
Future Internet 2012, 4, 322-346; doi:10.3390/fi4010322

future internet
ISSN 1999-5903

www.mdpi.com/journal/futureinternet

Article

Blueprinting Approach in Support of Cloud Computing

Dinh Khoa Nguyen *, Francesco Lelli, Mike P. Papazoglou and Willem-Jan van den Heuvel

European Research Institute in Service Science (ERISS), Tilburg University, Warandelaan 2,

5037 AB, Tilburg, The Netherlands; E-Mails: F.Lelli@tilburguniversity.edu (F.L.);

M.P.Papazoglou@uvt.nl (M.P.P.); W.J.A.M.vdnHeuvel@uvt.nl (W.-J.H.)

* Author to whom correspondence should be addressed; E-Mail: D.K.Nguyen@tilburguniversity.nl;

Tel.: +31-0-13-466-8203.

Received: 23 November 2011; in revised form: 21 February 2012 / Accepted: 19 March 2012 /

Published: 21 March 2012

Abstract: Current cloud service offerings, i.e., Software-as-a-service (SaaS), Platform-as-

a-service (PaaS) and Infrastructure-as-a-service (IaaS) offerings are often provided as

monolithic, one-size-fits-all solutions and give little or no room for customization. This

limits the ability of Service-based Application (SBA) developers to configure and

syndicate offerings from multiple SaaS, PaaS, and IaaS providers to address their

application requirements. Furthermore, combining different independent cloud services

necessitates a uniform description format that facilitates the design, customization, and

composition. Cloud Blueprinting is a novel approach that allows SBA developers to easily

design, configure and deploy virtual SBA payloads on virtual machines and resource pools

on the cloud. We propose the Blueprint concept as a uniform abstract description for cloud

service offerings that may cross different cloud computing layers, i.e., SaaS, PaaS and

IaaS. To support developers with the SBA design and development in the cloud, this paper

introduces a formal Blueprint Template for unambiguously describing a blueprint, as well

as a Blueprint Lifecycle that guides developers through the manipulation, composition and

deployment of different blueprints for an SBA. Finally, the empirical evaluation of the

blueprinting approach within an EC’s FP7 project is reported and an associated blueprint

prototype implementation is presented.

Keywords: cloud computing; service-based application; cloud service; blueprint

OPEN ACCESS

mailto:F.Lelli@tilburguniversity.edu
mailto:M.P.Papazoglou@uvt.nl
mailto:W.J.A.M.vdnHeuvel@uvt.nl
mailto:D.K.Nguyen@tilburguniversity.nl

Future Internet 2012, 4 323

1. Introduction

The cloud abstraction model delivers a shared pool of configurable computing resources

(processors, storage, etc.) that can be dynamically and automatically provisioned and released. Today’s

cloud capabilities are defined and provided as three levels of service offerings: Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). This allows users of

cloud-based services to be able to focus on what the service provides them rather than how the services

are implemented or hosted. Currently, there is a substantive emphasis on the low-level technological

trajectories of the cloud. For instance cloud scalability is heavily researched with efforts focusing on

service horizontal scaling (i.e., adding new server replicas and load balancers to distribute the load) or

vertical scaling (on-the-fly changing of the assigned resources to an already running instance) and

associated issues such as load balancing [1–3]. However, we observe far less concentration into other

aspects of the cloud, such as cloud application development.

There is a clear need for placing emphasis on how to develop enhanced composite service offerings

at the application (or SaaS)-level and assign or reassign different virtual and physical resources

dynamically and elastically. This leads to forming service syndications on demand at any level of the

cloud stack that may potentially involve various SaaS/PaaS/IaaS providers by breaking up the current

SaaS/PaaS/Iaas monolithic approach. This article will focus on such an approach. It will first shed light

on some serious shortcomings of the cloud delivery models and management approaches, and then

explain how to achieve a holistic cloud solution on the basis of the concept and techniques of

cloud blueprinting.

When examining the three cloud delivery models we observe a recurrent theme. They are all

constrained by the capabilities that are available by the provider at their delivery level and do not allow

for easy extensibility or customization options. Better ways are necessary for cloud service consumers

to orchestrate a cohesive cloud computing solution and provision cloud stack services that range across

networking, computing, storage resources, and applications from diverse cloud providers. To realize

this vision, the key challenges that are summarized below need to be tackled.

At the IaaS level, cross-configurations of the virtual machines comprising a specific cloud service

are currently possible only within the IaaS offerings of a single vendor. For instance, the Amazon

CloudFormation template [4] enables the Amazon Web Service (AWS) developers to specify a

collection of AWS cloud resources and the provisioning of these resources in an orderly and

predictable fashion. Nevertheless, this template works only for AWS cloud platform and infrastructure

resources and thus lacks interoperability. Moreover, cross-machine configurations need to be inferred

at deployment-time instead of remaining statically allocated, as is the norm with IaaS solutions today.

Similar problems also permeate the PaaS solution space. PaaS offerings are constrained by the

capabilities that are available by the PaaS provider and do not allow easy extensibility, mash up, or

customization options at the PaaS consumer (or developer) level. The underlying PaaS system and the

applications built on are not portable across many different public and private clouds and cloud

providers. Furthermore, many hosted middleware solutions are not integrated with any IaaS

management, thereby lacking elasticity and scaling benefits.

SaaS is also predominantly tethered to proprietary application platforms where the cloud provider

runs all elements of the service with the client presented with a complete application. Due to this

Future Internet 2012, 4 324

vendor lock-in problem, tremendous efforts are required to customize and combine SaaS offerings

from multiple providers to offer improved functionality to the client or developer. There have been

some initiatives in bringing SaaS offerings from different providers into a joint solution, e.g., the

Appirio CloudFactor [5] combines the SalesForce’s CRM SaaS offerings with the Google Apps SaaS

offerings. However, we observe the lack of a generic approach for integrating SaaS offerings across

multiple providers.

From the preceding discussion it is apparent that the current cloud solutions are fraught with problems:

 They introduce a monolithic SaaS/PaaS/IaaS stack architecture where a one-size-fits-all

mentality prevails. They do not allow developers to mix and match functionality and services

from multiple application, platform and infrastructure providers and configure it dynamically to

address application needs.

 They introduce rigid service orchestration practices tied to a specific resource/infrastructure

configuration for the cloud services at the application level.

 The above points hamper the (re)-configuration and customization of cloud applications on

demand to reflect evolving inter-organizational collaborations.

There is clearly a need to mash up cloud services from a variety of cloud providers to create a

Service-based Application (SBA). This type of integration allows the tailoring of services to specific

business needs using a mixture of SaaS, PaaS and IaaS. SBAs in the cloud are normally delivered in

terms of end-to-end business processes that are usually syndicated with other external SaaSs (possibly

provided by diverse SaaS providers). SBA developers need to couple their applications in whole or

part with external SaaS offerings to provide opportunities related to other areas of their clients’

business. Hence, a causal connection of SBA-level operations to configurable supporting SaaS, PaaS

and IaaSs is required to allow the full automation and optimization of SBA development and

maintenance activities.

The above mentioned approach promotes autonomous services (at all levels of the cloud stack) that

adhere to the well-established software engineering principle of “separation of concerns” to minimize

dependencies. This approach allows any service at any layer, i.e., SaaS, PaaS or IaaS, to be

appropriately composed with a service at the same level of the cloud stack or swapped in or out

without having to stop and modify other components elsewhere. Furthermore, SBA developers can

rely on existing work to solve incompatibility issues that may occur during the service composition,

e.g., the work in [6] solves the incompatibility issues between structural service interfaces and the

work in [7] helps to adapt service protocols. At the same time, the above approach also allows multiple

(and possibly composed) PaaS and IaaS options for deploying a given SaaS. To ensure the portability

between different cloud providers, standards like the Open Virtualization Format (OVF) [8] may be

used as part of an IaaS to describe the virtual machine packaging in a uniform way. Our proposed

approach takes all these issues into consideration and thus leads to a syndicated multi-channel delivery

model, which is illustrated in Figure 1, where it is contrasted with the monolithic cloud stack solutions

that permeate the cloud today. Monolithic cloud solutions are shown to enforce one-way vertical

deployment “channels”.

Future Internet 2012, 4 325

Figure 1. Monolithic vs. Syndicated Multi-channel Cloud Delivery Model.

Cloud Blueprinting is a novel powerful solution allowing SBAs to dynamically run on top of

federated cloud virtualization solutions. The SaaS components of a SBA are abstracted and described

in a series of templates to provide a fast, simplified method for provisioning and automating cloud

services. Cloud Blueprinting seeks to simplify deployment by hiding away the complexity of

deploying a SBA by helping to manage all configuring of the underlying middleware and integrating

with optimal PaaS and IaaS options. It achieves portability across clouds and cloud providers to

leverage the benefits of elasticity and scale. It supports a flexible top-down continuous closed-feedback

loop service refinement and improvement approach. Application-level decisions regarding the

virtualized SBAs are correlated with and used to drive the resource provisioning and adjust the

workload and traffic to automate the dynamic configuration and deployment of application instances

onto available cloud resources. The blueprinting approach promotes service virtualization by allowing

an SOA-inspired approach that supports independent layering within a typical cloud stack. For

example, a developer can choose to compose services from multiple SaaS providers into a coherent

and integrated SBA, which s/he can then synthesize with platform services from one or more PaaS

providers, and deploy on a federated cloud infrastructure of multiple IaaS providers.

Our previous work [9] has defined a Blueprint as a uniform abstract description of a cloud service

offering that hides all specific technical details and complexities to facilitate the SBA developers with

the selection, customization and composition of cross-layered cloud services across various

syndication channels. It also proposed a structural schema called the Blueprint Template that can be

used to describe and customize a blueprint. After releasing the first version of the template within our

Future Internet 2012, 4 326

industrial partners in the EC’s 4caaSt FP7 project [10], we have received useful comments and

feedback that helped us work towards an improved version of the template in this paper. Furthermore,

this paper introduces a universal Blueprint Lifecycle that shows how cloud-based services described by

blueprints are designed, composed, and ultimately deployed on a cloud infrastructure, which will

results in a running SBA in the cloud.

The rest of this paper is structured as follows: in Section 2 we introduce a cloud computing scenario

that has been defined by the 4caaSt community and will be used as the running example throughout the

paper; Section 3 reviews related work to show why the blueprinting approach is necessary; in Section

4 we elaborate the Blueprint concept, its fundamental structure and different types of blueprint; in

Section 5 we propose the Blueprint Template to capture cross-layer cloud service offerings; Section 6

proposes a six-step lifecycle for the blueprinting approach that supports the engineering of SBAs in the

cloud; in Section 7 we present our empirical evaluation approach and blueprint prototype

implementation; finally, Section 8 summarizes the paper and discusses future issues.

2. Motivating Scenario

This section presents an enterprise cloud computing scenario developed for the EC’s 4CaaSt

project. Several industrial IT companies like Telefonica, Telecom Italia, Ericson, 2ndQuadrant and

SAP have been involved in the definition of this scenario, which is presented as a simplified

description of today industrial reality. The aim is to provide a case study that is sufficiently complex

for capturing real problems and sufficiently simple for proposing and validating research solutions.

The scenario promotes a uniform description for cloud service offerings to exist so that the design,

configuration, and deployment of a cloud-based solution can occur. The scenario in Figure 2 is about

developing a process-based application in the cloud that can receive an order for a taxi from the

customer by SMS, check the current status of the taxi fleet, allocate a taxi, and finally confirm the

order by SMS. It contains seven actors that collaborate in a marketplace where their cloud services can

be offered and purchased. In the following, each actor is described.

There are three actors in the scenario that provide complete monolithic PaaS and IaaS offerings

hosted on their in-house infrastructure. 2ndQuarant is a PaaS provider specializing in storage

services. It offers the relational PostgreQL Service (PostgreQL-PaaS) or the relational MySQL Service

(MsSQL-PaaS) as two alternative solutions for relational database, where each consumer can request

for up to five instances of a solution. Another PaaS provider is TelecomItalia that provides the native

Context-as-a-Service offering for context information delivery (CaaS-PaaS) [11]. JonasTeam is

another PaaS provider that has two offerings in the marketplace. The first one is a JOnAS server to

host Java applications including a Tomcat container to support the execution of servlets (Jonas-PaaS).

The second one is an IaaS offering for a 3Gbit Ethernet network link (Ethernet3Gbit-IaaS).

OrchestraTeam is also a PaaS provider that offers an Orchestra BPEL Engine (Orchestra-PaaS).

OrchestraTeam differentiates itself from other PaaS providers in a way that their offering Orchestra-PaaS

is not complete and relies on external cloud platform and infrastructure resources for the deployment.

In particular, the binary implementation file of the Orchestra engine (OrchestraBinary) needs a Servlet

container (Servlet-Req) for the deployment. It is also required that the Servlet-Req is connected to two

relational databases (SQL-Req) through a 2Gbit network (NetworkLink2Gbit-Req). To maintain the

Future Internet 2012, 4 327

Quality of Service (QoS) promised in their offering, i.e., response time <= 2s and throughput >= 110

request/s, OrchestraTeam requires the Servlet-Req to be constrained by these QoS assertions as well.

Figure 2. The 4caaSt Cloud Computing Scenario.

On the SaaS level, Tele1 is a telecom company that provides a basic SMS Delivery SaaS

(SMS-Delivery-SaaS) that is hosted on their in-house platform. In contrast, AutoInc is an established

Medium Enterprise and has spotted a business opportunity providing fleet vehicle management in

the Netherlands. They plan to deploy their business functions as a Taxi Management SaaS

(TaxiMgt-SaaS), since this provides ubiquitous and common access for their prospective customers,

e.g., taxi providers and car-hiring providers. To implement the solution, AutoInc has contracted a

software consultancy who wrote the taxi management software in Java and BPEL. The software hence

contains a number of war files, bpel files and other binary and configuration files (see Figure 2 for

more details). The software hence requires a JEE Server (JEE/Servlet-Server-Req) including a Servlet

v2.5 for deploying the war files for the web interface, a BPEL Engine (BPEL-Engine-Req) for

deploying the core BPEL process files of the taxi application, and a context information provider

Future Internet 2012, 4 328

(Context-aaS-Req) that is needed by the CMF.war file. The BPEL-Engine-Req is required to be

deployed on the JEE/Servlet-Server-Req, and the JEE/Servlet-Server-Req is required to be connected

to the Context-aaS-Req and to the outside through a network link with 3Gbit bandwidth

(NetworkLink3Gbit-Req).

TaxiTilburg is a provider of a taxi ordering application that is delivered to the customers in terms

of a workflow (TaxiOrdering-SBA). In order to implement the steps of their workflow, TaxiTilburg

completely relies on the SaaS offerings TaxiMgt-SaaS of AutoInc and SMS-Delivery-SaaS of Tele1.

To maintain the predefined Quality of Service (QoS) level, TaxiTilburg insists AutoInc to specify the

QoS requirements for the prospective platform’s resources of the TaxiMgt-SaaS offering. In particular,

all the required platform resources JEE/Servlet-Server-Req, BPEL-Engine-Req, Context-aaS-Req

should ensure a throughput >=100 req/s and a response time <= 3s.

TaxiTilburg also has policy constraints that cannot be violated by the entire end-to-end system

landscape, i.e., all of the application, platform and infrastructure systems involved in the creation of

this SBA. These policy constraints prescribe that all the data must be stored only within the

Netherlands and all the data communications must be over the Secure Socket Layer (SSL).

In summary, TaxiTilburg has designed their TaxiOrdering-SBA offering as an SBA, since the

required SMS-Delivery-SaaS, TaxiMgt-SaaS and all the other required platform and infrastructure

resources are not under their direct control. Deploying the TaxiOrdering-SBA on the cloud requires a

syndication of the SaaS, PaaS and IaaS offerings of other providers. As we mentioned in the

introduction in the previous Section 1, there is still a lack of support in building such an SBA in the

cloud. Based on this case study, we will describe in the following sections the cloud blueprinting

approach to select and compose different cloud service offerings to develop such an SBA.

3. Related Work

Much of the recent work on cloud-based application development concentrates on the infrastructure

level. For example, the ability to manipulate, integrate and customize cloud service descriptions across

different cloud providers has been studied in [12] that has IaaS, application and deployment

orchestrators but falls short of proposing a solution for the problem at hand. The DMTF has published

standards such as the Open Virtualization Format (OVF) [8], to provide an open packaging and

distribution format for virtual machines. The work in [13] is grounded on the OVF and proposes a

service definition language for deploying complex Internet applications in federated IaaS clouds.

These applications consist of a collection of virtual machines (VMs) with several configuration

parameters (e.g., hostnames, IP addresses and other application specific details) for software

components (e.g., web/application servers, database, operating system) running on the VMs. In [14],

this language has been extended into a service definition manifest to serve as a contract between a

service provider and the infrastructure provider. In this contract, architectural constraints and

invariants regarding the infrastructure resource provisioning for an application service are specified

and can be used for on-demand cloud infrastructure provisioning at run-time. Using the service

definition manifest to specify the structure of a SaaS application, i.e., the SaaS components and their

required Virtual Execution Environments (VEE), the Reservoir architecture in [15] can automatically

provision the VEE instances that can run simultaneously without conflict on a federated cloud

Future Internet 2012, 4 329

infrastructure of multiple providers. KPI monitoring mechanisms and elasticity rules in the manifest

act as a contract that guarantees the required Service Level Agreement (SLA) between the SaaS

provider and the Reservoir architecture.

Model-driven approaches are also employed for the purpose of automating the deployment of

complex IaaS services on cloud infrastructure. For instance, the work in [16] proposes a virtual

appliance model, which treats virtual images as building blocks for IaaS composite solutions. Virtual

appliances are composed into virtual solution model and deployment time requirements are then

determined in a cloud-independent manner using a parameterized deployment plan. In a similar way,

the approach in [17] describes a solution-based provisioning mechanism using composite appliances to

automate the deployment of complex application services on a cloud infrastructure.

In practice, many products have appeared on the market that target the integration issue among

different IaaS clouds. The Nimbula product [18] allows users to build their own private IaaS clouds

that are interoperable with the Amazon’s EC2 IaaS offerings, i.e., users can swap in and out virtual

images between their private Nimbula cloud and the public EC2 cloud. Besides, the most appealing

attempt for API standardization is the Deltacloud solution [19] that provides a façade API for

customers to consume IaaS offerings from different providers.

In conclusion, the above mentioned cloud initiatives in developing cloud-based applications,

especially the ones related to the OVF, target the infrastructure level only. I.e., they allow the

specification of infrastructure constraints for deploying the applications directly on (federated) data

centers but fail to cover the holistic picture of a top-down development of SBAs on the cloud that can

guide developers in selecting, resolving and composing SaaS and PaaS offerings.

On the cloud application level, we observe some initial efforts in proposing methodologies for

application development on the cloud. The authors in [20] propose a systematic process for developing

high-quality cloud SaaSs, taking into considerations the key design criteria for SaaSs and the essential

commonality/variability analysis to maximize the reusability. Although this approach claims to

develop cloud-based SaaSs, it does not discuss about the cloud support for the deployment

environment of the SaaSs. A cloud-agnostic middleware is introduced in [21] that can sit on top of

many PaaS/IaaS offerings and enable a platform-agnostic SaaS development. They provide a meta-

model for describing SaaS applications and their needed cloud resources, and APIs and middleware

services for the deployment. The connection between SOA and cloud computing has been studied by

the Service-Oriented Cloud Computing Architecture (SOCCA) proposed in [22]. Using the SOCCA,

developers can build SaaS applications following an integrated SOA framework. Cloud platform and

infrastructure resources may be discovered by a Cloud Broker Layer and a Cloud Ontology Mapping

Layer for deploying the SaaS components. The multi-tenancy feature of cloud computing is also

supported by SOCCA where multiple instances of SaaS applications or components can be provided to

multiple tenants. Although the SOCCA is a useful reference architecture for developing cloud-based

SaaSs following the SOA paradigm, methodology support is lacking here including a concrete

definition language for the SaaS applications and components, a composition approach for discovering

and composing the cloud resources, and the ability to specify and resolve end-to-end constraints of

SaaS applications that might affect the underlying cloud resources.

The Cafe application and component templates [23] are a relevant approach for cloud-based SaaS

development. Cafe provides an ad-hoc composition technique for application components and cloud

Future Internet 2012, 4 330

resources following the Service Component Architecture (SCA). However, this approach requires

SaaS developers to possess intricate technical knowledge of the application architecture and the

physical cloud deployment environment to select and compose the right application components and

cloud resources.

In practice, an attempt to provide a template-based approach for using cloud services is available

from Amazon through their AWS CloudFormation offering [4]. This template enables AWS

developers to specify a collection of AWS cloud resources and the provisioning of these resources in

an orderly and predictable fashion. Another template-based support that enables the orchestration of

tasks for managing virtual machines is VMware vCenter Orchestrator [24]. Nevertheless, both the

AWS CloudFormation and the VMware vCenter Orchestrator work only on their own IaaS resources,

i.e., Amazon’s cloud infrastructure resources and VMware vCenter Servers respectively, and thus

lacks interoperability across IaaS providers.

In summary, existing work mostly aims to propose standards and techniques for only certain aspects

and thus fails to cover the full picture of cloud computing, e.g., providing models and formats for only

infrastructure resources, or describing only the functional specification. Furthermore, these

standardization efforts do not aim to assist the cloud-based application developers to select, customize

and compose various cross-layered cloud services across vendors according to their application

requirements. We propose the Blueprint concept in the next section as a uniform representation to

capture the comprehensive knowledge of a cloud service offering to support cloud application

developers during the various development phases.

4. The Blueprint Concept

Taking into account the shortcomings of existing approaches in cloud computing pointed out in

Section 3, this section introduces the concept of Blueprint in Section 4.1 and continues by introducing

different types of blueprints that can be used to capture cloud service offerings in Section 4.2.

4.1. Fundamental Blueprint Structure

We define Blueprint as a uniform abstract description of a cloud service offering that abstracts away

from all specific technical details and complexities to facilitate the cloud application developers with

the selection, customization and composition of cross-layered cloud services across various vendors. A

blueprint has the following fundamental structure, as illustrated in Figure 3:

 Basic properties: Some basic description properties of a blueprint including its unique ID,

ownership, release date, version info, etc.

 Offering: The description of one or many cloud service offerings including their names,

functionalities, signature interfaces, interaction protocols, elasticity offerings, and QoS offerings.

 Implementation Artifacts: The description of the artifacts that implement the offerings.

Implementation artifacts may include the binary files, configuration files or some deployable

web packages.

 Resource Requirements: The description of the required cloud resources including their QoS

requirements. The resource requirements are needed to deploy the implementation artifacts.

Future Internet 2012, 4 331

 The Virtual Architecture (VA): this part is specified by the application developers to capture

the desired virtual architecture in terms of the interdependencies and interconnections between

the offerings, implementation artifacts and resource requirements across blueprints.

 Policy: describing the policy constraints that may not be violated by any element (the offering,

implementation artifacts, resource requirements) of a blueprint.

Figure 3. Fundamental Blueprint Structure.

4.2. Types of Blueprints

A blueprint can be classified based on its status. If a blueprint has already been submitted to a

marketplace repository, such as the one provided by SAP [25], and thus can be purchased and reused

by other application developers, it is called a Source Blueprint. In contrast, a blueprint under

development is called a Target Blueprint. Application developers can use the blueprint template to

describe their offerings in a target blueprint that may reuse other source blueprints and finally be

deployed on a cloud infrastructure. For instance in the scenario in Section 2, TaxiTilburg may describe

their TaxiOrdering-SBA offering in a target blueprint called TaxiTilburg-Blueprint and AutoInc may

describe its TaxiMgt-SaaS offering through the AutoInc-Blueprint target blueprint. Other blueprints in

the scenario are classified as source blueprints that are available in a marketplace repository and can be

selected and reused by the application developers of TaxiTilburg or AutoInc.

A cloud service offering is incomplete if there are still resource requirements on which it relies. To

complete this offering, one has to retrieve further offerings of other source blueprints from the

marketplace repository to fulfill the resource requirements. Hence, we can also distinguish the two

following types of blueprints depending on the completeness of their offerings:

 Resolved blueprints: A blueprint is resolved if all of its offerings are complete and ready to be

deployed and consumed. For instance in our scenario in Section 2, the blueprints used to describe

SMS-Delivery-SaaS, CaaS-PaaS, PostgreQL-PaaS, Jonas-PaaS, and Ethernet3Gbit-IaaS offerings

fall under this category. According to our assumption, they contain only complete offerings.

 Unresolved blueprints: At least one of the offerings captured in this type of blueprint is

incomplete, i.e., it is not yet ready to be consumed and still relies on the underlying resources for

the deployment. Examples of this type of blueprint are the ones capturing the TaxiOrdering-SBA,

TaxiMgt-SaaS, and Orchestra-PaaS offerings in the case study. In this case, the service provider

needs to specify in the blueprint the resource requirements. He relies on the application

developer who is responsible for the “blueprint resolution”. This task includes searching for

Future Internet 2012, 4 332

available blueprints in the repository to fulfill the stated resource requirements. Unresolved

blueprints are inherently customizable since the consumers will also be given the ability to

customize the underlying configurations of the blueprints after they have been resolved.

A target blueprint is always unresolved, as it requires other source blueprints to fulfill its resource

requirements. Source blueprints can be both resolved and unresolved. In case an unresolved source

blueprint is retrieved by the application developer from the marketplace for the reuse, it iteratively

becomes a new target blueprint that requires the “blueprint resolution” task.

As pointed out in the introduction, our approach is to compartmentalize the monolithic cloud

offering in three different layers (SaaS, PaaS, IaaS) and use the blueprints to describe each of these

layered resource offerings. The advantage is that blueprints can be flexibly (re-)assembled in different

configurations to form a complete SBA. The first step to enable such a flexible syndication of

cross-layered blueprints is to support a formal template for describing it in an unambiguous manner. In

the next Section 5 we introduce the Blueprint Template as a standard way to describe cross-layered

cloud service offerings.

5. Blueprint Template

A blueprint has been defined in the previous Section 4 as a uniform implementation-agnostic

description of a cloud service offering that abstracts away from all specific technical details and

complexities. Blueprints are used to simplify the SBA development through the syndication of

multi-channel composition of cross-layered cloud services across various providers. Our previous

work [9] proposed a structural schema called “Blueprint Template” that can be used to describe a

blueprint. After releasing the initial version of the template within the 4caast community we have

received useful comments and feedback that help us work towards an improved version in this section.

Figure 4 illustrates the consolidated version of the Blueprint Template. Using the template, the

blueprint provider can describe (instantiate) blueprints that capture their cloud service offerings. In

Figure 5, a sample instantiated blueprint is introduced that captures the offering of AutoInc in the

motivating scenario from Section 2. The Blueprint Template is divided into template sections; each has

a set of proposed blueprint properties. Please note that the template is extensible and will be

continuously improved, i.e., if more properties are needed in a particular section, they can be added

using the following data structure (property name, property type, [property value range]). In the

following, each template section is dissected with a proposed set of properties, alongside with the

example provided in Figure 5.

Future Internet 2012, 4 333

Figure 4. The Blueprint Template.

Blueprint

Basic properties

Offering

Resource Requirements

P
o

lc
iy

Implementation Artefacts

Virtual Architecture

Basic Properties Section

 BlueprintID [1]: UUID

 Description [1]: String

 Ownership [1] : StakeholderProfile

 Blueprint Version [1]: String

 Release Date [1]: Date

 Status [1]:{‘resolved’ | ‘unresolved’}

 …..

Offering Section

 Service Offering [1…*]:

 Service ID [1]:: UUID

 Name [1] : String

 Cloud Type [1]:: {‘SaaS’ | ‘PaaS’, ‘IaaS’}

 Functionality [0..1]:: URI

 Structural Interface [0..1]:: URI

 Interaction Protocol [0..1] :: URI

 Endpoint location [0..1] :: URI

 Number Of Instance[0..1]:: {int, int}

 QoS Profile[0…*]:: URI

……….

Implementation Artefacts Section

 Implementation Artefacts [0…*]

 Artefact ID [1] :: UUID

 Artefact Name [1] :: String

 Artefact Type [1]:: String

 Artefact Location [1]:: URI

 Artefact dependencies [0…*]:: UUID

 ……..

Resource Requirement Section

 Resource Requirement [0...*]

 Requirement ID [1]:: UUID

 Name [1]:: String

 Cloud Type [1]:: {‘SaaS’ | ‘PaaS’, ‘IaaS’}

 Functionality [0..1]:: URI

 Structural Interface [0..1]: URI

 Interaction Protocol [0...1]::URI

 Number Of Instance[0..1]:: {int, int}

 QoS Profie [0…*]:: URI

 ……

Policy Section

 Policy Profile [0…*]:: URI

The VA graph

Virtual Architecture (VA) Section

 Resource Link [0…*]:

 Source of Resource Link [1]:: UUID

 Target of Resource Link [1]:: UUID

 Vertical Link

 Source of Vertical Link [1]:: UUID

 Target of Vertical Link [1]:: UUID

 Horizontal Link

 Source of Horizontal Link [1]:: UUID

 Target of Horizontal Link [1]:: UUID

Figure 5. Example of using the Blueprint Template.

Future Internet 2012, 4 334

5.1. Basic Properties

Most importantly, the Basic Properties section contains an id (BlueprintID) using the UUID type for

uniquely identifying a blueprint. This id is used for indexing a blueprint in the blueprint repository as

well as referencing the included blueprints in case one would like to offer a blueprint containing a

bundle of other included offerings. Apart from the id, the basic properties include a short textual

description, the ownership information, the version information, the release date and the status of the

blueprint. While other properties can be described using simple types like UUID, String, integer, etc.,

the ownership may need a more sophisticated data structure, e.g., a StakeholderProfille complex type

that contains the name of the blueprint provider, its industry sector, location information, etc. The

status property of a blueprint indicates whether that blueprint has been resolved yet. For instance, our

AutoInc-Blueprint blueprint in Figure 5 has not been resolved and still has the status “unresolved”.

5.2. Offering Section

This section contains one or more service offerings, each with the following nested

template properties:

 A unique ID with type of UUID to identify a service offering.

 The name of the cloud resource that is offered as a service to the consumer. The cloud resource

could be an entire SBA, single software application, platform, or infrastructure resource. Inspired

by the Debian package management approach, naming of a service offering follows a keyword-based

approach. This enables an easy searching and matching of offerings that provide the needed

cloud resources.

 The type of the cloud resource offered as a service, e.g., SaaS, PaaS or IaaS according to the

classification in [26].

 The functionality of the cloud service offering should be described in such a way that augments

the consumer to query the blueprint from a blueprint repository. To enable more accurate search

and matching of offerings, we suggest using the OVF standard [8] for describing the

functionality of PaaS and IaaS offerings, and the service capability description template in [27]

for describing the functionality of SaaS offerings.

 The signature-related properties of a cloud service including the URI locations to download the

APIs and the endpoint location for programmatic interactions with the cloud service. The APIs

of a cloud service comprise of the structural interfaces, e.g., described in WSDLs, and the

interaction protocols, e.g., described in abstract BPEL. Using the APIs, a consumer is able to

programmatically interact with the cloud service.

 The elasticity offering is specified in terms of the minimum and maximum number of instances

of the cloud service (RangeNrOfInstances) that can be offered per user session.

 QoS properties of the cloud service can be specified in a number of separate profiles (QoS

Profile) using an add-on templates or external languages, e.g., WS-Policy, SLAng, etc. The

blueprint template allows the specification of URI pointers referencing these separate profiles.

Future Internet 2012, 4 335

5.3. Implementation Artifacts Section

This section is important for the application developer who is responsible for the deployment and

provisioning of a blueprint. It encompasses the following information: an artifact id for uniquely

identifying an artifact, an artifact name, an artifact type indicating whether this artifact is a software

binary, a composition script, a database startup file or some other kinds of configuration files, an

artifact location for downloading, and some artifact dependencies pointing to the other artifacts that

have to be executed before executing this one.

Examples of implementation artifacts can be found in Figure 5. TaxiTransmitter.war is the ID of a

deployable war file that implements parts of the Taxi application SaaS. However, it can work only

after another artifact TaxiServiceProvider.zip, which is a zip file containing the BPEL scripts for the

taxi application, has been deployed properly.

5.4. Resource Requirements Section

A list of cloud resource requirements needed for deploying and provisioning a blueprint is specified

in this section. This section supports the application developers in searching for cloud service offerings

in a blueprint repository. Each resource requirement is specified with a resource ID, a name, the

required functionality, the required Range Number of Instances, the required API (if needed) including

the structural interface and interaction protocols and a set of URI references pointing to QoS Profiles

that contain the QoS assertions for this resource requirement. Similarly to the offering section, the

name of the resource requirement follows a keyword-based naming approach and the required

functionality can be described in a more expressive way using the external add-on templates like OVF

or the one in [27]. The referenced QoS profiles can be described using an existing external language

like WS-Policy or SLang.

As an example of resource requirements in Figure 5, the AutoInc-Bluerpint blueprint needs an

instance of a JEE Application Server including a Servlet Container. This requirement has a unique id

JEE/Servlet-Server-Req and is associated with some required QoS properties defined in the

http://autoinc/AutoInc-Req-QoSP1 profile, which prescribes that the required resource should respond

faster than 3s and provide the throughput greater than 100 requests per second.

5.5. Virtual Architecture (VA) Section

An element in a blueprint, i.e., a service offering, implementation artifact, or resource requirement,

may have an interdependency or interconnection relationship with another blueprint element. The VA

Section allows specifying the following relationships between elements within a blueprint or across

blueprints, each with a Source and a Target element.

 Vertical Link: This relationship indicates a “direct” deployment dependency between a blueprint

element e and another blueprint element e', i.e., e needs to be deployed on e'. For instance, an

implementation artifact directly depends on one or more resource requirements for its

deployment. Vertical Links are transitive, which results in the so-called “indirect” deployment

dependency, or the “indirect” vertical link.

Future Internet 2012, 4 336

 Horizontal Link: This relationship indicates a “direct” functional dependency between a

blueprint element e and another blueprint element e', i.e., e reuses the functionality of e'. For

instance, a service offering reuses another service offering and hence, directly depends on its

functionality. Horizontal Links are transitive, which results in the so-called “indirect” functional

dependency, or the “indirect” horizontal link.

 Resource Link: We consider a virtual network resource as an IaaS service offering or IaaS

resource requirement in a blueprint. A resource link is used to allocate blueprint elements to a

virtual network resource. Hence, the target of a resource link is always a virtual network

resource captured in either an IaaS service offering or an IaaS resource requirement.

Figure 6 illustrates the joint VA graph of the TaxiTilburg-Blueprint, Tele1-Blueprint, and AutoInc-

Blueprint blueprints in the scenario from Section 2. This graph indicates:

 The TaxiOrdering-SBA offering requires the TaxiMgt-SaaS offering of AutoInc and the SMS-

Delivery-SaaS offering of Tele1.

 The CMF.war, GoogleMapServices.war, TaxiCompany.war, TaxiTransmitter.war

implementation artifacts require a JEE application server that includes a Servlet v2.5 container

(JEE/Servlet-Server-Req).

 Other implementation artifacts of the AutoInc-Blueprint blueprint require a BPEL Engine

(BPEL-Engine-Req), which is supposed to be deployed on the JEE/Servlet-Server-Req.

 The required JEE application server (JEE/Servlet-Server-Req) is connected to the required

Context-as-a-Service and to the outside by a network link 3Gbit (NetworkLink3Gbit-Req).

Figure 6. A sample Virtual Architecture (VA) graph.

In summary, the VA is an essential part of the Blueprint Template that specifies the to-be virtual

architecture topology across blueprints. The VA graph in Figure 6 also indicates that the TaxiMgt-SaaS

Future Internet 2012, 4 337

offering of the AutoInc-Blueprint blueprint is “unresolved” as it still contains a number of resource

requirements. In the further development phases of the blueprint, the resource requirements need to be

resolved by searching and selecting appropriate blueprints from the blueprint repository. The

AutoInc-Blueprint blueprint becomes “resolved” if all the resource requirements can be fulfilled by the

offerings of the newly retrieved blueprints.

5.6. Policy Section

Policy constraints are the end-to-end global constraints that may not be violated by the blueprint

and its resource requirements. The blueprint provider can specify the policy constraints in a Policy

Profile using any existing languages such as WS-Policy, RuleML, etc.

For example in Figure 5, the AutoInc-Blueprint blueprint of AutoInc is constrained by two policy

constraints defined in the policy profile identified by the URI http://autoinc/AutoInc-PP. These

constraints state that all network communications have to be secured through the Secure Socket Layer

(SSL) and all the data have to be stored within the Netherlands. Since they are the global end-to-end

constraints specified for the AutoInc-Blueprint, all the prospective blueprints that will be selected to

fulfill the resource requirements are constrained by them as well.

6. Blueprint Lifecycle Support for Engineering Cloud-Based Applications

To identify how a blueprint is specified, combined and customized with other blueprints and

ultimately deployed to the cloud, this section proposes a lifecycle for engineering SBAs within which

blueprints are used. Identifying the activities within the lifecycle allows us to analyze each phase the

blueprint goes through to understand what it is for, what the goals and benefits are and how each

activity can be supported by processes, standards and automation. The blueprint lifecycle we propose

is shown in Figure 7. In particular, this figure depicts how the blueprint template is used to initiate a

six-step, iterative lifecycle that results in a running cloud application. Currently, our focus is put on the

first three phases of the blueprint lifecycle, basically the design, resolution and customization of a new

target blueprint. The rest of the lifecycle remains as future issues and will not be discussed in depth in

the following subsections.

6.1. Phase 1: Target Blueprint Design

The blueprint lifecycle begins when a developer wishes to design a new SBA in the cloud. To do

this, he uses the blueprint template, introduced in Section 5, to specify all the necessary information

about the new cloud application. The blueprint template allows the developer to describe not only the

functional capabilities of the new application and the qualities it should have (e.g., minimum and

maximum values for the end-to-end performance, availability and/or throughput of the complete

application), but also the required resources to deploy and provision this application on the cloud. At

the end of this process, when the developer has completed their specification, they have created a

Target Blueprint that contains the application offering, the resource requirements, policy constraints, and

a to-be architecture topology expressed through the relationships between the offering and requirements.

Future Internet 2012, 4 338

As an example of this phase, the sample AutoInc-Blueprint blueprint in Section 5 is considered as a

Target Blueprint that has been designed using our proposed blueprint template.

6.2. Phase 2: Target Blueprint Resolution

In order to transform the Target Blueprint into a description that can be deployed on cloud

infrastructure, the developer must resolve the resource requirements contained in the target blueprint

with concrete SaaS, PaaS or IaaS offerings of other cloud providers. These service offerings are

described in Source Blueprints, which are specified using the same blueprint template used to develop

the target blueprint described in the previous phase. The source blueprints can be found in well-known

location(s) (e.g., a marketplace or repository) and are retrieved and matched to the requirements in the

target blueprint using a resolution process. Matching of a source blueprint’s offering against a target

blueprint’s requirement comprises of the cloud resource name matching, functionality matching, QoS

matching and policy constraint satisfaction. We currently use the keyword-based matching approach

for resource name matching. Functionality between a cloud service offering and a cloud resource

requirement may rely on external procedure that compares two functionality descriptions, e.g., comparing

two OVF documents. Since the QoS and policy properties in our blueprint may be described by the

WS-Policy standard, we rely on the existing work in [28] that supports the semantic matching of

WS-Policy constructs for the QoS matching and policy constraint satisfaction between the source and

target blueprint.

Figure 7. The Blueprint Lifecycle.

Future Internet 2012, 4 339

Figure 8 illustrates the resolution of our sample target blueprint AutoInc-Blueprint, i.e., how to

fulfill its resource requirements using the offerings of other source blueprints. Note that the target

blueprint resolution is an iterative process, since the source blueprints might still contain resource

requirements and iteratively becomes a new “unresolved” target blueprint. For instance in Figure 8,

the offering Orchestra-PaaS of the blueprint OrchestraTeam-Blueprint is reused to fulfill the

BPEL-Engine-Req requirement, yet it still contains three further resource requirements that have to be

fulfilled for the deployment.

Figure 8. Resolving the sample Target Blueprint AutoInc-Blueprint.

The result of the resolution process is a set of alternative “resolved” target blueprints that provides

options/alternatives to the developer as to how the target blueprint’s requirements can be satisfied by

source blueprints (i.e., specifications of actual cloud services). For instance from Figure 8, resolving

the requirement SQL-Req of the OrchestraTeam-Blueprint blueprint will result into two alternative

“resolution results”, one with the PostgreQL-PaaS offering and the other with the MySQL-PaaS offering.

6.3. Phase 3: Target Blueprint Customization

The next step allows the developer to customize the target blueprint through selecting from the

alternative configurations provided by the resolution process and complete the target blueprint. We

assume in our case study that after resolving the AutoInc-Blueprint blueprint, the application

developers decide to use the PostgreQL database instead of the MySQL database. Figure 9 shows the

VA graph of the selected “resolved” AutoInc-Blueprint blueprint, in which all the resource

requirements have been fulfilled (“resolved”) by the offerings of the source blueprints.

Future Internet 2012, 4 340

6.4. Phase 4: Target Blueprint Checking & Testing

Once a configuration has been chosen in Phase 3, the target blueprint containing only fully-resolved

blueprints is checked and tested. The purpose of this phase is to provide stakeholders with information

about the behavior, properties and quality of the cloud application that has been designed, resolved and

customized by the application developer from the target blueprint. If, during the testing process, the

resolved and customized target blueprint fails to meet the criteria specified for the final cloud

application, the developer/builder may choose one of two options: they may (1) return to Phase 1 of

the lifecycle and re-design the target blueprint to create a new specification for the application, or (2)

return to Phase 2 of the lifecycle to select different source blueprints and re-configure the existing

target blueprint using different offerings, perhaps from different providers.

Figure 9. The VA graph of the selected “resolved” AutoInc-Blueprint.

When the application developer is satisfied that the resolved and customized target blueprint

operates and behaves according to the design, meets the requirements that guided its design and

development and that it can be implemented with the same characteristics the developer can choose to

(1) store the resolved and customized target blueprint in the marketplace/repository so others may re-use

it (possibly within a new applications) and/or (2) deploy the application using the services resolved and

selected in the previous phases. However, if the application is not satisfactory and does not meet the

requirements of the application developer/builder then they have two further options: (1) if the issues

found during the testing process are significant, then the developer can choose to return to Phase 1 to

redesign the target blueprint, possibly modifying its structure or behavior to take advantage of a

particular capability; or, (2) if the problems are of a lesser magnitude, then the developer can choose to

return to Phase 3 to re-select source blueprints and re-configure the original target blueprint with

different cloud service offerings.

Future Internet 2012, 4 341

6.5. Phase 5: Target Blueprint Deployment

After the testing phase, the application is deployed onto the cloud services selected in the

customization phase. The deployment is driven by a deployment plan that ensures SLAs for the correct

QoS, specified and tested by the developer earlier, are agreed in advance before any of the application

components are deployed. If any of the QoS cannot be agreed, the developer is notified and the

customization/testing process is repeated until all QoS are satisfied. Once this step has been completed

successfully, the developer, e.g., a virtual service operator or provider, deploys or reuses the SaaS,

PaaS or IaaS resources required to support the application and the application is available for use.

6.6. Phase 6: Target Blueprint Monitoring

When the application has been deployed, the operational performance of the entire end-to-end

process fulfilled by the application must be monitored to ensure it is performing as designed and

expected, i.e., is operating within the constraints set out in the agreed SLA for the component services.

In case an SLA constraint is violated, e.g., performance has descended, a notification event should

be triggered to inform the application developers to take new correcting actions. These actions could

be a redeployment (which leads back to Phase 5), a new target blueprint resolution (back to Phase 2) or

a completely new design of the cloud application (back to Phase 1).

In this section we have presented the lifecycle for the SBA development that incorporates iterative

phases for design, testing and deployment. The benefit of documenting this process is that it

demonstrates the roles, responsibilities and interactions between the developer, cloud service providers

and third-parties (e.g., the marketplace or source blueprint repository) and illustrates how the blueprint

template is used to specify and ultimately to deploy a running application.

7. Empirical Evaluation and Prototype Implementation

The empirical evaluation for the blueprinting approach aims to understand how well the proposed

blueprint template can support the industry companies in describing their cloud service offerings. It

started with a collaborative case study design with our industry partners in the 4caaSt project such as

Telefonica, TelecomItalia, 2ndQuadrant and SAP, which resulted in the Taxi Order Process Scenario

introduced in Section 2. Then, we implemented the proposed Blueprint Template in XSD and

distributed it to the 4caaSt community to get feedback. We organized a “blueprint training” virtual

workshop to explain the concept of blueprint and train our industry partners how to use the XSD

blueprint template. As the cloud service offerings identified in the case study are the real industrial

offerings of our partners, we requested them to use the provided XSD blueprint template to describe

their blueprints in XML and submit them to our blueprint repository. Figure 10 presents a snippet of

the instantiated XML document of the “unresolved” target blueprint AutoInc-Blueprint from our case

study. The VA section in the AutoInc-Blueprint blueprint can be visualized by the “unresolved” VA

graph on the left side of the Figure. As mentioned in Section 6.2, resolving a target blueprint means to

replace the requirement IDs in its VA template section with the IDs of the offerings of the newly

retrieved source blueprints. We used XQuery [29] for accessing and modifying data inside the XML

document of the AutoInc-Blueprint blueprint.

Future Internet 2012, 4 342

Our evaluation has shown that the proposed blueprint template is capable to capture all the

necessary aspects of an industrial cloud service offering and simple enough to be used by our

industry partners. Following our guidelines during the blueprint training workshop, a TelecomItalia

representative was able to design a blueprint “on-the-fly” for his offering. We experienced just a little

amount of emails exchanged for the blueprint template support, which confirms its simplicity of use.

Apart from the evaluation of the blueprint template, we have worked towards a comprehensive

blueprint tool for supporting the application developers during the entire SBA development lifecycle

introduced in the previous Section 6. Figure 11 depicts the prototype architecture of the blueprint tool.

The Blueprint Headquarter (BlueprintHQ) server provides the SOAP API for the following three

operations: getBlueprint(BlueprintID) to retrieve a blueprint from the repository based on its unique

ID, getBlueprints([property, value]*) to retrieve several blueprints based on their property values, and

resolveBlueprint(BlueprintID) to resolve a blueprint by invoking the Blueprint Resolution Engine [30].

This API is consumed by the marketplace component provided by our 4caaSt partners Telefonica and

SAP to productize a blueprint and advertise it in a marketplace. The API is also consumed by the

BlueprintEXE server that supports a web-based user interface for visualization purpose. Figure 12

illustrates the VA graph visualization of the sample “resolved” AutoInc-Blueprint blueprint on the web

interface of the BlueprintEXE. All the components of the blueprint prototype, i.e., the BlueprintEXE,

BlueprintHQ, blueprint repository and blueprint resolution engine, are currently hosted on a Flexiscale

virtual machine [31] (supported by our 4caaSt partner Flexiant).

Figure 10. XML implementation of the sample AutoInc-Blueprint.

Future Internet 2012, 4 343

Figure 11. Blueprint Prototype Architecture.

Figure 12. The web interface of our blueprint prototype showing a resolved blueprint.

Future Internet 2012, 4 344

The blueprint prototype has shown the feasibility of implementing a tool for the blueprinting

approach. In particular, we have merely focused on the blueprint support for the first three phases of

the SBA development lifecycle described in Section 6, namely the design and reuse of blueprints for

SBA development. Additional components can be integrated to the prototype including the deployment

controller, monitoring component, adaptation engine, etc.

8. Conclusion and Future Work

Cloud blueprinting is a novel approach for engineering Service-based Applications (SBAs).

Following this approach, developers can create sophisticated SBAs from applications, platforms and

infrastructures offered by different providers in the cloud to achieve end-to-end business requirements.

This paper has proposed the Blueprint concept as a uniform, abstract description of cross-layer cloud

service offerings, a Blueprint Template for describing the blueprints, and a Blueprint Lifecycle that

explains how blueprints are used during all the engineering phases of an SBA.

Blueprint has been adopted as one of the main innovative concepts within the EC’s 4caaSt FP7

project. An industry cloud computing case study has been jointly defined by the 4caaSt community

and has been used as a running example in this paper to demonstrate our blueprinting approach. The

current blueprint XSD template and web-based blueprint prototype is integrated in a joint 4caaSt

demonstration. In the future, our vision is to continuously improve the structure of our blueprint

template to capture new requirements of SBA development in the cloud. In particular, we will look at

other cross-cutting concerns in cloud computing such as security, reliability, pricing, licensing, etc.,

thanks to the extensible design of the blueprint template that allows adding more blueprint properties.

More functionality will also be developed for our blueprint prototype towards a comprehensive

blueprint tool that supports the entire SBA development lifecycle and targets the effect of changes in

the blueprints and their composition.

Acknowledgement

The research leading to this result has received funding from the Dutch Jacquard program on

Software Engineering Research via contract 638.001.206 SAPIENSA; and the European Union’s

Seventh Framework Programme FP7/2007-2013 (4CaaSt) under grant agreement no 258862. The

authors would like to thank Mathijs van der Paauw for his work on implementing the prototype.

References

1. Olivier, S.; Prins, J. Scalable Dynamic Load Balancing Using UPC. In Proceedings of the 37th

International Conference on Parallel Processing, Washington, DC, USA, 8–10 October 2008.

2. Rodero-Merino, L.; Vaquero, L.M.; Gil, V.; Galán, F.; Fontán, J.; Montero, R.S.; Llorente, I.M.

From infrastructure delivery to service management in clouds. Future Gener. Comput. Syst. 2010,

26, 1226–1240.

3. Wu, H.; Kemme, B. A Unified Framework for Load Distribution and Fault-Tolerance of

Application Servers. In Proceedings of the 15th International Euro-Par Conference on Parallel

Processing; Springer-Verlag: Berlin, Germany, 2009; Volume 5704, pp. 178–190.

Future Internet 2012, 4 345

4. Amazon Web Services. AWS CloudFormation. Available online: http://aws.amazon.com/

de/cloudformation (accessed on 19 March 2012).

5. Appirio CloudFactor. Available online: http://www.cloudfactorapp.com/ (accessed on 19

March 2012).

6. Andrikopoulos, V.; Benbernou, S.; Papazoglou, M.P. Managing the Evolution of Service

Specifications. In Proceedings of CAiSE ’08 Proceedings of the 20th international conference on

Advanced Information Systems Engineering, Montpellier, France, 18–20 June 2008; pp. 359–374.

7. Dumas, M.; Benatallah, B.; Nezhad, H.R.M. Web service protocols: Compatibility and

adaptation. IEEE Data Eng. Bull. 2008, 31, 40–44.

8. DMTF: Open Virtualization Format (OVF). Available online: http://www.dmtf.org/standards/ovf

(accessed on 19 March 2012).

9. Nguyen, D.K.; Lelli, F.; Taher, Y.; Parkin, M.; Papazoglou, M.P.; van den Heuvel, W.J. Blueprint

Template Support for Cloud-Based Service Engineering. In Proceedings of the 4th European

Conference ServiceWave’11, Poznan, Poland, 26–28 October 2011.

10. EC’s 7th Framework project 4caaSt. Available online: http://4caast.morfeo-project.org/ (accessed

on 19 March 2012)

11. Moltchanov, B.; Fra, C.; Valla, M.; Licciardi, C.A. Context Management Framework and Context

Representation for MNO. In Proceedings of Twenty-Fifth AAAI Conference on Artificial

Intelligence, San Francisco, CA, USA, 7–8 August 2011.

12. Keahey, K.; Tsugawa, M.; Matsunaga, A.; Fortes, J. Sky computing. IEEE Internet Comput.

2009, 13, 43–51.

13. Galan, F.; Sampaio, A.; Rodero-Merino, L.; Loy, I.; Gil, V.; Vaquero, L.M. Service Specification

in Cloud Environments Based on Extensions to Open Standards. In Proceedings of the Fourth

International ICST Conference on Communication System Software and Middleware; ACM: New

York, NY, USA, 2009; pp. 19:1–19:12.

14. Chapman, C.; Emmerich, W.; Marquez, F.G.; Clayman, S.; Galis, A. Software Architecture

Definition for On-Demand Cloud Provisioning. In Proceedings of the 19th ACM International

Symposium on High Performance Distributed Computing; ACM: New York, NY, USA, 2010;

pp. 61–72.

15. Rochwerger, B.; Breitgand, D.; Levy, E.; Galis, A.; Nagin, K.; Llorente, I.M.; Montero, R.;

Wolfsthal, Y.; Elmroth, E.; Caceres, J.; Ben-Yehuda, M.; Emmerich, W.; Galan, F. The reservoir

model and architecture for open federated cloud computing. IBM J. Res. Dev. 2009, 53, 4:1–4:11.

16. Konstantinou, A.V.; Eilam, T.; Kalantar, M.; Totok, A.A.; Arnold, W.; Snible, E. An Architecture

for Virtual Solution Composition and Deployment in Infrastructure Clouds. In Proceedings of the

3rd International Workshop on Virtualization Technologies in Distributed Computing; ACM:

New York, NY, USA 2009; pp. 9–18.

17. Chieu, T.; Mohindra, A.; Karve, A.; Segal, A. Solution based deployment of complex application

services on a cloud. In Proceedings of the IEEE International Conference on Service Operations

and Logistics and Informatics (SOLI), Qingdao, China, 15–17 July 2010.

18. Nimbula. Available online: http://nimbula.com/ (accessed on 19 March 2012).

19. Apache Deltacloud. Available online: http://deltacloud.apache.org/ (accessed on 19 March 2012).

http://aws.amazon.com/%20de/cloudformation
http://aws.amazon.com/%20de/cloudformation
http://www.cloudfactorapp.com/
http://www.dmtf.org/standards/ovf
http://4caast.morfeo-project.org/
http://nimbula.com/
http://deltacloud.apache.org/

Future Internet 2012, 4 346

20. La, H.J.; Kim, S.D. A Systematic Process for Developing High Quality saas Cloud Services. In

Proceedings of the 1st International Conference on Cloud Computing, Beijing, China, 1–4

December 2009; Springer-Verlag: Berlin, Germany, 2009; pp. 278–289.

21. Maximilien, E.M.; Ranabahu, A.; Engehausen, R.; Anderson, L.C. Toward cloud-Agnostic

Middlewares. In Proceeding of the 24th ACM SIGPLAN Conference Companion on Object

Oriented Programming Systems Languages and Applications, Orlando, FL, USA, 25–29 October

2009; ACM: New York, NY, USA, 2009; pp. 619–626.

22. Tsai, W.T.; Sun, X.; Balasooriya, J. Service-Oriented Cloud Computing Architecture. In

Proceedings of the Seventh International Conference on Information Technology New

Generations, Las Vegas, NV, USA, 11–13 April 2011; pp. 684–689.

23. Mietzner, R. A method and implementation to define and provision variable composite

applications, and its usage in cloud computing. Ph.D. Thesis, Universitaet Stuttgart, Stuttgart,

Germany, August 2010.

24. VMware vCenter Orchestrator. Available online: http://www.vmware.com/products/vcenter-

orchestrator/overview.html (accessed on 19 March 2012).

25. SAP service marketplace. Available online: http://www.sap.com/services/more/servsuptech/

service-marketplace.epx (accessed on 19 March 2012).

26. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.;

Patterson, D.; Rabkin, A.; Stoica, I.; Zaharia, M. A view of cloud computing. Commun. ACM

2010, 53, 50–58.

27. Oaks, P.; Edmond, D.; ter Hofstede, A. Capabilities: Describing What Services Can Do. In

Proceedings of the First International Conference on Service-Oriented Computing, ICSOC 2003,

Trento, Italy, 15–18 December 2003; pp. 1–16.

28. Verma, K.; Akkiraju, R.; Goodwin, R. Semantic Matching of Web Service Policies. In

Proceedings of the Second Workshop on SDWP, Orlando, FI, USA, July 2005.

29. Xquery W3C Recommendation. Available online: http://www.w3.org/TR/xquery/ (accessed on 19

March 2012).

30. The Blueprint Headquarter (BlueprintHQ) prototype server. Available online:

http://blueprintexe.host-for.me/4CaaSt/blueprintHQ.htm# (accessed on 19 March 2012).

31. Flexiscale Virtual Machines. Available online: http://www.flexiscale.com/ (accessed on 19

March 2012).

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

http://www.vmware.com/products/vcenter-orchestrator/overview.html
http://www.vmware.com/products/vcenter-orchestrator/overview.html
http://www.sap.com/services/more/servsuptech/%20service-marketplace.epx
http://www.sap.com/services/more/servsuptech/%20service-marketplace.epx
http://www.w3.org/TR/xquery/
http://blueprintexe.host-for.me/4CaaSt/blueprintHQ.htm
http://www.flexiscale.com/

