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Abstract: An attractive advantage of mobile networks is that their users can gain easy
access to different services. In some cases, equivalent services could be fulfilled by
different providers, which brings the question of how to rationally select the best provider
among all possibilities. In this paper, we investigate an answer to this question from both
quality-of-service (QoS) and energy perspectives by formulating an optimisation problem.
We illustrate the theoretical results with examples from experimental measurements of the
resulting energy and performance.
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1. Energy and QoS

The power consumption of mobile services will depend on the load. Clearly quality of service (QoS)
will also depend on load because a more heavily loaded computational or communication resource will
quite naturally increase response times. However such issues are somewhat more complex, because the
server clusters hosting the services may turn off some of the resources under lighter loads, so that when
load is higher although power consumption will obviously increase, QoS can also improve.

A simple but quite realistic power consumption relation for current processing units is Π = A + Bρ,
where A is the power consumption of the processing unit when it is idle, and B is the rate at which
it increases as a function of the load factor ρ [1]. Thus, a very efficient processor might have a very
small value of A, and B would correspond to the rate of increase in power consumption as more and
more cores are turned on as the load increases. Unfortunately, for much of the current equipment A is
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still a significant part of the total processor power consumption. This includes the fact that the memory
system and the peripheral equipment and network connections need to be powered even when no jobs
are being processed, and that the operating system can remain active (and hence contributes to the energy
consumption) even when there are no external jobs that need to be processed. We can also obtain the
expression for the energy consumption per job:

Ejob =
A

λ
+BE[S] (1)

where λ is the average arrival rate of jobs andE[S] is the average job service time. The equation supports
the principle of concentrating computation on a small number of processing units in order to minimise
the power consumption per job.

However just power consumption on its own is not the only important fact: quality of service
(QoS) is also primordial. In [1] we discuss how we can achieve optimum energy consumption to QoS
trade-offs by adjusting system load in the context of a computing cloud. In this paper we discuss the
much broader question: suppose that a mobile community could access services from both a local server
within the operator provider (the “local server”) and from remote service providers (“remote server”),
then what fraction of their workload should they send remotely if they wish to optimise both QoS and
energy consumption.

Of course, the decision to use a remote service will depend on a variety of considerations based on
security, cost, data and software protection and resilience. Nevertheless, there will also be technical
considerations based on QoS and energy consumption per job. Thus this paper only focuses on the
technical choice between a local or remote cluster service, and shows that this choice can be formulated
as an optimisation problem. In the sequel, we first review the literature, and then provide some
experimental measurements regarding the energy consumption and performance of servers. Next we
formulate the optimisation problem, describe its solution and present some numerical examples.

1.1. Optimising Energy and QoS

A simple analytic model that uses the combined energy–QoS cost function includes in its first part the
well known Pollaczek–Khintchine formula [2,3] for the average response time, based on Poisson arrivals
of jobs and general service time distributions, and in its second part the energy consumption per job:

Cjob = aE[S][1 +
ρ(1 + C2

S)

2(1 − ρ)
] + b

A

λ
+ bBE[S] (2)

where E[S] is the average job service time as before; C2
S is the squared coefficient of variation of service

time; λ is the job arrival rate; and the constants a and b describe the relative importance placed on QoS
and energy consumption. This allows us to compute the value of the arrival rate that minimises Cjob.
The result shows that the optimum setting of the load ρ∗ = λ∗E[S] will depend on A (the idle power
consumption) and on the ratio b/a:

ρ∗ =

√
2bA

a(1 + C2
S)

(
1 +

√
2bA

a(1 + C2
S)

)−1

(3)
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The expression (3) gives us a simple rule of thumb for selecting system load for optimum operation,
depending on how we weigh the importance of energy consumption with respect to average response
time or how fast we are getting the jobs done. We also see that ρ∗ increases with the ratio bA/a(1 +C2

S).
This tells us that the optimum load should increase with the system’s idle power consumption, the relative
importance that we place on energy, and with the squared coefficient of variation of service time.

2. Mathematical Model of Energy and Quality of Service at the Local and Remote Cluster

The local cluster (LC) is assumed to incorporate a rack of L processors and related peripheral devices,
with a power profile:

ΠL = AL + L.BLρL (4)

where:

• AL is the local power consumption related to the internal networking and shared memory systems
(main a secondary) plus their induced cooling and ventilation costs;

• BL is the workload proportional power consumption, including cooling, per processor in the LC
rack, and

• ρL is the individual utilisation (percentage of time it is busy) of each of the L processors in the
local rack.

The local computational workload is represented by a flow of λL jobs per second, each of which on
average takes SL of processing time, and jobs are equally distributed to the L processors, so that:

ρL =
λLSL

L
(5)

As a result, the total expenditure of energy per job in the LC is the ratio of power consumption to total
job arrival rate, or:

EL =
AL

λL
+BLSL (6)

If the average response timeW (F, λ) is a function of job arrival rate λ and job service time distribution
F , we will have:

WL = W (FL,
λL
L

) (7)

2.1. The Remote Cluster Model

Similarly, the remote cluster (RC) is assumed to incorporate a rack of R processors and related
peripheral devices, with a simplified power profile given by the expression:

ΠR = AR +R.BRρR (8)

where:

• AR is the power consumption in the RC related to the internal networking and shared memory
systems (main and secondary) plus the power consumption for cooling and ventilation;
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• BR is the workload proportional power consumption, including cooling, per processor in the RC
rack; and

• ρR is the individual utilisation (percentage of time it is busy) of each of the R processors in the
RC rack.

The computational workload in the RC is represented by a flow of λR jobs per second, each of which
on average takes SR of processing time, and jobs are equally distributed to the R processors, so that:

ρR =
λRSR

R
(9)

As a result, the total expenditure of energy per job in the RC is the ratio of power consumption to the
total job arrival rate, or:

ER =
AR

λR
+BRSR (10)

Assuming the same average response time formula W (F, λ), function of job arrival rate and job
service time distribution, we have:

WR = W (FR,
λR
R

) (11)

3. Transferring a Fraction α of Jobs to the Remote Cluster

When the user decides to transfer some fraction α of its jobs to the remote cluster, and assuming that
the RC has another load of jobs arriving at rate λ, we obtain that the net average response time perceived
by the users who emanate from the LC is:

WU = αWR(FR, λ+ αλL) + (1 − α)WL(FL, (1 − α)λL) (12)

where we have assumed that additional network delays between the users and the two clusters are
equivalent since the users need not be “resident” in the facility that hosts the LC.

Under the assumption that each of the two clusters shares its load equally among its processors, that
the RC processors are f times faster than the LC processors, and that all job arrival traffic is Poisson, we
can use the well known Pollaczek–Khintchine formula [4] to estimate the average response time per job
as a function of the load dispatching policy characterised by the fraction α of jobs that are sent to the
RC. We have:

WR =
E[S]

f
[1 +

ρR(1 + C2
S)

2(1 − ρR)
] (13)

ρR =
[λ+ αλL]E[S]

fR

and

WL =
E[S]

f
[1 +

ρR(1 + C2
S)

2(1 − ρL)
] (14)

ρL =
(1 − α)λLE[S]

L
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The composite cost function that includes both the energy consumption per job and the average
response time then becomes:

C = b[αER + (1 − α)EL] + aWU (15)

where a and b are the relative importance of response time versus energy.

4. Experimental Results

To validate the main findings of this work, we have conducted a series of experiments using a
representative number of computing machines. In particular, we have used six computers (R = 6)
in the “remote cluster” and three similar computers (L = 3) for our “local cluster”. The computers were
selected from a set of dual core Pentium 4 and quad-core Intel Xeon computers, all of them running
Ubuntu Linux with CPU throttling enabled. Job requests were originated from an additional machine
connected through a Fast Ethernet switch to both clusters.

A job consisted in calculating the number π, using Machin’s formula, to a desired level of precision
and in sending the resulting string back to the client over the network. Each job request indicated the
desired number of digits to be used, which was randomly chosen in the range 10,000–50,000 by the
client. In addition to generating requests periodically (exponentially spaced, at rate λ), the client also
determined the cluster that handled the request as is illustrated in Figure 1. With probability α a request
was sent to the remote cluster and with (1 − α) to the local cluster.

Figure 1. Experimental system.
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A round-robin scheduler (“RR” in Figure 1) was implemented in each of the clusters, so that each
newly arriving job is assigned and placed in the input queue of the next machine in the list regardless of
the machine’s load. This in effect results in an equal distribution of the incoming flow of jobs to each of
the machines in the cluster, with a separate queue being created at each machine in the cluster, and is
reflected in the way in which we construct the mathematical model in Section 2.

Because of the differences in both number and kind of machines in the two clusters, the job service
times varied as shown in Figures 2. The service time in the local cluster was on average 9.6119 and in
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the remote cluster 9.5256, giving a speed-up factor of f = 1.0091 with corresponding coefficients of
variation of 0.5103 and 0.6413.

Figure 2. Normalized histograms of service times. (a) Local cluster; (b) Remote cluster.
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The power consumption of both clusters is shown in Figure 3 [5]. From observations of power
consumption and system utilization, it was possible to approximate parameters AL = 223.0062,
BL = 9.9302, AR = 413.2667 and BR = 11.5130 using linear regression. Note that the linear
regressions were applied to each model’s operational region, which depends on the number of processors
available: 6 and 3 processors respectively for the remote and local clusters. Power measurements beyond
the model’s validity regions are shown for illustration purposes only.

Clearly, the remote cluster has a higher power consumption because of the larger number of machines
available to service jobs.

Figure 3. Power consumption of both the local and remote cluster.
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By recording the start and completion times for each job at the client, we were able to measure the
average job response time. We conducted the experiment by using only one of the clusters at the time
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(i.e., by fixing α = 0, and later α = 1). The results for each independent cluster are shown in Figure 4
alongside the theoretical values. The reported values were obtained by averaging the measurements
corresponding to 1000 jobs. The saturation rate for the local cluster was at around λ = 0.3 and about
twice as large for the remote cluster, which makes sense given the relative sizes of the clusters.

Figure 4. Job response time for the local (α = 0) and remote cluster (α = 1).
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Similarly, we recorded the power consumption while executing the jobs along with the total execution
time for each job set, which allowed us to estimate the energy consumption per job (see Figure 5).

Figure 5. Experimental and theoretical values for the energy per job.
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As shown in Figures 4 and 5, the theoretical model approximated well the measured values within the
operational range (i.e., when not exceeding the systems’ capacity). These models allowed us to obtain
energy–QoS costs (Equation 15) for different values of α as shown in Figure 6. The choice of parameters
a = 0.1 and b = 1.0 was made to approximately normalize (to 10) the varying range of the response
time and energy per job. The former gets around 100 s close to full system utilization, whereas the latter
was around 10 KJ for low system utilization.
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Figure 6. Energy–QoS cost vs. job arrival rate λ.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

6

7

8

9

10
a=0.1 b=1.0

Job Arrival Rate: λ (job/s)

E
ne

rg
y−

Q
oS

 C
os

t

 

 

Theoretical: α=0.2
Measured: α=0.2
Theoretical: α=0.5
Measured: α=0.5
Theoretical: α=0.8
Measured: α=0.8

It is interesting to observe the values of α that minimize the overall system cost. These are graphically
illustrated in Figure 7 for the cases a = 0.1, b = 1.0 (left), and a = b = 1.0 (right). The choice of a
and b would in the end depend on the importance that we would like to give to both Energy and QoS.
However, these two sets of values will serve us to illustrate the behaviour of the Energy–QoS cost. The
horizontal axis depicts values of α in the range 0 to 1. As previously explained, when α = 0, all the load
is sent to the local cluster. At α = 1 all load is sent to the remote cluster. The load is shared between the
two clusters for values of α between these two extremes. The figures show that the choice of a and b can
affect the cost of the load sharing, as well as the operating point (i.e., the value of λ).

Figure 7. Energy–QoS cost vs. α. (a) a = 0.1 and b = 1.0; (b) a = b = 1.0.
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4.1. Related Work

Although we have not been able to find work that has discussed the issue that is at the centre of this
paper, there has indeed been much work on power aspects of servers and clusters. Most works have
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focused on power consumption models offering the advantage of simplicity, but also lack accuracy as
suggested by Rivoire et al. [6] who examined five full-system representative power models in a recent
study. The most common direction is the single-parameter black-box approach, finding relationships
between a server’s load (normally CPU utilization) and power consumption from measured data. For
example, linear regression models have been used by Sasaki et al. [7] in web server clusters and
Lewis [8] et al. in server blades. Fan et al. [9] obtained measurements of the power consumption of
warehouse-sized computers (computer for large-scale Internet services), Li et al. [10] did a similar work
on web servers also running on blade systems, and Economou et al proposed a modeling methodology
for a full-system power consumption [11]. Similar works have been done by Chu et al. [12], Jaiantilal
et al. [13], Yuan and Ahmad [14]. However, these models tend to be accurate only within certain
operational regions as suggested by Lien et al. [15]. Bolla et al [16] investigated the impact in energy
consumption and network performance of using low power idle and power scaling in network devices.
The simultaneous minimization of a composite energy–QoS function in networks has previously been
studied in [17], while other work has considered the dynamically flow of energy so as to support “On
Demand” the energy needs of Cloud Computing [18,19].

A direct application of these models is in power saving techniques. A comprehensive survey of
green networking research was compiled by Bianzino et al. [20]. Another survey on the power and
energy management in servers was done by Bianchini and Rajamony [21]. Some relevant examples of
power optimization techniques are the works of Sankar et al. [22] on metric composition energy-delay,
Chase et al. [23], who proposed an economic approach to server resource management. Rodero et al.
researched application-aware power management looking at individual components [24]. A popular
approach to reduce power usage is by switching off unused equipment as done by Chen et al. [25] and
Niyato et al. [26]. A control mechanism to adjust the peak power of a high density server was suggested
by Lefurgy et al. [27] by means of a feedback controller.

5. Conclusions

In this paper, we have studied the optimum load sharing between a local and remote cluster service as
a function of a compromise between perceived average response time and energy consumption per job
accessed from a mobile. This requires that the average and variance of job service times, average job
arrival rates, and the power consumption parameters of the servers involved are effectively measured.
We have also provided experimental measurements of these quantities for a test case. Yet much still can
be done in this broad area, and some interesting questions that we would like to address include:

• Considering an organisation of servers as a set of specialised service facilities, with multiple
specialised units, what are the energy–QoS trade-offs and operating points in such a system?

• With multiple types and distinct steps within jobs themselves, what are the best job allocation [28]
strategies for each job type?

• If jobs have synchronisation constraints as in distributed databases [29], how does this affect the
energy–QoS trade-off?
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• If we wish to simultaneously evaluate multiple QoS and energy criteria [30,31], such as peak
power consumption, energy consumption, turn-around times, and throughput, how can we design
task allocation and routing algorithms?

• When sub-systems can be turned on and off creating further start-up delays [32] and energy costs,
how can we now address the optimum operating point of each sub-system in an interconnected
network of servers?
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