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Abstract: Regulations in the Building Industry are becoming increasingly complex and 

involve more than one technical area, covering products, components and project 

implementations. They also play an important role in ensuring the quality of a building, 

and to minimize its environmental impact. Control or conformance checking are becoming 

more complex every day, not only for industrials, but also for organizations charged with 

assessing the conformity of new products or processes. This paper will detail the approach 

taken by the CSTB (Centre Scientifique et Technique du Bâtiment) in order to simplify this 

conformance control task. The approach and the proposed solutions are based on semantic 

web technologies. For this purpose, we first establish a domain-ontology, which defines the 

main concepts involved and the relationships, including one based on OWL (Web 

Ontology Language) [1]. We rely on SBVR (Semantics of Business Vocabulary and 

Business Rules) [2] and SPARQL (SPARQL Protocol and RDF Query Language) [3] to 

reformulate the regulatory requirements written in natural language, respectively, in a 

controlled and formal language. We then structure our control process based on expert 

practices. Each elementary control step is defined as a SPARQL query and assembled into 

complex control processes “on demand”, according to the component tested and its semantic 
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definition. Finally, we represent in RDF (Resource Description Framework) [4] the association 

between the SBVR rules and SPARQL queries representing the same regulatory constraints. 

Keywords: ontology; semantic web; knowledge management; building industry;  

e-regulations; assisted checking; rule based system 

 

1. Introduction 

Regulations in the Building Industry are becoming increasingly complex and involve more than one 

technical area, covering products, components and project implementations. They also play an 

important role in ensuring the quality of a building, and minimizing its environmental impact. As a 

consequence of this complexity; checking the conformity of a new product against the existing 

regulations is becoming more complex for industrials every day. In this general context, the research 

communities of the Knowledge Engineering and Semantic Web play a key role in providing models 

and techniques to simplify access to technical regulatory information, facilitate its appropriation, and 

support professionals in its implementation. 

In this article, we address the different issues linked to compliancy, checking specifically the 

production of Technical Advice (so-called “ATec” in French). An ATec is a document containing 

technical information on the usability of a product, material, component of construction or even an 

innovative process of construction. However, this new product or new process must comply with 

existing regulatory documents. ATec was chosen as a study model for this project because CSTB has 

the mastership and a wide experience in these types of technical documents. We were able to lead 

interviews on the CSTB site of Sophia-Antipolis with experts directly involved in the drafting of these 

ATec in the field of photovoltaic panels. 

2. Selected Regulatory Documents 

2.1. Importance and Difficulties Linked to Regulations 

The regulations are written and applied by humans and are therefore vulnerable to human error. 

They can at times be incomplete, contradictory, or arbitrarily complex. This has at least one direct 

consequence in the present scope. If we want to automate the verification process of compliancy of a 

new product, the textual knowledge and the corresponding constraints contained in these documents 

have to be translated (and transformed) into rules understandable by machines and, thus processable. 

2.2. The Technical Guides 

In this paper, we will illustrate our approach by not considering direct standards or regulatory 

documents, but Technical Guides (TG). These TGs are documents edited by the CSTB that explain 

regulatory documents; they do not replace the regulations. The TGs are a complement to the regulatory 

documents, offering the industrials easier reading and understanding of the technical rules of 

construction. Also, they collect detailed executions featuring a wide range of situations. The TGs are 
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also the documents of reference that help verify the validity of the technical information provided by 

the manufacturers. All of the structural and dimensional variables for the validation of a product are 

encompassed within the TGs. Our goal is to formalize the knowledge they contain as constraints 

database, exploitable by knowledge-based systems. 

We use the TG “The tile roofs” issued by CSTB as a study model. This guide of 107 pages outlines 

the different types of tiles and their characteristics. It defines their status of implementation and 

verification of various criteria, such as slope tiles, support or climatology of their place of installation. 

Monitoring these instructions is of utmost importance because non-conformance with a requirement 

leads to a negative on the Technical Assessment Technical Paper. 

According to the TG “The tile roofs”, we were able to identify nine different types of tile, with 

different intrinsic characteristics. Each tile has a manufacturing area and a shape, an implementation 

that depends on the slope and support, and raises an attachment.  

The regulatory constraints existing in these TGs are used to decide whether the procedures used by 

manufacturers meet their obligations.  

2.3. The Technical Advice (ATec) 

As already introduced in the first chapter, an ATec corresponds to an innovative product or process 

and it mainly contains a technical description (made by industrial wanting to promote its new product 

or process). The structure of an ATec is always the same and it consists of three parts:  

• An overview and identification of the assessment, which could be considered as an 

administrative part. 

• The technical assessment itself, formulated by a group of experts from CSTB. Basically, only 

two options are possible in this section. It should be answered clearly if the element or process 

described is acceptable or not. 

• The technical document (TD) of the product or process which must be delivered in the 

technical assessment. Fulfilling this part is devoted to the industrial who wants to promote an 

innovative product or process. For several reasons, this is the most difficult part that requires 

efforts from the industrial and time from CSTBs’ experts. 

Therefore, we are particularly interested in assisting the creation of the TD. 

An ATec is drafted at the request of an industrial. The industrial sends a request to the relevant 

department within the CSTB and in return, the CSTB sends back a template of the TD to the industrial. 

It is a Word document which contains chapters, text and instructions. This template is supposed to be 

self-sufficient but it is apparent that industrials fail to properly prepare the template in order to create a 

good TD. A dialogue between CSTB and the applicant is therefore necessary before reaching an 

acceptable version of the TD. As a direct consequence, this leads to a long casework, which takes 

approximately 6 to 8 months and requires an effort from both sides that must be reduced to a minimum. 

3. Modeling Technical Documents 

The regulations as well as the TD are written in a flat textual format that is understandable. The 

corner stone of our approach is to develop a common framework allowing structured and semantically 
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rich representations of regulation contents and product or process structures. After reviewing various 

studies related to technical regulations and after having interviewed experts involved in the elaboration 

of ATec, we defined a generic process for the verification of the TD. This process is a formalization of 

practices followed by CSTBs’ experts. In the continuation of the work performed at CSTB [5], about 

ontology building and conformity checking of construction projects [6], we propose to model the 

process of elaborating the TD using an ontology-based approach. 

We represent the regulatory constraints using the above mentioned ontology as the source for a 

controlled vocabulary and we defined a methodology to transform the rules expressed from natural 

language (which is the case for regulation) to semi-formal language (SBVR) and to a formal language 

(SPARQL). This part will be explained in Section 4 of the current article. 

3.1. The OntoDT Ontology 

In order to disambiguate the semantic attached to the terms; we defined an ontology of the 

considered domain. We defined an ontology, so-called “OntoDT”, to represent both the structure of the 

TD but also the vocabulary used in the considered technical field. 

We have studied the TDs issued by a group within CSTB that is responsible for validating the ATec 

concerning photovoltaic panels. The OntoDT ontology contains an exhaustive list of terms from the 

photovoltaic domain merged with the other terms extracted from a thesaurus developed by CSTB for 

the building industry which is called the REEF [7]. 

We developed a model for tiles based on information collected from a dedicated Technical Guide 

named “The tile roofs”. Each tile is represented in concept and integrated into our ontology, OntoDT. 

The ontology includes all the semantics reflecting structural and dimensional criteria of a tile; the 

criteria are represented by properties. 

As a result, our ontology has 138 classes and 48 properties formalized in the OWL Lite language; 

35% of these classes are created from REEF terms. The remaining 65% are concepts more specific 

than those of the REEF thesaurus, which contains general concepts of the building industry. In its 

current state, it lacks specific terms relative to a particular field (Photovoltaic). However, it remains in 

constant evolution. 

3.2. Modeling the Technical Document 

We use our ontology, OntoDT, to model the semantics conveyed by the TD into a formal 

interpretable knowledge. We translated the template of the TD to a set of forms interconnected to each 

other. The product to be described is decomposed into a set of sub elements called “components”. 

These components are identified in the OntoDT and thus linked by semantic relationships to other 

components. These relationships will guide the concatenation of the corresponding forms. In other 

words, in an application developed on this basis, the user will be guided in the process according to the 

information entered in the forms. The way the forms follow on from each other is determined by the 

ontology and by data entered by the user. 

For example, a PV glass polymer module (a component) is part of a PV panel (the product). This 

glass polymer module is composed of several elements: polymer film, photovoltaic cell, etc. (elements). 
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To model this composition, each concept representing a component, an element or a product is 
defined by an axiom. Axioms are used in the definition of an ontological class, they are of the A ⊆  B 

form, where A is a primitive concept (Product) and B description composed concept. For instance, 

(Figure 1) provides the definition of the class PolymerGlass in the OWL language: it is a subclass of 

the class PVPanel and of a class defined as the intersection of the classes of the instances having 

components of classElectricCable, Frame, PVCell, etc. 

Figure 1. Example of owl code used to define a concept. 

 

We have described the interdependencies between the different concepts modeling the interactions 

or interdependencies between parts of PV modules. These have a number of intrinsic characteristics 

(length, weight, manufacturer, etc.) represented in our modeling by properties attached to the 

corresponding concepts. 

Once the industrial fills in the form relative to a concept with all the elements relative to its 

definition, they are stored in an RDF annotation file. By doing so, we acquire an interoperable 

representation of a TD, reusable in other systems. The use of the RDF model will allow us to later to 

check the conformity of the TD with the standards of the photovoltaic domain. 

3.3. Modeling the Process of Writing a Technical Document 

The question which now arises is how to model the process itself of completing the TD, in order to 

produce a dynamic sequence of forms to fill in. The dynamicity of the forms depends on the way 

<owl:Class rdf:about="#PolymerGlass"> 

  <rdfs:subClassOf rdf:resource="#PVPanel"/> 

  <rdfs:subClassOf> 

     <owl:Class> 

      <owl:intersectionOf rdf:parseType="Collection"> 

         <owl:Restriction> 

            <owl:onProperty rdf:resource="#hasComponent"/> 

            <!-- ElectricCable --> 

            <owl:someValuesFrom rdf:resource="&Reef;#01573"/> 

         </owl:Restriction> 

         <owl:Restriction> 

            <owl:onProperty rdf:resource="#hasComponent"/> 

            <!-- Frame --> 

            <owl:someValuesFrom rdf:resource="&Reef;#01593"/> 

         </owl:Restriction> 

               ... 

      </owl:intersectionOf> 

     </owl:Class> 

   </rdfs:subClassOf> 

</owl:Class> 
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previous forms are filled out; we want to adjust to the information provided without requiring the 

industrial to complete irrelevant parts of the TD. 

Our approach is to initially ask for high-level information (name the type of product, etc.) then 

browse the explicit dependency rules in the ontology to seek all information required for a product. 

From the information provided by the industrial, the domain ontology is used to determine the next 

iteration. The industrial will have to, in an initial form, choose a product among all those concerned 

with the photovoltaic field. Using this information, based on our ontology, we determine the list of 

components used in its manufacture and we offer a list of corresponding forms. 

The dynamics of the sequence of forms relies upon a SPARQL query pattern presented in (Figure 2) 

which we initiate to query the ontology to determine the next form. More precisely, by using this query 

template, we query a product on its composition by questioning its definition. The concepts involved in 

its definition are returned by the query and necessitate more information that must be provided by the 

industrial through entry forms generated on the fly. The chaining of forms thus depends on the query 

results: each form corresponds to one or more elements of the result.  

Figure 2. Extract of the SPARQL query pattern. 

 

For example, the query below searches the ontology on the definition of the concept 

“PolymerGlass”. First, this query pattern checks if the component contains one or several elements 

(rdfs:subClassOf, owl:intersectionOf). Second, it iterates all the elements corresponding to the 

nomenclature of the component (rdf:rest*/rdf:first). Third, it returns all the elements as results 

(owl:someValuesFrom). 

 

The result is that “PolymerGlass” is a module which has as components a “Frame”, a “PVCell”, etc. 

Result: [Frame, PVCell, PolymereFilm, InnerGlass…] 

SELECT ?Component WHERE{ 

?x rdfs:subClassOf ?y 

FILTER( ?x=dt:PolymerGlass) 

?y owl:intersectionOf ?z 

?z rdf:rest*/rdf:first ?f  

?f owl:onProperty ?p 

?f owl:someValuesFrom ?Component 

SELECT ?Component WHERE{ 

?x rdfs:subClassOf ?y 

FILTER( ?x=dt:Component-Name) 

?y owl:intersectionOf ?z 

?z rdf:rest*/rdf:first ?f 

?f owl:onProperty ?p 

?f owl:someValuesFrom ?Component} 
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At each step of the process of writing a TD, we display a form to the industrial for entering 

information related to a concept belonging to the result of such a query. If this concept is already 

defined, the same query template is initiated with a new query in order to provide the industrial  

with new forms matching the components involved in the definition of the current concept. The same 

query pattern is recursively instantiated until reaching terminal concepts, i.e., primitive concepts (with  

no definition). 

As a result, the industrial browses our ontology to complete all components of its product by filling 

out the forms provided; only relevant questionnaires are displayed. 

3.4. Generation of Structured Annotations 

To validate our approach, we developed a tool to assist the production of TD. This application has 

been developed in J2EE. It conforms to the three-tier architecture. The first third consists of a web 

page on the client side (GUI) that supports various forms to fill in by the industrial. The second third 

on server side is a SERVLET [8] containing a business code that interacts with the GUI part and the 

business part. It is connected to the KGRAM [9] semantic engine to query the ontological knowledge 

that represents the TD and generates the RDF model of the filled TD. The last third is relative to the 

data. It includes the ontology of the TD and information of the product stored as RDF annotations. 

Our tool provides the industrials with a rich and interactive interface based on a sequence of forms. 

All along the drafting process, the industrial is guided in his choices by the OntoDT ontology and the 

system adapts and goes through the ontology to seek progressively more specific information. These 

sequences of forms are orchestrated through SPARQL queries that run on the ontology. 

At the end of the sequence of forms, two files are generated: a human readable file containing the 

information filled in by the industrial, and a semantic description of the document in RDF. This will be 

exploited to help in writing the technical assessments itself, by automatically checking the conformity 

of the information in the TD with the regulatory texts of the domain. 

4. Modeling Business Rules 

Within the vast field of regulatory modeling, one standard fits our problem particularly well. 

Focussing on the transformation of regulatory documents [10–12], this standard is the SBVR standard. 

SBVR stands for “Semantics of Business Vocabulary and Business Rules”. It is an Object 

Management Group (OMG) [13] standard whose ultimate objective is to provide a meta-model that 

allows establishing data exchange interfaces for tools that create, organize, analyze and use 

vocabularies and business rules [14–15]. The SBVR meta-model facilitates the validation, analysis, 

alignment, and fusion of business rules for different tools of different constructors. The development 

of an SBVR base is done in two steps: the development of a business vocabulary and the writing of 

business rules based on the terms and concepts defined in the vocabulary. 

SBVR controlled vocabularies consist of hierarchies of concepts specific to a certain domain, their 

relationships, definitions and synonyms. SBVR rules are based upon the Predicate Logic: they capture 

the “what” of business rules, rather than the “how”, in other words the semantics of business rules, not 

the way they must be executed. SBVR is not an executable formalism; it is particularly addressed to 
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business experts. It uses a controlled natural language that all business experts understand. It does not 

have a specific rule format.  

In this paper, our SBVR examples are presented following the SBVR-based Structured English [14], 

using several font styles: 

• Term: the “term” font is used to represent object types, concepts, (e.g., PolymerGlass, 

PVCell, Module). 

• Verbs: the “verb” font is used to represent a verb, a preposition, or a combination of these two 

(e.g., PolymerGlass is a module).  

• Keyword: the “keyword” font is used for linguistic symbols used to construct statements. 

These keywords are combined with terms and verbs to create the rules (e.g., each module has 

at least a PolymereFilm). 

4.1. Transforming Standards into SBVR Rules 

There are various approaches to detect whether a sentence may describe a business rule [16]. 

However, technical standards can be understood in different ways that is why the manual intervention 

of a domain expert is essential. We argue that Natural Language Processing (NLP) approaches of 

knowledge extraction from regulatory texts can significantly alleviate the task of domain experts but 

cannot replace them. In our work, we do not consider linguistic analysis of texts but focus on the 

representation of expert knowledge. CSTB experts helped us to identify and classify the constraints 

expressed in the photovoltaic standards and then the rules which represent them. The goal of this 

categorization is to determine the levels of interoperability of each sentence or paragraph of the 

standards and classify it. 

Also, despite the intervention of a domain expert to identify the meaning of the constraints, some of 

them remain non-interpretable. These types of constraints contain information that is too ambiguous 

and impossible to formalize. 

Once these texts are identified, a step of disambiguation is necessary. The transformation of texts 

into SBVR rules will provide a normative, unambiguous and reusable source. 

The extraction of rules from standards or statutory text is a tedious job; it often requires structuring 

the information. The descriptions used in our work have been detailed enough to show how the content 

of standards can be converted into SBVR vocabulary and business rules. However, a clarification of 

the text was needed before the transformation into SBVR. The steps below are necessary in order to 

produce an understandable SBVR text: 

4.1.1. Extraction of Conformance Rules from Table 

Let us start with the following Technical Guide table (Figure 3): 
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Figure 3. Extract of Technical Guide (TG) “The tile roofs”. 

  

The presented page above, extracted from the Technical Guide “The tile roofs” is a typical example 

of the difficulties that can be encountered when translating information expressed in natural language 

to explicit and processable assertions. The example above contains a table with different information 

relative to the installation of tiles with their dimensional and structural properties. The first column 

shows different applicable slopes. In each row, we can see for a specific slope, roof covering, and area 

of installation. There are three different so-called “climatic zones” in France (From Zone I to Zone III, 

mainly based on the average temperature over a year). Each of these zones is divided into three sub 

categories according to the local situation of the concerned roof. It depends if the roof is exposed or 

not to the wind or the rain (“protected”/“normal”/“exposed”). 

To transform these constraints into SBVR rules we process them in two steps: 

First, we transform the information in rows into textual constraint. Example, from the first row we 

can extract the information below:  

The applicable tiles slope for a roof covering greater than 8 cm, built in zone 1, in a protected 

situation is equal to 70%. 

The second step is to rewrite this text into SBVR rules by using the ontology of TDs, the text will 

read as follows: 
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• If the tile has a slope equal to 70% then it is obligatory that the implementation is in Zone 

1, in a protected situation with a roof covering greater than 8 cm. 

The concepts identified in this fragment are Slope, Zone1 and protected, which belong to the 

ontology of TD. 

4.1.2. Reformulation 

Let us consider the following regulatory text: 

The dimension of the main frame must be: 

• Width: (847 ± 5) mm. 

• Height :(1910 ± 5) mm. 

This standard extract expresses conditions that are difficult to read by non-expert readers. It needs a 

reformulation to be understood: “The maximum width of a main frame must be lower or equal to  

853 mm and the minimum width higher or equal to 842mm. The maximum height of a main frame 

must be lower or equal to 1915 mm and the minimum height greater than or equal to 1905 mm”. 

• If a frame has a minimum width higher or equal to 842mm and has a minimum height 

higher or equal to 1905mm and has a maximum width less than or equal to 853mm and 

has a maximum height less than or equal to 1915mm, then it is a main frame 

4.2. Transformation SBVR 

Our SBVR rules are Operative Business Rules with “If-then” syntax. These kinds of rules can be 

transformed into systems rules, automated execution of business processes and allow checking how 

business activities are conducted. 

However, the TG’s constraints are specific to a relevant situation of a constraint to check. Our goal 

is to check the conformance of TDs according to constraints expressed in the Technical Guide. 

So, we built a new RDF annotation (Figure 4) based on abstract language (Section 5.1).  

Figure 4. The RDF annotations of if-then SBVR rules. 

 

<rdf:RDF > 

                        <Test> 

    <if> 

          <Antecedent> 

                                           </if> 

                              <then> 

         <Consequent> 

                             </then> 

                       <Test> 

                        … 

</rdf:RDF> 
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For a specific condition, it allows executing a relevant action using queries representing the 

Antecedent (which is in the “If” part of the query) and Consequent (which is expressed in the “Then” 

part of the query, or the action to be performed if the Antecedent is verified). 

We represented the Antecedent and Consequent part with SPARQL “ASK” queries, this query 

model determines if there is a matched triple between the query and the RDF annotation of the TD. 

“ASK” query returns “TRUE” for positive response and “FALSE” if there is no match. Using this 

RDF annotation allowed us to automate a part of the process of conformance check. 

4.3. Representation of Regulatory Constraints in SPARQL 

We aim to model the way experts use CSTB guides and try to automate their know-how. It forces 

us to follow their interpretation and to establish a formal representation of regulations. SBVR describes 

the concepts and requirements regardless of their implementation. We chose to represent constraints 

into “ASK” SPARQL queries. This formalization allows the automation of the conformance of a 

document against these constraints (see Figure 5). 

Figure 5. Transforming SBVR into SPARQL queries 

 

To perform a transformation of SBVR rules into SPARQL queries we followed a number of defined 

steps and used a controlled-vocabulary, in our case we used OntoDT.  

As an example the following SBVR rules: 

• If the tile has a slope equal to 70% then it is obligatory that the implementation is in Zone 1, 

in protected situation with a roof covering greater than 8 cm 

Step 1: We decompose the SBVR rule into a set of single sentences in order to decompose the 

different constraints expressed. So we can identify the antecedent and the consequent of our “if-then” 

rules as follows (Table 1): 
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Table 1. Decomposing SBVR rules into Antecedent and Consequent. 

Rules parts English 

Antecedent 
The tile has a slope 

The slope equal to 70% 

Consequent 

The tile has an implementation 

It is obligatory that implementation is in an area 

The area types is Zone1 

The implementation has a situation 

The situation types is protected 

The implementation has a roof covering greater than 8 cm 

Step 2: We transform, into triple pattern, each formulation expressed in the antecedent and 

consequence. We used all concepts and properties of OntoDT (Table 2). 

Table 2. Transforming SBVR rules into SPARQL triple pattern. 

SBVR SPARQL Triple pattern 

The tile has a slope 
The slope equal to 70% 

minus { 
?tile dt:hasSlope  ?slope 
FILTER (xsd:integer(?slope) != 70) 
} 

The tile has an implementation ?tile dt:hasImplementation ?implementation 

It is obligatory that implementation is in an area ?implementation dt:hasZone ?area 

The area types is Zone1 ?area rdf:type dt:Zone1 

The implementation has a situation ?implementation dt:hasSituation ?situation 

The situation types is protected ?situation rdf:type dt:Protégé 

The implementation has a roof covering greater 
than 8 cm 

?situation1 dt:hasRecovery r1 
FILTER (xsd:integer(?r1)>=8) 

Step 3: We build the SPARQL queries (Figures 6,7): 

Figure 6. SPARQL query of the antecedent (Example 1). 

 
  

PREFIX dt:<http://www.semanticweb.org/DossierTechniqueProtegeV.owl#> 

ASK 

{ 

?tile dt:hasImplementation ?implementation 

minus { 

?implementation dt:hasSlope ?slope 

FILTER (xsd:integer(?slope) != 70) 

} 

} 
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Figure 7. SPARQL query of the consequent (Example 1). 

 

Step 4: Construction of the RDF annotation of the SBVR (Figure 8). 

Figure 8. RDF annotation of the SBVR (Example 1) 

 

5. Modeling of the Verification Process of Regulatory Constraints 

5.1. Process Model 

We proceeded with interviewing our experts, who are responsible for managing ATec in order to 

capture their knowledge and then to propose a process model representing the way they work. Our 

model enables building an RDF description of the sequence of constraint verifications performed to 

control a given TD.  

<rdf:RDF > 

              ... 

                                  <Test> 

      <if> 

          <Query rdf:about="&OntoDT; #P70"/> 

                                            </if> 

                                <then> 

          <Query rdf:about="&OntoDT; #Check70"/> 

                               </then> 

                                        </Test> 

   ... 

</rdf:RDF> 

PREFIX dt:<http://www.semanticweb.org/DossierTechniqueProtegeV.owl#> 

ASK 

{ 

?tile dt:hasImplementation ?implementation  

 

?implementation  dt:hasZone ?zone 

?zone rdf:type dt:Zone1 

 

?zone dt:hasSituation ?situation 

?situation rdf:type dt:Proteger 

 

?situation dt:hasRecovery ?r1 

FILTER (xsd:integer(?r1)>=8)  

} 
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The RDFS schema of our model comprises four properties: body, if, then and or else, and eight 

classes: Pipeline, Pipe, Load, Query, Rule, RuleBase, Test and And, among which the class Pipeline 

models a process definition and the class Pipe models a call for a process. The execution of queries 

(Query) or rules (Rule, RuleBase) can be conditional (Test) and a process description can recursively 

call for other processes (Pipe), including itself. This recursive feature is used in the modeling of 

complex processes calling for one or several elementary processes.  

The abstract syntax of a process is defined by the following grammar: 

 

We have developed a process engine based on the KGRAM semantic engine [9] with the following 

principle: it analyses a process definition represented in our model and dynamically constructs and 

executes a sequence of SPARQL queries or rules. It thus enables supervision, coordination and 

sequential execution a set of queries and rules. The process management relies on a set of predefined 

SPARQL queries such as the one presented in (Figure 9), dedicated to the management of the body of a 

process, which enables listing all the components of a process and their types: 

Figure 9. A SPARQL query template to interpret a process RDF representation. 

 

For instance, let us consider the validation process which RDF representation is presented in 

(Figure 10). Once this RDF data is loaded, our process engine executes the above query template 

(Figure 9) the resource of class Pipeline is identified and the resources denoting sub-processes 

involved in its definition are listed. Each of these sub-processes is recursively handled in order to 

identify the operations to be performed. Note that we do not use the whole process model since our 

process representations do not involve rules: in our case, the only basic operations are queries.  
  

SELECT * WHERE {  

?p rdf:type kg:Pipeline  

{ 

?p kg:body ?q  

?q rdf:type ?t  

minus {?q rdf:type rdf:List}  

}  

UNION  

{?p kg:body ?a  

?a rdf:rest*/rdf:first ?q  

?q rdf:type ?t }} 

Pipeline  ::= EXP +  

EXP       ::= Load(Name) | Query(Name) 

             | Test(Query(Name), Exp, Exp) 

             | Rule(Name) | RuleBase(Name) 

             | And(Exp +) | Pipe(Name)
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Figure 10. Extract of the RDF representation of a verification process 

 

Let us detail the handling of such a RDF description. The process engine interprets a resource of 

type Load (line 4) by loading the RDF description of a TD (located at the URI in argument) whose 

validity is to be checked. It interprets a resource of type Query (line 7) by loading the SPARQL query 

located at the URI and executing it on the loaded RDF description of a TD.  

A resource of type Test (line 5) calls for the instantiation and execution of the query template 

presented in (Figure 11) which enables identifying the value of the “if, then” and “or else” properties 

and their types. The process engine then first executes the ASK query denoted by the value of the “if” 

property and, depending on a TRUE or a FALSE answer, it recursively interprets the RDF description of 

the process denoted by the value of the “then” property or by the value of the “or else” property, if any. 

Figure 11. A SPARQL query template for identifying conditional sub-processes. 

 

5.2. Elementary and Complex Processes 

We distinguish between elementary and complex processes. A process is said to be elementary if it 

consists in the verification of the attributes of a component described in a TD which is denoted in our 

ontology by an atomic class. A process is said to be complex if it is associated to a component defined 

SELECT DEBUG * WHERE { 

?q kg:if ?qi 

OPTIONAL {?q kg:then ?qt . ?qt rdf:type ?tt} 

OPTIONAL {?q kg:else ?qe . ?qe rdf:type ?te}} 

<rdf:RDF > 

<Pipeline> 

<body rdf:parseType="Collection"> 

<Load rdf:about="DocumentTechnique.rdf"/> 

<Test> 

<if> 

<Query rdf:about="&OntoDT;#P70"/> 

</if> 

<then> 

<Query rdf:about="&OntoDT;#Check70"/> 

</then> 

</Test> 

... 

</body> 

</Pipeline> 

</rdf:RDF> 
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in the ontology as a combination of sub-components. In that case, the process consists in the 

verification of the attributes of the components and the verification of those of its sub-components.  

For instance, the validation process associated to a tile (Figure 12) is elementary: its RDF 

description calls for the execution of SPARQL queries testing its structural and dimensional criteria 

(the slope, the material, the form, etc.). In contrast, the validation process associated to PV glass 

polymer module is complex: its RDF description presented in (Figure 14) calls for the interpretation of 

the description of its sub-processes relative to the verification of its sub-components [Cadre, 

CellulePhotoV, FilmPolymere, VerreInterieur] (Section 3.3). 

Figure 12. Elementary process of checking constraints. 

 

Such an RDF description of a complex process is automatically and dynamically generated, by 

using a SPARQL query template (Figure 13) querying the definition of the component to be validated 

in the OntoDT ontology.  
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Figure 13. A SPARQL query template for generating a complex process. 

 

The interpretation and execution of such a process consists of the recursive interpretation of the 

description of its sub-processes. To be precise, in case of a complex process involving sub-processes, 

the process engine interprets the resource of type Pipe denoting a sub-process by loading its RDF 

description accessible at the URI and recursively interpreting it (see Figure 14). 

Figure 14. Complex process of checking constraints. 

 

5.3. Automating Regulation Conformance Checking 

To assist CSTB experts in writing technical advices, we have developed two tools (see Figure 15). 

The first one is dedicated to industrials and helps them in writing TDs. It uses the OntoDT ontology to 

SELECT DISTINCT ?process where{ 

?x rdfs:subClassOf ?y 

FILTER( ?x=dt:"Component-Name") 

?y owl:onProperty ?p 

FILTER( ?p=dt:aProcessus) 

?y owl:hasValue ?process} 
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automatically build and present to the user the forms to fill in to describe the attributes of all the 

components of a given product. This tool outputs an RDF description of a product based on the 

information provided by the users.  

This RDF description of the TD of a product comes as an input in a second tool we have developed 

to help CSTB experts in validating a TD against regulatory constraints. It first automatically builds an 

RDF representation of the verification process convenient for the product waiting for a technical 

advice. It uses the OntoDT ontology and the model described in the previous section to recursively 

build an RDF representation of the process, based on the definition of its components. Then it calls for 

the process engine developed for our process model and automatically produces to the user a 

conformity report. This report summarizes which of the queries representing technical constraints 

succeed when applied to the RDF description of a given TD, and which of them do not succeed, and 

therefore reveals a possible non conformity. 

Figure 15. Overview of our assistant tool for writing technical advices. 

 

6. State of the Art 

Regulatory modeling is a vast research area. The authors of [17] have undertaken initial work on the 

structure of rules in decision tables. Decision trees were later applied in building industry, specifically 

in the design of steel buildings [18]. The SASE system [19], was developed to provide a complete 

hierarchical structure to classify families of related regulations or codes. A major study of these early 

approaches is provided in [20]. In addition, let us cite [21] who have developed the REGNET 

application to determine the applicability of building regulations in some given conditions, based on a 

question and answer interface. 
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Up to now, more recent work focuses on the rigorous extraction of requirements from  

regulations [22–24]. Authors presented a methodology for extracting stakeholder rights and obligations 

from regulations. Also, regulatory modeling was discussed under two different approaches. The first 

one aims to automatically analyze the rules and to confront the complexity of natural language [16,25]. 

In a second approach, regulatory constraints are directly written according to a normalizing model, with 

the help of domain experts, which facilitates their translation into formal models [26,27]. We propose a 

third approach, which takes into account the regulations written in natural language, offers a tool for 

writing TDs and automatically analyses the content of these documents and their conformance  

to regulation.  

On the other hand, various efforts have been made to apply conformance rules to the representations 

of construction projects, using the structures of drawings specially coded (IFC) or textual  

descriptions [5,28,29]. When compared to these works, the originality of our approach lies in the 

combination of formal representations and SBVR rules from which they are derived to explain the 

rules themselves or the decision making. Our approach extends conformance checking with the 

explanation of the decision making. 

7. Results and Limitations 

We validated our approach on “real use case” at CSTB. We used TG which summarize the main 

requirements of seven Unified Technical Document (DTU) currently applied in France. We designed 

our rules database by extracting regulation constraints and transformed them into semi-formal 

language (SBVR) and formal language (SPARQL) using many steps. These transformations have been 

handled manually by domain experts. They were able to model 100% of TG constraints into SBVR.  

Although the interpretation of experts helps in translating most of the constraints from text to 

SBVR, some of them remain non-transformable into SPARQL.  These cases correspond to the “fuzzy” 

constraints that contain information defined in a qualitative way (e.g., “a short distance”), or that 

contain “common knowledge” [5] (e.g., “The recovery of the ridge tiles is in the opposite direction of 

the winds rain dominant”—Technical guides, “The tile roofs” page 75). 

The current limitation of our technical guides is that they collect detailed execution data featuring a 

wide range of situations. These types of rules are called “Implementation rules”, easily representable in 

SBVR, are the largest part of the rules that cannot be formalized in SPARQL. These rules represent a 

large proportion of regulatory constraints identified in the TGs (in this case 70%). 

Example of implementation rules (Table 3): 

Table 3. Transforming implementation rules into SBVR formulation. 

Implementation rules SBVR formulation 
«In the case of Canal tile, it typically runs in a mortar or 
flashing bardelis embedded and sealed in the wall.» Technical 
guides “The tile roofs” page76 [30]. 

If tile canal then it is obligatory that it runs
in a mortar or flashing bardelis embedded 
and sealed in the wall. 

As final results, with the help of CSTB experts, we identified about 177 SPARQL queries and 177 

elementary processes. This result is about 30% of the SBVR rule modeled. 
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8. Conclusions  

In this paper, we have presented an approach and a tool to assist in compiling regulation and 

technical documents in the construction industry and partially automate regulation conformance 

checking. We propose a domain ontology, OntoDT, representing concepts involved in the description 

of technical documents and regulations. We combine SBVR and semantic web languages representing 

a controlled vocabulary and formalize regulatory constraints extracted from the Practical Guides edited 

by CSTB. These two complementary representations both are based on the OntoDT ontology and are 

associated in RDF annotations. The SBVR-based representation of regulations presented to the users, 

reduces ambiguity. RDF and SPARQL based formalizations enable automating regulation 

conformance checking. Finally, we propose a process model to organize regulations extracted from 

Technical Guides. A regulation conformance checking process is associated to each basic component 

involved in a technical document and a whole checking process is automatically built in based on the 

RDF description of the technical document and the component definitions in the OntoDT ontology. 

We have developed a tool for representing technical documents and another one for their regulation 

conformance checking. They have been evaluated by CSTB instructors who have validated both the 

granularity of the information required and the OntoDT ontology. Our regulation conformance 

checking tool is a component of an assistance tool in writing technical advices, which we have 

developed for CSTB instructors and which is not detailed within this paper. Our models of regulation, 

technical documents and conformance checking process have been evaluated through the evaluation of 

this tool. CSTB instructors have validated the messages provided by our tool. 

A major perspective of our work is the identification of regulations which cannot be completely 

formalized and their inclusion through SBVR representations in a semi-automatic conformance 

checking process. 
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