of the buffers with a priority higher than i (i.e., Buffer-0,
Buffer-1, . . . , Buffer-(i ´ 1)). The integer m is a configurable parameter used to control the unit
fractional credit. When the credit accumulated by Buffer-i reaches unity, its leading packet is moved to
Buffer-(i ´ 1) and is thus “promoted” to Class-(i ´ 1). A promoted packet is treated equally as any
other newly arriving packets to that class. We note that unit fractional credits always accumulate to
unity with no leftovers. This would avoid credit remainder issues and their associated analytical and



Future Internet 2016, 8, 1 5 of 15

algorithmic complications. Similar to a strict priority queueing system, services are dedicated to a
lower-priority buffer when all the higher-priority buffers are empty.

To illustrate the idea behind unit fractional credits, let us consider the case m = 1. In this case,
Buffer-1 will receive one full credit for every packet arriving at Buffer-0 from the flow scheduler.
Buffer-2 will receive 1/2 of credit for every packet arriving at either Buffer-0 or Buffer-1, from the flow
scheduler. Buffer-3 will receive 1/3 of credit for every packet arriving at Buffer-0, Buffer-1, or Buffer-2,
from the flow scheduler, and so on. This harmonic descending of the fractional credit with respect to
the queue index i is reasonable since the amount of higher-priority traffic included in generating the
credit for Buffer-i increases linearly with i.

The configurable integer m controls the rate of promotion of the lower-priority traffic. It can
be used as a tuning parameter in defining the QoS levels, in terms of delay limits, for the different
traffic classes. A larger m, which implies a slower rate of promotion for lower-priority classes, would
favor higher-priority classes, and vice versa. Since packets in Buffer-1 are promoted to Buffer-0 where
transmission takes place, Buffer-1 in effect receives 1/(m + 1) of bandwidth. For example, in a 3-Buffer
system with m = 1, Buffer-1 effectively receives 50% of bandwidth. It is important to note that Buffer-i
carries not only Class-i packets from the flow scheduler, but packets promoted from lower-priority
buffers. Packets in Buffer-0 (Buffer-1) may consist of packets from Class-1 (Class-2) that were promoted
to Class-0 (Class-1) over time, via the FSA. Similarly, if m = 2, Class-1 and Class-2 packets jointly
receive an effective service share of 1/3. If m = 3, Class-1 and Class-2 packets jointly receive an effective
service share of 1/4, and so on. Thus, a large m damps the effective service share jointly received by
the lower-priority classes thereby increases the delay experienced by these classes. Clearly, when there
are many priority classes, a small m should be used to ensure that the lower-priority classes are not
shut out from service under heavy traffic conditions.

In order to achieve delay guarantee for each class of packets, we impose an upper limit on the
queue length of each buffer. From the perspective of an incoming Class-i packet, the total queue length
from Buffer-0 to Buffer-i affects its delay. Unless these higher-priority buffers become empty along the
process, Class-i packets have to be promoted, one buffer at a time, from Buffer-i to Buffer-0, in order to
receive service. Therefore, instead of constraining the queue lengths of individual buffers, we impose
a threshold Ki on the aggregate queue length of Buffer-0 to Buffer-i. That is, the FSB algorithm prevents
the total number of packets inside the lowest i buffers, denoted by Qi, from exceeding Ki. As such,
a Class-i packet can enter Buffer-i only if it does not result in Qi > Ki.

Thus, a Class-i delay violation occurs when a Class-i packet arrives and finds Qi = Ki. We refer to
this event as a packet overflow. An overflowed packet is no longer protected within the delay limit of
its priority class originally determined by the flow scheduler. Once a packet overflows from Buffer-i to
Buffer-(i + 1), it will be treated as Class-(i + 1) and, thus, receives the delay protection of Class-(i + 1).
If Buffer-(i + 1) has also reached its threshold, the packet will be overflowed to Buffer-(i + 2) and so
on. Figure 2 illustrates the packet management of the FSB for M + 1 buffers. Figure 2a shows that
classified packets from the flow scheduler enter different buffers based on their assigned delay classes.
Figure 2b shows packet movements between adjacent buffers based on the FSA, where a rightward
arrow signifies packet promotion, while a leftward arrow signifies packet overflow. We note that
without buffer capacity thresholds, the FSB becomes strict priority queues when mÑ8.



Future Internet 2016, 8, 1 6 of 15
Future Internet 2016, 8 7 

 

 

(a) 

(b) 

Figure 2. (a) Packets are assigned to different buffers in accordance with their delay 

classification; (b) Packet movements between buffers as directly by the FSA. 

An overflow could occur under two circumstances. To illustrate these scenarios, we label each packet 

with two integers, ij, where i represents the packet’s current service class and j the position of the packet 

within the buffer of its class. As shown in Figure 3, we can logically view the buffers concatenated in 

the order of their priorities. In Figures 4 and 5, we illustrate how the FSB handles these two scenarios 

with a simple pointer management. The FSB maintains a memory pointer for the tail of each buffer. To 

illustrate, we assume m = 1 for a 3-buffer system with thresholds K0 = 6, K1 = 12, K2 = 18 for classes 0, 

1, and 2 respectively. Figure 4 illustrates the first overflow scenario. In Figure 4a, the arriving Packet X 

is classified as Class-1 and is supposed to be admitted to Buffer-1. However, the threshold of Class-1 

has already been reached (i.e., Q1 = K1) at the time. Thus, X has to be overflowed to the tail of Buffer-2 

as shown in Figure 4b and counted as a delay violation. In this case, no service credit is awarded to 

Buffer-2 as a result of X’s arrival because X is not admitted to Buffer-1. Figure 5 illustrates the second 

overflow scenario. In Figure 5a, Packet Y of Class-0 arrives and is assigned to Buffer-0. In this case, the 

threshold of Class-0 has not been reached (i.e., Q0 < K0) and thus Y can be admitted to Buffer-0. However, 

the combined number of packets from Class-0 and Class-1, Q1 will exceed the Class-1 threshold (i.e., 

Q1 > K1) as a result. As shown in Figure 5b one of the Class-1 packets, Packet 18, has to be overflowed 

to the head of Buffer-2 and counted as a delay violation. This is similar to “push-out on threshold” 

policies in buffer management [16]. Certainly, the FSB has to limit the frequency of overflow for each 

class, denoted δi for Class-i, to maintain a meaningful delay QoS for that class. In this latter case, the 

successful insertion of Y grants both Class-1 and Class-2 service credits. Because m = 1, Class-1 and 

Class-2 receive credits of 1 and 1/2 respectively. As a result, Class-1 has sufficient credit to have its 

leading packet promoted to Buffer-0 while Class-2 does not. Since promoting a packet from Buffer-1 to 

Buffer-0 does not change the value of Q1, the promotion can take place even though Q1 is at its threshold 

level Q1 = K1. Figure 5c displays the renumbered packets in the buffers after the arrival, the overflow, 

and the promotion. In particular, Packet Y is now Packet 05, Packet 06 is the promoted Packet 11, and 

Packet 21 is the overflowed Packet 18 in Figure 5b. We note that each buffer in FSB can be implemented 

with a link-list and a promotion is achieved by simply moving the tail pointer of the higher-priority 

buffer by one (packet) to accommodate for the packet promoted from the lower-priority buffer as shown 

in Figure 5c. In this case, pointer to the tail of Class-0 is moved, while pointer to the tail of Class-1 is 

Figure 2. (a) Packets are assigned to different buffers in accordance with their delay classification;
(b) Packet movements between buffers as directly by the FSA.

An overflow could occur under two circumstances. To illustrate these scenarios, we label each
packet with two integers, ij, where i represents the packet’s current service class and j the position
of the packet within the buffer of its class. As shown in Figure 3, we can logically view the buffers
concatenated in the order of their priorities. In Figures 4 and 5 we illustrate how the FSB handles these
two scenarios with a simple pointer management. The FSB maintains a memory pointer for the tail
of each buffer. To illustrate, we assume m = 1 for a 3-buffer system with thresholds K0 = 6, K1 = 12,
K2 = 18 for classes 0, 1, and 2 respectively. Figure 4 illustrates the first overflow scenario. In Figure 4a,
the arriving Packet X is classified as Class-1 and is supposed to be admitted to Buffer-1. However, the
threshold of Class-1 has already been reached (i.e., Q1 = K1) at the time. Thus, X has to be overflowed
to the tail of Buffer-2 as shown in Figure 4b and counted as a delay violation. In this case, no service
credit is awarded to Buffer-2 as a result of X’s arrival because X is not admitted to Buffer-1. Figure 5
illustrates the second overflow scenario. In Figure 5a, Packet Y of Class-0 arrives and is assigned
to Buffer-0. In this case, the threshold of Class-0 has not been reached (i.e., Q0 < K0) and thus Y can
be admitted to Buffer-0. However, the combined number of packets from Class-0 and Class-1, Q1

will exceed the Class-1 threshold (i.e., Q1 > K1) as a result. As shown in Figure 5b one of the Class-1
packets, Packet 18, has to be overflowed to the head of Buffer-2 and counted as a delay violation. This
is similar to “push-out on threshold” policies in buffer management [16]. Certainly, the FSB has to
limit the frequency of overflow for each class, denoted δi for Class-i, to maintain a meaningful delay
QoS for that class. In this latter case, the successful insertion of Y grants both Class-1 and Class-2
service credits. Because m = 1, Class-1 and Class-2 receive credits of 1 and 1/2 respectively. As a result,
Class-1 has sufficient credit to have its leading packet promoted to Buffer-0 while Class-2 does not.
Since promoting a packet from Buffer-1 to Buffer-0 does not change the value of Q1, the promotion
can take place even though Q1 is at its threshold level Q1 = K1. Figure 5c displays the renumbered
packets in the buffers after the arrival, the overflow, and the promotion. In particular, Packet Y is now
Packet 05, Packet 06 is the promoted Packet 11, and Packet 21 is the overflowed Packet 18 in Figure 5b.
We note that each buffer in FSB can be implemented with a link-list and a promotion is achieved by
simply moving the tail pointer of the higher-priority buffer by one (packet) to accommodate for the
packet promoted from the lower-priority buffer as shown in Figure 5c. In this case, pointer to the tail
of Class-0 is moved, while pointer to the tail of Class-1 is not because Class-2 has not earned sufficient
credits. With this pointer management scheme, packets do not have to be physically moved once they
are placed in the buffer memory.



Future Internet 2016, 8, 1 7 of 15

Future Internet 2016, 8 8 

 

 

not because Class-2 has not earned sufficient credits. With this pointer management scheme, packets do 

not have to be physically moved once they are placed in the buffer memory. 

 

Figure 3. Logical concatenation of the buffers. 

 

Figure 4. First scenario of a packet overflow. K0 = 6, K1 = 12, K2 = 18. 

 

Figure 5. Second scenario of a packet overflow. K0 = 6, K1 = 12, K2 = 18. 

Figure 3. Logical concatenation of the buffers.

Future Internet 2016, 8 8 

 

 

not because Class-2 has not earned sufficient credits. With this pointer management scheme, packets do 

not have to be physically moved once they are placed in the buffer memory. 

 

Figure 3. Logical concatenation of the buffers. 

 

Figure 4. First scenario of a packet overflow. K0 = 6, K1 = 12, K2 = 18. 

 

Figure 5. Second scenario of a packet overflow. K0 = 6, K1 = 12, K2 = 18. 

Figure 4. First scenario of a packet overflow. K0 = 6, K1 = 12, K2 = 18.

Future Internet 2016, 8 8 

 

 

not because Class-2 has not earned sufficient credits. With this pointer management scheme, packets do 

not have to be physically moved once they are placed in the buffer memory. 

 

Figure 3. Logical concatenation of the buffers. 

 

Figure 4. First scenario of a packet overflow. K0 = 6, K1 = 12, K2 = 18. 

 

Figure 5. Second scenario of a packet overflow. K0 = 6, K1 = 12, K2 = 18. 
Figure 5. Second scenario of a packet overflow. K0 = 6, K1 = 12, K2 = 18.



Future Internet 2016, 8, 1 8 of 15

4. Performance Analysis

In this section, we perform queueing analysis for the FSB presented in Section 2. Specifically,
we use diffusion approximations and a queue aggregation technique to deduce the probability of
overflow for each delay class under heavy traffic conditions. Our analytical results demonstrate how
the delay limit for each delay class can be enforced by using proper values of FSB parameters: the unit
fractional credit and the buffer capacity. To illustrate our analysis, consider the highest-priority buffer
of a two buffer case: Buffer-0 with threshold K0. Queueing analysis of Buffer-0 is performed under the
assumption that the traffic input rate is sufficiently high.

Packets arriving at Buffer-0 from the flow scheduler are assumed to follow a stationary arrival
pattern with known mean and variance. Under heavy traffic conditions, we are making an approximate
assumption that Buffer-1 always has packets ready to be promoted to Buffer-0 via the FSA. All packet
sizes are assumed to follow the same distribution with known mean and variance. Figure 6 shows
five sequential Class-0 packet arrivals with η1 = 1/2. In this example, every other Class-0 packet arrival
from the flow scheduler is accompanied by a Class-1 packet promoted to Class-0 from Buffer-1. Thus,
the traffic served by Buffer-0 includes Class-0 packets coming straight from the flow scheduler and
promoted packets coming from Buffer-1. Essentially, Buffer-0 is a G/G/1/K0 queueing system where
inter-arrival times should account for Class-0 traffic from the flow scheduler and traffic promoted
from Buffer-1.

Future Internet 2016, 8 9 

 

 

4. Performance Analysis 

In this section, we perform queueing analysis for the FSB presented in Section 2. Specifically, we use 

diffusion approximations and a queue aggregation technique to deduce the probability of overflow for 

each delay class under heavy traffic conditions. Our analytical results demonstrate how the delay limit 

for each delay class can be enforced by using proper values of FSB parameters: the unit fractional credit 

and the buffer capacity. To illustrate our analysis, consider the highest-priority buffer of a two buffer 

case: Buffer-0 with threshold K0. Queueing analysis of Buffer-0 is performed under the assumption that 

the traffic input rate is sufficiently high. 

Packets arriving at Buffer-0 from the flow scheduler are assumed to follow a stationary arrival pattern 

with known mean and variance. Under heavy traffic conditions, we are making an approximate 

assumption that Buffer-1 always has packets ready to be promoted to Buffer-0 via the FSA. All packet 

sizes are assumed to follow the same distribution with known mean and variance. Figure 6 shows five 

sequential Class-0 packet arrivals with η1 = 1/2. In this example, every other Class-0 packet arrival from 

the flow scheduler is accompanied by a Class-1 packet promoted to Class-0 from Buffer-1. Thus, the 

traffic served by Buffer-0 includes Class-0 packets coming straight from the flow scheduler and 

promoted packets coming from Buffer-1. Essentially, Buffer-0 is a G/G/1/K0 queueing system where 

inter-arrival times should account for Class-0 traffic from the flow scheduler and traffic promoted  

from Buffer-1. 

 

Figure 6. An example of packets arriving at Buffer-0 with η1 = 1/2. 

We approximate the occupancy of Buffer-0 as a diffusion process of a G/G/1/K0 queueing system 

where K0 is the buffer threshold for Buffer-0. Diffusion process is often used by researchers to model 

packet schedulers, under heavy load conditions [10], because it leads to closed-form results for the 

behavior of the scheduler. The key notion is, under heavy traffic conditions, the discontinuities in time 

from the arrival and departure processes are much smaller than queueing delay. Thus, these processes 

may be treated as continuous fluid flows, which allow the queue length to be approximated by a diffusion 

process. For finite buffer cases, the overflow probability can be obtained by imposing boundary 

conditions on the diffusion process. A comprehensive survey article [17] compared different diffusion 

approximation techniques and concluded that the diffusion formula by Gelenbe [18] for G/G/1/K queue 

is the most accurate and robust. It solved the diffusion equation with jump boundaries and instantaneous 

returns at 0 and K. 

A diffusion process is characterized by first and second order statistics of the arrival/departure 
processes. Let the mean and the variance of packet inter-arrival time be 2( , )tt  . For a packet of random 

size X bits, the mean and the variance of packet service times are denoted 2 2( / , / )XX C C , where C 

Figure 6. An example of packets arriving at Buffer-0 with η1 = 1/2.

We approximate the occupancy of Buffer-0 as a diffusion process of a G/G/1/K0 queueing system
where K0 is the buffer threshold for Buffer-0. Diffusion process is often used by researchers to model
packet schedulers, under heavy load conditions [10], because it leads to closed-form results for the
behavior of the scheduler. The key notion is, under heavy traffic conditions, the discontinuities in
time from the arrival and departure processes are much smaller than queueing delay. Thus, these
processes may be treated as continuous fluid flows, which allow the queue length to be approximated
by a diffusion process. For finite buffer cases, the overflow probability can be obtained by imposing
boundary conditions on the diffusion process. A comprehensive survey article [17] compared different
diffusion approximation techniques and concluded that the diffusion formula by Gelenbe [18] for
G/G/1/K queue is the most accurate and robust. It solved the diffusion equation with jump boundaries
and instantaneous returns at 0 and K.

A diffusion process is characterized by first and second order statistics of the arrival/departure
processes. Let the mean and the variance of packet inter-arrival time be p t, σ2

t q. For a packet of
random size X bits, the mean and the variance of packet service times are denoted pX{C , σ2

X{C
2 q,

where C represents the service rate in bits/s. Then the probability of the diffusion process touching the
boundary K, denoted δ, is given by [18]:

δ “ βp1´ ρqexppγpK´ 1qq (1)

where:
ρ “ X{pCtq (2)



Future Internet 2016, 8, 1 9 of 15

γ “ ´2p1´ ρq{pρσ2
t {t

2
` σ2

X{X
2
q (3)

and:
β “ ρp1´ ρ2exppγpK´ 1qqq

´1
(4)

Let the mean and the variance of packet inter-arrival time for Buffer-0 from the flow scheduler
be p t0, σ2

t0
q. Also, assume that Buffer-1 has an unlimited supply of packets to be promoted.

Since Buffer-0 has to deal with packets from the flow scheduler and packets promoted from Buffer-1,
we define the effective packet inter-arrival time, t0*, as the time interval between two successive packets
entering Buffer-0, regardless of the packets’ origins. Then, it is readily shown that the mean and the
variance of t0* are:

pt0˚,σ2
t0˚q “

ˆ

t0

p1` η1q
,

ˆ

1´
η1

1` η1

˙2
σ2

t0
`

η1
1` η1

t0

˙

(5)

Under the assumption that the packet arrival process remains stationary, we can substitute
Equation (5) into Equations (1)–(4) to obtain δ0, the probability that Buffer-0 is at its threshold K0

when a new Class-0 packet arrives. This is the probability of delay limit violation for Class-0 and
it depends on the effective load of Buffer-0, ρ˚

0 “ X{pCt0
˚
q. For m = 2, a two-buffer system (M = 1)

with exponentially distributed inter-arrival time and exponentially distributed service time, Figure 7
shows the simulation result for δ0 as a function of ρ˚

0 almost coincides with our result based on
diffusion approximations.

Future Internet 2016, 8 10 

 

 

represents the service rate in bits/s. Then the probability of the diffusion process touching the boundary 

K, denoted δ, is given by [18]: 

(1 ) exp( ( 1))K       (1)

where: 

/ ( )X Ct   (2)

22 2 22(1 ) / ( / / )t Xt X       (3)

and: 
2 1(1 exp( ( 1)))K        (4)

Let the mean and the variance of packet inter-arrival time for Buffer-0 from the flow scheduler be 

0

2
0( , )tt  . Also, assume that Buffer-1 has an unlimited supply of packets to be promoted. Since Buffer-0 

has to deal with packets from the flow scheduler and packets promoted from Buffer-1, we define the effective 

packet inter-arrival time, t0*, as the time interval between two successive packets entering Buffer-0, 

regardless of the packets’ origins. Then, it is readily shown that the mean and the variance of t0* are: 

0 0

2

2 20 1 1
0 * 0

1 1 1

( *, ) , 1
(1 ) 1 1t t

t
t t

               
 (5)

Under the assumption that the packet arrival process remains stationary, we can substitute Equation (5) 

into Equations (1)–(4) to obtain δ0, the probability that Buffer-0 is at its threshold K0 when a new Class-

0 packet arrives. This is the probability of delay limit violation for Class-0 and it depends on the effective 

load of Buffer-0, 
**

00 / ( )X C t  . For m = 2, a two-buffer system (M = 1) with exponentially 

distributed inter-arrival time and exponentially distributed service time, Figure 7 shows the simulation 

result for δ0 as a function of *
0  almost coincides with our result based on diffusion approximations. 

 

Figure 7. Analytical versus simulation results: probability of overflow for Buffer-0 versus 

its load (2 Buffers, and m = 2). 

Figure 7. Analytical versus simulation results: probability of overflow for Buffer-0 versus its load
(2 Buffers, and m = 2).

This analytical method can be readily extended to M + 1 buffers, with M > 1. Again, we assume
the traffic is heavy and each buffer, except Buffer-0, has traffic ready to be promoted. For each i, we
define Li as the aggregate of packet queues formed in the i + 1 highest-priority buffers (i.e., Buffer-0,
Buffer-1, . . . , Buffer-i), and Hi the aggregate of packet queues formed in the M-i lowest-priority buffers
(i.e., Buffer-(i + 1), Buffer-(i + 2), . . . , Buffer-M). Figure 8 shows the aggregate queues L2 and H2 for
an M = 4 system (5 buffers). The analytical result for the two-buffer case can then be applied to the
two aggregate buffers, Li and Hi.



Future Internet 2016, 8, 1 10 of 15

Future Internet 2016, 8 11 

 

 

This analytical method can be readily extended to M + 1 buffers, with M > 1. Again, we assume the 

traffic is heavy and each buffer, except Buffer-0, has traffic ready to be promoted. For each i, we define 

Li as the aggregate of packet queues formed in the i + 1 highest-priority buffers (i.e., Buffer-0,  

Buffer-1, …, Buffer-i), and Hi the aggregate of packet queues formed in the M-i lowest-priority buffers 

(i.e., Buffer-(i + 1), Buffer-(i + 2), …, Buffer-M). Figure 8 shows the aggregate queues L2 and H2 for an 

M = 4 system (5 buffers). The analytical result for the two-buffer case can then be applied to the two 

aggregate buffers, Li and Hi. 

 

Figure 8. Buffer aggregation for M = 4. 

That is, we may treat Li as a G/G/1/Ki queueing system whose blocking probability corresponds to 

the probability of overflow for Class-i. From the conservation law of priority queues [10], the distribution 

of the number of packets in the system is invariant to the order of service, as long as the scheduling 

discipline selects packets independent of their service times. Since the FSB is packet-size-neutral,  

work-conserving, and no packets are dropped inside Li, we can apply the conservation law to the lower 

aggregate buffer Li and use the diffusion result of G/G/1/Ki to find the probability of Qi = Ki when a new 

packet arrives at Li. Interested reader may refer to Reference [10] for a more comprehensive description 

on the conservation law of priority queues for modeling queueing system. 

Let λi denote the packet arrival rate at Buffer-i from the flow scheduler. The aggregate packet arrival 

rate for Li coming from the flow scheduler is given by: 

0
1/

i

i k ik
t


     (6)

Then, under the assumption that Hi is never empty, the effective inter-arrival time for Li is given by: 

2

2 21 1

1 1 1

( *, *) , 1
(1 ) 1 1i i

i i i
i t t i

i i i

t
t t 

  

               
 (7)

where: 

))1(/(11  imi  (8)

By substituting Equation (7) into Equations (1)–(4), we can obtain δi, the probability of overflow for 

Class-i packets. Finally, we may obtain the overall packet blocking probability PB of the system by 

observing that all M buffers can be aggregated to a single buffer LM and represented by a G/G/1/KM 

queue such that PB = δM. 

Figure 8. Buffer aggregation for M = 4.

That is, we may treat Li as a G/G/1/Ki queueing system whose blocking probability corresponds
to the probability of overflow for Class-i. From the conservation law of priority queues [10],
the distribution of the number of packets in the system is invariant to the order of service, as long as
the scheduling discipline selects packets independent of their service times. Since the FSB is
packet-size-neutral, work-conserving, and no packets are dropped inside Li, we can apply the
conservation law to the lower aggregate buffer Li and use the diffusion result of G/G/1/Ki to find the
probability of Qi = Ki when a new packet arrives at Li. Interested reader may refer to Reference [10]
for a more comprehensive description on the conservation law of priority queues for modeling
queueing system.

Let λi denote the packet arrival rate at Buffer-i from the flow scheduler. The aggregate packet
arrival rate for Li coming from the flow scheduler is given by:

Λi “
ÿ

i
k“0λk ” 1{ti (6)

Then, under the assumption that Hi is never empty, the effective inter-arrival time for Li is
given by:

pti˚,σ2
ti
˚q “

˜

ti
p1` ηi`1q

,
ˆ

1´
ηi`1

1` ηi`1

˙2
σ2

ti
`

ηi`1
1` ηi`1

ti

¸

(7)

where:
ηi`1 “ 1{pmpi` 1qq (8)

By substituting Equation (7) into Equations (1)–(4), we can obtain δi, the probability of overflow
for Class-i packets. Finally, we may obtain the overall packet blocking probability PB of the system by
observing that all M buffers can be aggregated to a single buffer LM and represented by a G/G/1/KM
queue such that PB = δM.

The FSA allows each delay class, except Class-0, to advance, thus receiving a delay guarantee.
Specifically, the worst case delay τi, for a Class-i packet that is not overflowed, can be expressed
iteratively as a function of the maximum packet size from every class, Xmax, and the buffer
thresholds Kis:

τi “
XmaxpKi ´ Ki´1q

pηi{p1` ηiqqC
` τi´1, 1 ď i ď M (9)

and:
τ0 “

XmaxK0

C
(10)

Finally, define the normalized system load to be:

ρM “ ΛMX{C (11)



Future Internet 2016, 8, 1 11 of 15

The throughput of the whole system can be written as:

S “ ρMp1´ PBq (12)

5. Simulation

In Section 3, we used diffusion approximations to reach analytical results describing the
probability of overflow associated with each class. OPNET simulations were used to validate these
results. We note that extensive studies have been done [10,17] on the diffusion approximation with
various arrival time and service time distributions. For simplicity, our simulation assumed relative
small buffer sizes and exponential distributions for both packet sizes and inter-arrival times. Note
that our analytical results are applicable to any buffer sizes with any stationary inter-arrival time
and service time distributions. In particular, we consider a five-buffer system with five traffic classes.
For m = 1, we set λi = λ, 0ď iď 4, and vary λ to study the loading effect on each buffer. The assumption
that every buffer, except Buffer-0, always has traffic to be promoted, does not hold in the simulations
but is expected to be sufficient under heavy traffic loads. Figure 9 compares our analytical results with
the simulation results: they track each other very closely in terms of the probabilities of overflow. These
probabilities of overflow do not exhibit any particular trend across different classes. The approximation
appears to be slightly less accurate on higher-priority classes; this may be because the effective load of
the aggregate lower buffers Li increases with i and the fact that our analytical result is based on heavy
traffic assumptions. Therefore, for small is, our result yields a conservative approximation to the actual
probabilities of overflow; the actual probabilities of overflow are expected to be slightly lower than
our approximations.Future Internet 2016, 8 13 

 

 

 

Figure 9. Probabilities of overflow versus normalized system loads. X is truncated exponential 

with a maximum size four times the mean, K0 = 10, K1 = 20, K3 = 30, K3 = 40, K4 = 50. 

6. Discussion 

Our two-stage architecture basically separates throughput protection and delay protection into two 

different modules. The interactions between the stages are summarized by the traffic statistics of packets 

entering the queueing engine and the engine’s key parameters m and Ki. The analytical results from 

Equations (1)–(4), (7), and (9) showed the relationships between the worst-case delay, the delay limit 

violation probability, and the key parameters m and Ki of the queueing engine. By tuning these 

parameters, the protections offered to each delay class can be altered. 

Recall that Ki is the limit on the aggregate queue length of Li. Supposing that we set these thresholds 

to be multiples of K0, i.e., K1 = 2K0, K2 = 3K0… That is, for each additional service class, we increase 

the buffer capacity by a constant amount K0. In this setup, one may expect the worst-case delays of these 

classes to scale linearly as the priority decreases. However, this is not the case. Figure 10 plots worst-case 

delay against priority level, which shows that the increase in delay is faster than a linear rate. This is 

because the rate of promotion worsens as i increases and for lower-priority buffers (larger i), effects of 

slower promotion rates compound. This phenomenon is best observed in Equation (9): the difference of 

the worst-case delays between two adjacent priority classes, τi − τi−1, has a denominator that decreases 

faster than a linear rate as i increases. For example, when m = 1, the denominators of τi − τi−1 are  

η1/(1 + η1) = 0.5, η2/(1 + η2) = 1/3, and η3/(1 + η3) = 1/4, for i = 1,2,3, respectively, while the numerators 

remain constant with respect to i. 

Figure 9. Probabilities of overflow versus normalized system loads. X is truncated exponential with a
maximum size four times the mean, K0 = 10, K1 = 20, K3 = 30, K3 = 40, K4 = 50.

6. Discussion

Our two-stage architecture basically separates throughput protection and delay protection into
two different modules. The interactions between the stages are summarized by the traffic statistics of
packets entering the queueing engine and the engine’s key parameters m and Ki. The analytical results
from Equations (1)–(4), (7), and (9) showed the relationships between the worst-case delay, the delay
limit violation probability, and the key parameters m and Ki of the queueing engine. By tuning these
parameters, the protections offered to each delay class can be altered.



Future Internet 2016, 8, 1 12 of 15

Recall that Ki is the limit on the aggregate queue length of Li. Supposing that we set these
thresholds to be multiples of K0, i.e., K1 = 2K0, K2 = 3K0 . . . That is, for each additional service class,
we increase the buffer capacity by a constant amount K0. In this setup, one may expect the worst-case
delays of these classes to scale linearly as the priority decreases. However, this is not the case. Figure 10
plots worst-case delay against priority level, which shows that the increase in delay is faster than
a linear rate. This is because the rate of promotion worsens as i increases and for lower-priority
buffers (larger i), effects of slower promotion rates compound. This phenomenon is best observed in
Equation (9): the difference of the worst-case delays between two adjacent priority classes, τi ´ τi´1,
has a denominator that decreases faster than a linear rate as i increases. For example, when m = 1, the
denominators of τi ´ τi´1 are η1/(1 + η1) = 0.5, η2/(1 + η2) = 1/3, and η3/(1 + η3) = 1/4, for i = 1, 2, 3,
respectively, while the numerators remain constant with respect to i.Future Internet 2016, 8 14 

 

 

 

Figure 10. Worst-case delays for buffers when M = 4 and m = 1, 2, …, 5. 

Changing parameter m affects the rate of promotion and thus the worst-case delay. It can be used to 

tune the relative service quality level, in terms of packet delays, received by the delay classes, a concept 

similar to delay-ratios used in [8]. A large m favors higher-priority classes because with a slower 

promotion rate, the worst-case delays for lower-priority classes would worsen. Figure 10 plots worst-case 

delays of all the buffers for several values of m. Note that a larger m gives a steeper decrease in the rate 

of promotion and results in an increasing gap between the curves as priority level increases (i.e., delay 

limit worsens). A small m should be used when there are many traffic classes to prevent starvation of 

lower-priority classes. 

In this paper, we have imposed a unit fraction ηi = 1/(mi) upon the rate at which Buffer-i can promote 

its packets. Although this has simplified the analysis and implementation of the FSB considerably, it has 

also greatly limited its configurability, since a single parameter m controls all the unit fractions ηi. 

Without such a unit fraction restriction, the values of ηi can be set and tuned individually in order to 

yield more flexible performance tradeoffs between delay classes. Under this general approach, to lower 

the worst-case for the ith class, one can choose to either increase ηi or decrease Ki. From the iterative 

relationship of the worst-case delay, Equation (9), lowering the threshold Ki will naturally lower the 

delays of all classes i and above. By lowering Ki, the buffer capacity for accommodating packets from 

the ith class will also be lowered thus leading to a higher delay violation probability for the ith class. 

Increasing ηi will also lower the worst-case delay of all classes i and above. However, by increasing ηi, 

we are increasing the service share dedicated to the lower-priority buffers. Thus, even though worst-case 

delays for higher-priority buffers will not be affected by a larger ηi, their probabilities of delay limit 

violation will be higher. Basically, favoring some classes inevitably affects the other classes. The tradeoff 

is determined by the setting of Ki and ηi. 

The worst-case delay for the ith class occurs only if all buffers of equal or higher priority are fully 

occupied, and all packets in these buffers are of the maximum size. Naturally, this is a pessimistic upper 

bound for the delay. Figure 11 plots worst-case delays and the 95-percentiles of packet delays for the  

5-buffer case when m = 1. Packet sizes are assumed to follow a truncated exponential distribution with 

a maximum packet size four times the mean packet size. As can be seen in the graph, worst-case delays, 

marked by asterisks, are well above their 95-percentiles, marked by circles. Furthermore, the differences 

Figure 10. Worst-case delays for buffers when M = 4 and m = 1, 2, . . . , 5.

Changing parameter m affects the rate of promotion and thus the worst-case delay. It can be
used to tune the relative service quality level, in terms of packet delays, received by the delay classes,
a concept similar to delay-ratios used in [8]. A large m favors higher-priority classes because with
a slower promotion rate, the worst-case delays for lower-priority classes would worsen. Figure 10
plots worst-case delays of all the buffers for several values of m. Note that a larger m gives a steeper
decrease in the rate of promotion and results in an increasing gap between the curves as priority level
increases (i.e., delay limit worsens). A small m should be used when there are many traffic classes to
prevent starvation of lower-priority classes.

In this paper, we have imposed a unit fraction ηi = 1/(mi) upon the rate at which Buffer-i
can promote its packets. Although this has simplified the analysis and implementation of the FSB
considerably, it has also greatly limited its configurability, since a single parameter m controls all
the unit fractions ηi. Without such a unit fraction restriction, the values of ηi can be set and tuned
individually in order to yield more flexible performance tradeoffs between delay classes. Under this
general approach, to lower the worst-case for the ith class, one can choose to either increase ηi or
decrease Ki. From the iterative relationship of the worst-case delay, Equation (9), lowering the threshold
Ki will naturally lower the delays of all classes i and above. By lowering Ki, the buffer capacity for
accommodating packets from the ith class will also be lowered thus leading to a higher delay violation
probability for the ith class. Increasing ηi will also lower the worst-case delay of all classes i and above.
However, by increasing ηi, we are increasing the service share dedicated to the lower-priority buffers.
Thus, even though worst-case delays for higher-priority buffers will not be affected by a larger ηi, their



Future Internet 2016, 8, 1 13 of 15

probabilities of delay limit violation will be higher. Basically, favoring some classes inevitably affects
the other classes. The tradeoff is determined by the setting of Ki and ηi.

The worst-case delay for the ith class occurs only if all buffers of equal or higher priority are fully
occupied, and all packets in these buffers are of the maximum size. Naturally, this is a pessimistic
upper bound for the delay. Figure 11 plots worst-case delays and the 95-percentiles of packet delays for
the 5-buffer case when m = 1. Packet sizes are assumed to follow a truncated exponential distribution
with a maximum packet size four times the mean packet size. As can be seen in the graph, worst-case
delays, marked by asterisks, are well above their 95-percentiles, marked by circles. Furthermore,
the differences between mean packet delays, plotted in dotted line, and worse-case delays are larger
for lower priority traffic. This might be caused by the pessimistic assumption that all lower buffers
are fully and continuously occupied to reach the worst case. Overall, Figure 11 demonstrates that the
majority of packets are protected within their delay-limits promised by the queueing engine.

Future Internet 2016, 8 15 

 

 

between mean packet delays, plotted in dotted line, and worse-case delays are larger for lower priority 

traffic. This might be caused by the pessimistic assumption that all lower buffers are fully and 

continuously occupied to reach the worst case. Overall, Figure 11 demonstrates that the majority of 

packets are protected within their delay-limits promised by the queueing engine. 

 

Figure 11. Delays for a system with M = 4 and m = 1. 

7. Designing Fractional Service Buffer 

In the previous section, we showed that, given the values of Ki (i.e., thresholds for the queue length 

of each Li) and m, the delay limit and the probability for delay limit violation for each class could be 

determined. When designing a packet scheduler, however, a common objective is to set the buffer size 

for each delay class such that a pre-determined delay limit for that class can be achieved. In the following, 

we illustrate how to utilize our analytical results to achieve this design objective. 

We consider a case with M = 4, where each Class-i has a delay limit of (i + 1)D. That is, the delay 

limit increases with i such that Class-0 has a delay limit of D, Class-1 a delay limit of 2D, Class-2 a 

delay limit of 3D, and so on. For simplicity, we assume that the packet sizes are fixed and are equal for 

all classes and let Xmax denote the fixed packet size. By letting each τi − τi−1 = D in  

Equations (9) and (10), each Ki can be expressed as: 

max
0 X

DC
K   (13)

1
max

/ (1 )i i
i i

DC
K K

X 

 
  , Mi 1  (14)

The above equations associate each Ki with the delay limits. However, Kis and delay limits are 

meaningless without being accompanied by the probabilities of delay-limit violation (i.e., δi), which can 

be determined given the packet-arrival statistics. For simplicity, let the packet inter-arrival time for each 

Buffer-i be exponentially distributed with a mean of 1/λ (i.e., λi = λ for all 0 ≤ i ≤ M). We use a numeric 

example to illustrate the relationships between D, Ki, and δi, where the numeric values used in this 

example are summarized in Table 1. Note that 4max50 7.5 10
X

D
C

   , which is equal to the time 

Figure 11. Delays for a system with M = 4 and m = 1.

7. Designing Fractional Service Buffer

In the previous section, we showed that, given the values of Ki (i.e., thresholds for the queue
length of each Li) and m, the delay limit and the probability for delay limit violation for each class
could be determined. When designing a packet scheduler, however, a common objective is to set the
buffer size for each delay class such that a pre-determined delay limit for that class can be achieved.
In the following, we illustrate how to utilize our analytical results to achieve this design objective.

We consider a case with M = 4, where each Class-i has a delay limit of (i + 1)D. That is, the delay
limit increases with i such that Class-0 has a delay limit of D, Class-1 a delay limit of 2D, Class-2 a
delay limit of 3D, and so on. For simplicity, we assume that the packet sizes are fixed and are equal
for all classes and let Xmax denote the fixed packet size. By letting each τi ´ τi´1 = D in Equations (9)
and (10), each Ki can be expressed as:

K0 “
DC

Xmax
(13)

Ki “
ηi{p1` ηiqDC

Xmax
` Ki´1, 1 ď i ď M (14)

The above equations associate each Ki with the delay limits. However, Kis and delay limits are
meaningless without being accompanied by the probabilities of delay-limit violation (i.e., δi), which
can be determined given the packet-arrival statistics. For simplicity, let the packet inter-arrival time
for each Buffer-i be exponentially distributed with a mean of 1/λ (i.e., λi = λ for all 0 ď i ď M). We
use a numeric example to illustrate the relationships between D, Ki, and δi, where the numeric values



Future Internet 2016, 8, 1 14 of 15

used in this example are summarized in Table 1. Note that D “ 50
Xmax

C
“ 7.5ˆ 10´ 4, which is equal

to the time required for serving 50 packets of size Xmax = 1500. This results in K0 = 50. Additionally,

note that λ is chosen such that the system has a normalized load of 1 (i.e., ρM “
pM` 1qλXmax

C
“ 1).

This means that ρ0 “
λXmax

C
“ 0.2, ρ1 “

2λXmax

C
“ 0.4, and so on. As such, Buffer-0 can store up to

50 Class-0 packets but only has ρ0 “ 0.2 of traffic load. Clearly, Class-0 traffic has ample storage space
for storing packets and will have a very small probability of delay limit violation, δ0, regardless of the
unit fraction, η1 = 1/m, chosen for packet promotion from Buffer-1 to Buffer-0. This excessive storage
space is shared with lower-priority classes, thus allowing these classes to enjoy low probabilities of
delay limit violation as well. Table 1 illustrates the Ki required for achieving the delay limits when
m = 1 and when m = 2. For m = 1, Ki ´ Ki´1 decreases as i increases. In other words, the dedicated
buffer space for Class-i packets under congestion (i.e., Ki ´ Ki´1) is small when Class-i has low priority.
This is because as i increases, ηi decreases harmonically while the delay limit increases linearly. The
linear increase on the delay limit requires that each Class-i packet be promoted in D seconds, for any
Class-i with 1 ď i ďM. However, the harmonic descent on ηi implies that a Class-i packet is promoted
slower than that of a Class-(i´1) packet. That is, as the promotion rate of packets becomes slower
when i increases, the limit on the time for a packet promotion remains unchanged. As a result, the
dedicated buffer space for Class-i decreases as i increases. This phenomenon is even more apparent for
m = 2, which results in a lower ηi for each Class-i when compared with the m = 1 case. Table 1 also
summarizes the probabilities of delay limit violation, where the higher-priority classes have very small
probabilities of delay limit violation as expected. Even for Class-4 traffic, which has the lowest priority,
its delay limit can be protected with a fairly high probability, when m = 1 and m = 2.

Table 1. Parameters for the Fractional Service Buffer (FSB) design example, and comparison on the
Size of aggregated lower buffers (Ki) vs. probabilities of delay limit violation (δi).

D (s) C (bps) Xmax (bits) λ

7.5 ˆ 10´4 1.00 ˆ 108 1500 1.33 ˆ 105

m = 1
Class Ki δi

0 50 1.26 ˆ 10´22

1 75 7.17 ˆ 10´26

2 91 4.72 ˆ 10´15

3 104 9.50 ˆ 10´3

4 114 8.70 ˆ 10´3

m = 2
Class Ki δi

0 50 2.97 ˆ 10´60

1 66 7.37 ˆ 10´48

2 76 1.19 ˆ 10´26

3 83 1.81 ˆ 10´9

4 89 1.11 ˆ 10´3

8. Conclusions

We have developed a packet queueing engine that queues packets of different delay classes using
a fixed number of buffers and a service discipline that strives to deliver a packet delay guarantee to
each class. The service discipline serves the buffers in a strict priority order while using a specially
designed algorithm to advance packets in lower-priority buffers to higher priority buffers over time.
We showed how the tiered delay guarantees can be achieved and how the probabilities of delay
limit violation can be analyzed. In particular, we employed diffusion approximations and a queue
aggregation technique to derive closed-form relationships between the delay limit and the probability



Future Internet 2016, 8, 1 15 of 15

of delay limit violation for each class and the key parameters of the queueing engine. These analytical
results can be used to tune the parameters in order to achieve a desired performance objective or
a desired tiered delay service objective. The simulation results demonstrated the accuracy of our
analytical results. When coupled with a proper flow scheduler such as a token bucket algorithm,
the presented packet queueing engine—the FSB—may be configured to yield a comprehensive QoS
packet scheduling solution.

Author Contributions: Chang and Lee conceived and designed the algorithm; Chang performed the simulation;
Chang and Lee analyzed the data and wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guo, C. SRR: An O(1) time complexity packet scheduler for flows in multi-service packet networks.
IEEE/ACM Trans. Netw. 2004, 12, 1144–1155. [CrossRef]

2. Jiwasurat, S.; Kesidis, G.; Miller, D. Hierarchical shaped Deficit Round-Robin scheduling. In Proceedings of
the IEEE Global Telecommunications Conference, St. Louis, MO, USA, 28 November–2 December 2005.

3. Kanhere, S.; Sethu, H.; Parekh, A. Fair and efficient packet scheduling using elastic round robin. IEEE Trans.
Parallel Distrib. Syst. 2002, 13, 324–336. [CrossRef]

4. Shreedhar, M.; Varghese, G. Efficient fair queuing using deficit round-robin. IEEE/ACM Trans. Netw. 1996, 4,
375–385. [CrossRef]

5. Ramabhadran, S.; Pasquale, J. Stratified Round Robin: A low complexity packet scheduler with bandwidth
fairness and bounded delay. In Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Karlsruhe, Germany, 25–29 August 2003.

6. Zhang, H.; Ferrari, D. Rate-Controlled Static-Priority Queueing. In Proceedings of the Twelfth Annual
Joint Conference of the IEEE Computer and Communications Societies, San Francisco, CA, USA,
28 March–1 April 1993.

7. McKenney, P. Stochastic fairness queueing. J. Internetworking Res. Exp. 1991, 2, 113–131.
8. Dovrolis, C.; Stiliadis, D.; Ramanathan, P. Proportional Differentiated Services: Delay Differentiation and Packet

Scheduling; ACM: New York, NY, USA, 1999.
9. Parekh, A.K.; Gallager, R.G. A generalized Processor Sharing Approach to Flow Control in Integrated

Services Networks: The Single-Node Case. IEEE/ACM Trans. Netw. 1993, 1, 344–357. [CrossRef]
10. Kleinrock, L. Queuing Systems, Volume II: Computer Applications; Wiley-Interscience: Hoboken, NJ, USA, 1976.
11. Zhou, X.; Ippoliti, D.; Zhang, L. Fair bandwidth sharing and delay differentiation: Joint packet scheduling

with buffer management. Comput. Commun. 2008, 31, 4072–4080. [CrossRef]
12. Lim, Y.; Kobza, J. Analysis of a delay-dependent priority discipline in an integrated multiclass traffic fast

packet switch. IEEE Trans. Commun. 1990, 38, 659–665. [CrossRef]
13. Maertens, T.; Walraevens, J.; Bruneel, H. Performance comparison of several priority schemes with priority

jumps. Ann. Oper. Res. 2008, 162, 109–125. [CrossRef]
14. Zhang, H. Service disciplines for guaranteed performance service in packet-switching networks. IEEE Proc.

1995, 83, 1374–1396. [CrossRef]
15. Avrachenkov, K.; Ayesta, U.; Brown, P.; Nyberg, E. Differentiation between short and long tcp flows:

Predictability of the response time. In Proceedings of the Twenty-Third AnnualJoint Conference of the IEEE
Computer and Communications Societies, Hong Kong, China, 7–11 March 2004.

16. Cidon, I.; Georgiadis, L.; Guerin, R.; Khamisy, A. Optimal Buffer Sharing. IEEE J. Sel. Areas Commun. 1995,
13, 1229–1240. [CrossRef]

17. Springer, M.; Makens, P. Queueing models for performance analysis: Selection of single station models.
Eur. J. Oper. Res. 1992, 58, 123–145. [CrossRef]

18. Gelenbe, E. On approximate computer system models. J. ACM 1975, 22, 261–263. [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TNET.2004.838601
http://dx.doi.org/10.1109/71.993210
http://dx.doi.org/10.1109/90.502236
http://dx.doi.org/10.1109/90.234856
http://dx.doi.org/10.1016/j.comcom.2008.08.007
http://dx.doi.org/10.1109/26.54979
http://dx.doi.org/10.1007/s10479-008-0314-5
http://dx.doi.org/10.1109/5.469298
http://dx.doi.org/10.1109/49.414642
http://dx.doi.org/10.1016/0377-2217(92)90241-Z
http://dx.doi.org/10.1145/321879.321888

	Introduction 
	Related Works 
	Fractional Service Buffers 
	Performance Analysis 
	Simulation 
	Discussion 
	Designing Fractional Service Buffer 
	Conclusions 

