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Abstract: Enterprises are now connected internally and externally to other Enterprises
via the Internet in ways that are increasingly difficult to manage, especially as these
interconnections become more dynamic. Current methods of coordinating the effects of
change as they propagate through these networks of connections are not likely to scale.
What is needed is a new paradigm for how the Internet supports such coordination. Indeed,
the Internet should and could provide fundamental coordination functions that are missing
today. In this paper, we describe how such a “Coordinated Internet” would work (this paper
is an expanded version of [1]). The key functionality of a Coordinated Internet would be that
the Internet actively watches what people do (analogous to search completion on desktops
today), correlates these activities, and actively notifies people when and how their current
tasks affect and are affected by the activities of other people. This would be accomplished
by standard coordination functions implemented as a common Internet layer that can be
used as a utility by more specialized applications. Such a Coordinated Internet would
revolutionize enterprise management, for all enterprises, large and small, corporate and
personal. For example, static workflows would become obsolete for all but the the most
routine processes. Some solutions provide existence proofs of such a coordination substrate,
such as the Redux solution in concurrent engineering, which we describe herein. However,
foundational research remains to be done in the new field of Coordination Engineering in
order to reach the goal of a future Internet in which coordination functions are fundamental.
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1. From Web 2.0 to Semantic Web Services

The key distinction of the ill-defined Web 2.0 technologies from older ones is that in Web 2.0,
publishing data is more democratic: anyone can publish with no programming. Such Internet (not
just web) technologies have contributed to the rise of “Emergent Collectives” [2,3] that often cause
unexpected disruptions in the extant economic models.

Web services offer a next step in this process of dynamic Internet technologies. To be precise, by
“web services”, we do not just mean WSDL [4] but any technology that is more than just a Remote
Procedure Call, because it has a published description, according to the Dagstuhl definition [5], such as
SA-REST [6] but not REST by itself.

The effect of the distinction of web services having public descriptions is that, in principle, users can
consume public services without having detailed knowledge of how the service is implemented. The
descriptions should also be “open” in that they are more standardized than, say, the descriptions of a
library of code subroutines. This intention is often described as “semantic”, more about which in the
next section.

Web services should be also democratic, which in this case means the service need not be changed
by the user. Democracy has an additional sense in that now programs can play as well as humans. Web
services could also be “just-in-time”, which means the user may invoke the service at any time without
prior arrangement.

As a consequence, we could have a free market of services: users have a runtime choice among
competing services. Especially important for enterprises, this provides flexibility: one could find an
alternative service whenever a contingency blocked use of the default service.

Were the democratic and just-in-time principles to apply for all public services on the Internet, they
would comprise an open free market of just-in-time services, but development of dynamic open services
seems far in the future for various practical reasons [7].

2. Service Semantics

Even a limited web service democracy depends critically upon standardized descriptions of services,
typically envisioned as the Semantic Web [8]. By “services” in the rest of this paper, we mean them
as defined in [9], which include but are not limited to web services. Services may be implemented in a
variety of ways, including mobile applications.

It is beyond the scope and intention of this paper to discuss “semantics” and we have previously
done so in [10] and [11]. Briefly, we equate semantics with interoperability: the more of one, the more
of the other. Were everyone everywhere to adopt the same standards for computationally representing
everything, semantics would be complete. In practice, technologies for providing semantics for different
purposes and communities are various.

There are strong requirements for semantics in services, depending upon how they are used. We
assume in this paper that the semantics problem will get solved one way or the other, perhaps by linked
data [12] for example. We now discuss briefly some of the possible ways this may occur, even though it
is not the main point of this paper, because it is so fundamental.
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If one wants to dynamically and automatically compose services, then the semantics and the planning
technologies must be very sophisticated. The best way to do this is with various sorts of logics.
Unfortunately, only academics will understand sentences such as F (−→x , do(a, s)) ≡ γ+

F (−→x , a, s) ∨
(F (s, s) ∧ ¬γ−

F (−→x , a, s)) [13] and academics tend not to strongly influence industry very quickly. The
three most likely scenarios for the development of service semantics are as follows.

The first is the development of “industrial service parks” [14]. There is a strong need for semantics in
these closed applications because of the need for re-usability and service composition within so-called
“Service-Oriented Architectures”. These semantics are likely to be more along the lines of standardized
parameters for subroutines, rather than logics. The problem with this is that logics address problems that
are likely to occur but be ignored in the rush to product.

For example, ignoring the failure of UDDI [15], industrial service parks are likely to index services
by categories, rather than their specific effects, because the former is easier to do. They are not
likely to provide sophisticated service composition because they want to control the processes at a
low-level. Rather, the service descriptions are likely to be sufficient only for pre-defined precedence
relationships among services, eliminating much of the rationale for services as a distinct technology
with new functionality. They are even less likely to address issues such as default assumptions (for
approval of requests for example), contingencies, and dynamic re-planning.

It may be that customers of the large providers would demand improvement but this has not been
historically the case. So, we can expect poor semantics that will become more sophisticated over the
years, as problems are exposed.

Consumer applications on the web and mobile devices are likely to drive simple semantics for vertical
markets. Examples are social networks and travel-based sites that offer semantics for the attributes of
people and for uniquely identifying geographic locations. RDF [16] databases are increasingly used and
major engines are offering increasingly semantic search functionality [17].

As these applications become more interoperable, there will have to be pragmatic solutions to
distributed updating and different namespaces. As with the industrial parks, these kind of semantics may
not address some problems. However, this approach has the advantage that some consumer-oriented
language for expressing simple business service descriptions, such as that the hours of operation
are 9 am to 5 pm PST, may develop whereas they are not likely to in the less-democratic service parks.

A related approach that is likely to show good results is the development of new applications, such as
“SEAmail” [18]. Such applications would provide adequate semantics for specific applications by initial
design. This would typically be done by entrepreneurs and we decline to speculate further about these
new applications except for the possibility of a “World Wide Workflow” as an example of a new workflow
model made possible by semantics as a first example of what was posited in [8] about workflows and
coordination that semantics would make possible.

We first examine the problem of static workflows that would be overcome by the dynamic workflows
of a World Wide Workflow. We will then note that this is but an intermediate step towards a more radical
change in enterprise management that is both possible and necessary.
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3. The Universe Does Not Run on Workflow

Enterprises today are run largely by sets of static processes, which we will loosely call static
“workflows”, although this term may have a more narrow definition in some contexts. The essential
point is that these are pre-defined procedures authored by a (workflow) programmer who has had to
identify company policies (such as managers need to authorize requests over a certain amount) and who
has had to foresee all contingencies that should be handled in the future.

In contrast to this, events happen in the world because objects obey the laws of physics rather than
programming. The ballistic arc of a thrown ball is not prescribed by a written procedure, but rather is
a result of the laws of gravity and momentum. Even a guided missile takes into account these laws and
makes physical adjustments to arrive on target. These laws can be made explicit and computations can
take them into account. Were the universe run like enterprises, these laws would be be implicit in code
and a path computed for each ball to be thrown in anticipated directions.

Running an enterprise by such static procedures has the effects that managers never know whether
their corporate policies have been correctly represented and workflow users are frequently trapped inside
an overly-complex process given what they want to accomplish and their current context. Such static
workflows also cannot easily respond to changes in policies and to contingencies.

There are supply chain problems, resulting from a needed change in suppliers, that could not be
handled by today’s workflows, such as the example below, explicated in [19].

• CENTRA is a car company that needs a CD player connected to a CD dispenser connected to a
power supply.

• The technology used is a special power/control connection that can only be disconnected by the
company who made the connection.

• Any company that makes a connection offers a disconnection service.

• Each component has 2 ports for connections.

• UNIBUS offers a service for connecting CD components.

• CENTRA has a service that can connect any CD component to the car chassis via a free port.

• A shipping service can move components (connected components are also components) from
company to company.

• CARCDs offers a CD Dispenser (advertised in a service).

• CDsR’Us offers a CD Player and a power supply (advertised in a service).

The workflow, a sequence of service calls, for handling this standard supply chain is obvious. The
components are shipped to Unibus that makes the connections according to instructions from Centra,
and then ships the finished macro-component to Centra, which connects it to the chassis.

But now there is a contingency: CDsR’Us cannot deliver the power supply in time. A search of
services, based upon their semantic descriptions, shows that another company, WeCDs, offers a CD
player connected to a power supply, which can be delivered in the needed quantities on-time. Let us
ignore for now the management of change and focus on the question of how the workflow should be
changed to take advantage of this solution to the contingency.
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A naive approach to workflow modification would be to simply substitute WeCDs for CDsR’US as
a provider of the CD player and power supply components. Figure 1 illustrates the subtle flaw in this
approach. The “planning” arrow refers to the construction of the workflow.

Figure 1. Workflow Modification.

A naive substitution of CD suppliers results in CENTRA not being able to connect the final product
to the car chassis because all of the connectors are already used. Standard workflow techniques will not
detect this problem until the workflow is executed. The expensive fix to this requires shipping the whole
system back to WeCD’s with a request to disconnect the CD player and power supply, and then shipping
back the result.

Recognizing that the world is committed to workflow technology, we now outline one way that
semantics would be used for a dynamic workflow system that could overcome the problems of static
workflow systems.

4. A World Wide Workflow

An intermediate, incomplete solution to static workflows would be a dynamic workflow, open to
everyone, scoped within some domain, and in the extreme, open to everyone on the Internet. The degree
of scoping is determined by agreement upon semantics. We now sketch out what one possibility for this
would look like as an expository device, rather than making a technical proposal.

Given the agreed upon semantics, there could be a Process-XML (PXML) that would describe
workflow tasks, as well as a protocol for exchanging PXML messages, along with process servers. Each
task description would have a control section and a work description. The task description declares the
previous task step in the workflow, the next step, and the performers of both. The prior step represents
history and the next step represents the plan yet to be executed. The control part of the PXML would
include standard workflow control constructs. These include to whom notifications should be sent if an
assigned task has not been completed by certain times as well as forks and merges.

The work section describes the input and output documents required for the task. Again, the input
documents described are provided and are a part of the execution history. The output documents are
planned and constitute the current criterion for task completion. “Document” in this context may be
very abstract and even consist of a statement that the task has been completed. In addition, there may
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be pre-conditions and post-conditions associated with the task. The pre-conditions should have already
been met when the task is assigned. The task actor should fulfill the post-conditions.

Tasks are assigned to actors at first in the planned workflow, which may be incomplete. The workflow
is monitored by a central server. Anyone within the domain of work, which might be the whole open
Internet, may receive a task assignment. This might be the result of an open auction bidding on tasks, or
from a search of capable actors.

Upon receiving a task assignment, the actor may refuse or accept it. The actor may also change the
workflow by modifying not only the output documents and post-conditions, but also the control part
of the PXML describing the task. The only part that may not be changed is that part describing the
execution history so far. Aside from this, since the PXML is an editable description, both work and
control sections for planned work may be changed.

Upon completing the task, the new PXML is sent to the next task assigner(s). However, before they
receive it, the process server, which is mediating these communications, may object to changes because
they violate certain policy constraints or because no viable workflow can be re-computed based upon the
changes. The extent to which individual actors may also impose constraints, for instance making some
inputs/outputs mandatory, requires further design analysis.

Such an open workflow system could be available to anyone on the Internet. The requirements would
be (1) agreed-upon message and task semantics, (2) client software able to receive, edit, and send task
messages, (3) communicating with the central server (of which there may be multiple ones for multiple
purposes). This software could be web-based, email-based, or app-based.

The vision of “flash companies” described in [3] would be enabled and adequate semantics would
likely quickly emerge for vertical markets as the need arose to better describe tasks, in auctions for
example.

The important point here is to see that the next step in workflow technology is dynamic workflows.
And once one sees this, it is only a short step to making workflows obsolete entirely.

The initial process template used for a open World Wide Workflow can be formulated by advanced
technologies for composing services, since tasks and services will have much the same semantics.

More important, some form of dynamic process synthesis and re-planning is needed to implement
the workflow reformulation caused by task actor changes. The alert reader will note that a World
Wide Workflow protocol does not by itself solve the supply chain problem of Section 3, even if we
have sufficient semantics for interoperable dynamic workflows. The dynamic process synthesis and
re-planning technology required is full AI planning, which involves the formulas of the sort mentioned
in Section 2, though such formulae can be hidden from the user. This leads to a more radical vision.

5. Enterprise Physics

Many technologies for the dynamic composition of web services have been developed in the last 10
years. If we can discover and consume reusable services with common descriptions, new processes may
be dynamically constructed automatically to achieve state-based goals [19] upon demand. This would
allow the workflow re-formulation needed for the World Wide Workflow. However, we then no longer
need workflow at all.
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Given a goal, e.g., to be reimbursed for travel expense, a new process can be created for this purpose,
even just one time for one person and one set of expenses. The processes would take into account all of
the currently expressed enterprise policies, e.g., what amounts must be approved by managers and the
conditions that qualify to be a manager.

Individuals inside companies, and in cross-company projects, could synthesize workflows and other
processes as needed. Companies could manage such processes by stating explicit policies and constraints
that such processes would respect, instead of trusting that programmers would properly interpret these
policies and waiting for new policies to be statically encoded. We call this Enterprise Physics.

Such dynamic processes should and could allow for change: contingencies, conflicts, opportunities,
policy revisions, and outright failure.

This would indeed be a closed world in the sense that any model must be closed. It should also
be noted that in some cases, the model will be deliberately scoped to work only within an intranet.
Nevertheless, it would better than the current model represented by static workflows in fixed code. As
soon as a policy changes and is so stated, all process synthesis would take it into account immediately
and explicitly. The same holds true for any contingencies: as soon as they are stated, the model and thus
the execution changes, because in Enterprise Physics, the model is what is executed.

There are various ways that enterprise physics could be accomplished. The simplest was suggested
by [20] in which relational databases and rules express corporate policies explicitly. An initial advantage
is that they only have to be written once and are automatically used in all use cases. Furthermore, the
kind of technology used is increasingly familiar to corporate IT.

Less familiar are various kinds of formal computational logics, ranging from datalog to full first-order
logic. These allow almost any kind of policy to be expressed and used in computation. A major
advantage of such logics is that the answer to queries can provide very sophisticated information based
upon all possible considerations, quickly and automatically.

Some new work in differential logic provides ways to effectively compute workflows [21]. The “laws”
of the enterprise can be written and edited as desired by authorized managers, and then users can ask the
system for answers and processes that are guaranteed to be correct and respect all policies and constraints
because they are essentially logical proofs.

Services provide an important approach to dynamic processes, provided they have an adequate
semantic description, such as the tasks of the World Wide Workflow. The AI planning approach to
automatic composition of services has been well established by a number of papers in the last decade.
There are essentially two approaches: automatic generation of static workflows and dynamic generation
of single-use process instances upon demand. We advocate the latter and explain methods in [19].

Full deductive (i.e., logical proof-based) synthesis of processes leads to processes that guaranteed to
be correct and require no verification. When full planning is used (versus simple backward chaining),
then conjunctive goals, required for the problem of Section 3, can be handled.

Finally, an added benefit is that the user knows that the process has been custom-built for the current
problem or goal and does indeed solve it. There is no way of knowing exactly what static workflows
actually achieved.

This is especially important with respect to process merging. When this is done with static processes,
for example when two companies need to combine their procedures to work together, the final process
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may be verified to see that it is safe and deadlock-free, but there is no proof that it meets any particular
goal or end-state. In contrast, deductive synthesis produces processes that require no verification and
provably accomplish some particular end state.

Though it would require a major revolution in enterprise IT, various relational database and formal
logics, together with services and AI planning, provide demonstrable solutions to enterprise physics:
running on explicit enterprise laws that must be obeyed and constructing correct processes to achieve
goals as needed.

One (and there are several) objection to this technical vision is that it does not scale. However, it
is more likely that the solutions to scaling for logic-based technologies will be developed, than that
current approaches will be scaled to meet the highly complex and dynamic world of distributed global
supply chains, especially as more and more use is made of services over Internet and mobile-based
communications.

This (finally) raises the question of how global dynamic processes could be managed, the main topic
of this paper. If we have global dynamic processes with distributed actors in various companies operating
asynchronously, responding to contingencies and opportunities, the result could be nearly uncontrolled
chaos, which is why we currently have static workflows.

6. The Coordinated Internet

Should we achieve the vision of dynamic processes, there is an even more radical future Internet that
is possible and even necessary: the “Coordinated Internet”. This is a vision of a pro-active Internet
that not only facilitates sharing and collaboration but also actively coordinates humans as well as
various programs, most notably services, which are being consumed and provided in distributed dynamic
processes. This is in contrast to mere collaboration, in which a system only supports human-initiated
sharing of information.

One definition of coordination is dependency management [22], which means that changes within
some system are propagated according to some model. More specifically, we mean by “coordination”
the notification, typically asynchronously, to the right people of changes within a design, especially
a process. Process components depend upon one another’s features and when these features change,
sometimes the process should change but the right users should always be notified of the effects of the
change propagation.

One example of a collaboration mechanism that is not coordination is Google docs [23]: this manages
the internal dependencies to keep the documents consistent but does little to coordinate the users. This is
a system that invites people to share but does not otherwise help them in distributed work: authors must
invite one another to share the documents.

An example of a limited coordination mechanism would be a collaborative version of the logical
spreadsheets [24] such that when when one user modifies a field on his display, appropriate updates take
place in related fields in other spreadsheets on the Internet. When such a system detects a conflict (e.g.,
a constraint violation) for which there is no defined automatic solution, it must somehow notify all of
the users involved and prototypes do this by changing the colors of affected fields. This is a minimal
example of a system notifying someone that they have been affected by change and that they need to
take action.
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A Coordinated Internet would go far beyond this: it would actively watch what people do (analogous
to search completion on desktops today), correlate these activities, and actively notify people when and
how their current tasks affect and are affected by the activities of other people. Example notifications
are that a conflict has occurred and who is involved, safe and consistent solution options upon request,
thrashing warnings, opportunities for synergy, and that some tasks are no longer necessary.

The trick is to do this in a useful way, so that coordination is increased, but people are not annoyed
by a “big brother paper clip”. We can see what the minimal requirements are by looking at a distributed
supply chain of the future.

7. A Future Supply Chain Scenario

In the future, car manufacturers will not make cars, they will only manage processes. In
the hypothetical DellAuto’s supply chain, chassis parts are made in Shanghai, then assembled by
ChassisMax in Mexico City, and then shipped to EnginesR’US in Stuttgart. Now suppose there is a
new opportunity: Tasmanian-based AssemNow can do the next twenty chassis cheaper and faster. What
is required to revise DellAuto’s supply chain on the fly?

First, there must be a check that the ChassisMax contractual penalty for canceling the current order
is less than the savings of using AssemNow. If this is so, then the following notifications need to be
made to:

• ChassisMax and AssemNow canceling and placing order.

• DellAuto’s Finance Department saying that the deposit with Bank of Mexico is no longer required.

• DellAuto’s Treasurer saying that the scheduled payment to ChassisMax should be canceled, and
replaced by a penalty payment.

• DellAuto’s Order Department saying that a PO should be issued to AssemNow.

EnginesRUs should not be notified because message exchange with the shipping service shows that
the chassis will arrive in Stuttgart on the original date. A coordination system would note only effects of
the changes, as they propagate through the dependencies, and not make useless notifications just because
something changed.

The effects of such functionality could be world changing, revolutionizing not only how companies
are managed, but how any large enterprise is done, especially ad hoc ones, such as global relief efforts
for catastrophes [25].

As noted previously, there are supply chain scenarios that cannot be handled by workflow and new
technology is needed. It would be difficult to handle even the example of DellAuto’s supply chain with
the World Wide Workflow without some coordination mechanism.

There are various ways to handle the management of dependencies and changes that propagate
through them. The logical spreadsheet mechanism of [26] does so by noting whether or not “false”
can be deduced from any of the logical expressions and then denoting which values of arguments to
predicates lead to these inconsistencies. This requires paraconsistency: being able to reason sensibly
even when there are logical inconsistencies, which is useful since logical inconsistencies may arise from
a number of sources in distributed systems [27].



Future Internet 2011, 3 58

Another general technology proposed is that of [28] in which dependencies among web services are
represented. Like the logical spreadsheet, this is a generalized notion of dependencies. Neither propose
a specific method of notifications, although both provide the basic mechanism for identifying who is the
owner of the variable value assignments that are in conflict.

We summarize in the next section a solution that does elaborate coordination notifications, which has
long existed in the field of concurrent engineering [29], and is a model consisting of special dependencies
for general design covering many situations. This model specifically defines a set of notifications that
should be sent in specific situations.

8. One Mechanism for Coordination: Redux’

The Coordinated Internet can be viewed as the management of a configuration or planning problem
worked on by distributed actors. When there are multiple objectives and no single objective function, as
there is in the case of large projects with many engineers, the best we can do in terms of optimality is to
ensure that no single objective solution can be improved without harming the solution of another: Pareto
optimality .

The Redux model of design, as implemented in a subset called Redux’ [30], implements the use
of Pareto optimality within a model of design [31]. The full Redux model is a planning-inspired
programming model in which operators are selected to apply to a goal and such a selection is called
a “decision”, the result of which must be at least one of a new goal or an assignment. The last may be
the assignment of a value to a variable but may in general be any statement about the emerging design.

The general method of full Redux may be thought of as goal/operator-oriented programming. A
subset of the system, Redux’, manages the dependencies among all of the Redux objects, each of which
may be valid or invalid depending upon changes and their defined propagation.

Full Redux can be used to implement full AI planning and process synthesis of the kind required
for Enterprise Physics. Redux’ is the underlying coordination engine, which can be used with almost
any planning and reasoning system sufficient for Enterprise Physics. Redux’ implements a specialized
dependency management model that is nevertheless generally applicable.

Logical spreadsheets and most general approaches to dependency management only consider this
degenerate case in which every decision is exactly which value to assign to a single-valued variable,
making the Redux model an overkill. However, many cases of coordination require much more elaborate
goals and decisions.

Given a conflict (either a constraint violation or a goal block) and a solution (the revision of
some design decision), using a justification-based truth maintenance system (JTMS), Redux’ constructs
justifications for revisions resulting from the resolution of conflicts using Dependency-directed
backtracking (DDB) that become invalid if the conflict would not obtain if ever there is another way
of resolving the conflict, thus enforcing Pareto optimality. This justification should not introduce any
unsatisfiable circularity into the JTMS network.

Figure 2 illustrates the Redux’ model with a simple conflict. Two actors, Agent 1 and Agent 2, have
each tried to satisfy their individual goals with decisions D1 and D2 respectively. These have resulted in
assignments A1 and A2. When both are valid, they result in a constraint violation. In this instance, since
no other decisions support these assignments, the resolution of this conflict will require retracting either
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D1 or D2. Neither agent can retract the other’s decision. Both will receive a notification of the conflict,
and both can request a list of possible solutions.

Figure 2. Redux’ Example Conflict.

Were A1 to retract D1, Redux’ would cause the goal G3 to become invalid. This would not invalidate
decision D3, but it would invalidate its optimality. The owner of D3 would then receive a notification
to the effect that D3 is no longer needed and may be retracted. Should the owner of D3 decide to do
so, then G4 and G5 would become invalid and the owners of decision D4 and D5 would receive similar
notifications.

A1 will also be notified that although G1 was previously satisfied, because all of its subgoals were
satisfied, this is no longer the case. Should A1 make some new decision to satisfy G1, this new decision
would receive a justification for its optimality based upon the choice to resolve the previous conflict by
retracting D1. Should either the constraint underlying the constraint violation or decision D2 lose their
validity (for various reasons), this justification of optimality for the new decision would then become
invalid and A1 would be notified that there is now an opportunity to return to the original (and presumably
initially preferred) decision without causing the original conflict.

Notable characteristics of the Redux model include (1) distinguishing between goals that need to be
achieved, and constraints that should not be violated; (2) distinguishing between conditions that affect
the optimality of a design decision and its validity; (3) identifying opportunities, resulting from loss of
Pareto optimality, as well as conflicts.

Distinguishing between goals that need to be achieved and constraints that should not be violated has
proved generally useful in configuration technology [32]. Achieving a goal or resolving a constraint
violation are two types of tasks managed by Redux’.

Logical spreadsheets (as well as constraint satisfaction systems) usually represent everything as
constraints but implicitly have goals when a constraint resolution cannot be automatically determined
and users must choose. Some versions of logical spreadsheets have also incompleteness, for instance,
when there is a “oneof” type of constraint, which is a kind of goal.

One current commercial system [33] also explicitly represents such necessary variable choices. Redux
extends this notion to general goals that must somehow be satisfied, as it is an abstraction of AI
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planning in which some state should be achieved while respecting certain (typically temporal sequence)
constraints.

The distinction between optimality and validity is important for managing the propagation of change.
In Redux, the optimality of a decision depends upon the validity of the goal to which it is applied as well
as various reasons, which may be environmental facts.

In full Redux, these optimality reasons were used in reasoning about the best choice of an operator
to apply to a goal, but they may be any reasons a decision maker wants to state. A typical reason for
choosing an airline flight, for example, might be its cost. Were that cost to change (prior to buying the
ticket), the user should be notified that the reasons for choosing this flight have changed. However, the
plan should not be changed automatically, as it would have to be were some contingency to occur, e.g.,
the cancellation of the flight. (Full Redux includes a notion of preference as it allows local choosing
of operators according to explicitly-stated binary preferences and recording the reasoning used to do so,
which may be full first order logic, as well as reasoning about the best fix for a conflict. This functionality
can be used in Enterprise Physics to establish company policies, although it cannot be used to determine
global optimality, which is in any case often impractical.)

In general, it is not a good idea to invalidate a decision simply because of loss of optimality, as this
will cause changes to propagate through the distributed design and it is not always worthwhile to do so.
For instance, just because there is now a flight that is two Euros cheaper than the flight chosen may not
be worth changing extensive travel plans with several flight connections.

A special case of loss of validity of an optimality reason is Pareto optimality loss. If a user responds
to a conflict by retracting a decision and making a second decision for the same goal, Redux’ assumes
the first decision was a local optimum and constructs a special justification supporting the validity of this
reason for the optimality of the second decision. This justification will become invalid should changes
make the initial conflict no longer necessary.

For instance, if another decision owner retracts (for some reason) a third decision that conflicted with
the first, which is now retracted, then that first decision could be made again, indicating a loss of Pareto
optimality. Alternatively, since constraints in Redux’ may also have conditional validity, if the initial
constraint loses validity, this would also be a loss of Pareto optimality. In all cases, the decision owner
is notified of the opportunity to remake the original decision.

A set of notifications useful for active coordination is provided in Redux’ and formally defined in [30].
The simplest example is when a subtask has become redundant because the method of achievement of
the supertask has changed as seen in the previous example.

An example set of notifications built-in to the Redux model are as follows:

• You have been assigned a goal

• Your goal is no longer valid because a higher-level decision is invalid

• Your decision should be reconsidered because

– A reason has changed
– An earlier decision no longer conflicts

• Your goal is no longer satisfied because

– An input to your decision is invalid
– A subgoal is no longer satisfied
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• You contribute to a constraint violation/goal block

• Here are the known safe and consistent solution options you requested.

In some cases, there is no way to achieve a goal without causing a constraint conflict. A user may
declare this as a goal block. Goal block conflicts are treated nearly the same as constraint violations. All
of the constraint violations blocking the different ways of achieving the goal are accumulated by DDB
and the set of decisions involved is used to send notifications to the decision owners. At least one must
retract their decision in order to resolve the goal block.

Redux also guarantees no thrashing among changes by decision owners leading to cycles and
identifies safe solutions to conflicts and goal blocks in a distributed environment by management of
decision rationales and the justifications produced by conflict resolution.

In the case of both constraint violations and goal blocks, the minimal subset of an AND/OR tree
of decisions that could be retracted in order to resolve the conflict is generated dynamically. The
solutions are safe in that they will introduce no unsatisfiable circularities in the network and they are
minimal in the sense of subsumption. This is done in Redux’ using a version of DDB that dynamically
computes the minimal AND/OR tree of decisions that could be retracted in order to resolve the constraint
violation. Though such a minimal subset of choices is usually computed in an Assumption-based Truth
Maintenance System (ATMS) for all possible worlds, it is computed dynamically as needed also in the
ATMS-based constraint handling system of [33].

9. Implications

Redux’ notifications may be formalized messages exchanged among agents, services, or general
applications. ProcessLink [34] was a prototype concurrent engineering system suing Redux as a
coordination manager. This was an agent-based system with a set of well-defined messages to be
exchanged among the various agents.

Figure 3 shows a typical ProcessLink architecture. It is important to note that the coordination
of a design among various designers can be extended to plans to build the design, as a plan is also a
design. In [29], we described how a design system may be linked by these notifications to a construction
planning system so that when the unfinished design changes, the schedule can be automatically optimized
in response to such change.

In Figure 4, the displays (which were Java apps) for the designer are on the left and the displays for
the construction scheduler are on the right. The upper two screens show the initial design of a Pick-Up
Head (PUH) and the schedule to build it. Initially, the PUH was to be a custom design, so that the weight
of the PUH was unknown until after it was built. Thus building the mechanical support for the PUH had
to be scheduled after the PUH was built, because the support had to be of the correct strength.

In the lower left screen, the designer has changed the decision to build a custom PUH and is instead
using a commercial off-the-shelf PUH. The old design is colored red to indicate it is now invalid. The
assignments and one subgoal that depended on this old decision are now also colored red. One of the
new assignments of the new decision (green) is that we know the weight of the PUH because of its
specifications.
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Figure 3. A ProcessLink Architecture.

Figure 4. Design/Schedule Coordination.

The design system notifies the scheduling system of this change. The scheduling system, also using
Redux’, sees that the scheduling of the mechanical support only after the construction of the PUH is now
a suboptimal decision and can revise it. If the scheduler is programmed to do so, this can be an automatic
revision in the schedule that makes the whole schedule shorter.

Obviously such functionality allows fast-track designs in which construction may start before the
design is complete. But in general, the ability to coordinate the architect, the general contractor, the
inspectors, and the various sub-contractors is badly needed and could significantly lessen the cost and
time required to design and construct any large project.
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This clearly extends to just-in-time supply chains, especially if semantic services allow the
discovery of better services and products, and the dynamic synthesis of processes to construct supply
chains as needed.

This extends to any large human endeavor, such as coordination of relief for catastrophes, and also to
small endeavors such as the formation of a band and design for booking and traveling to venues. It is
easy to see that specialized “wizard” applications would be developed for vertical domains to speed the
construction of such plans and managing the execution and revision of them.

Enterprise coordination is the next leap forward for the interoperable Internet.

10. Coordination Engineering

Redux’ is an existence proof of the kind of coordination dependency management and notification
model needed for the Coordinated Internet. It is sufficient to manage the scenarios described in this
paper, though there is much work to be done, as described in this section.

There are other coordination models besides Redux’ as well as outstanding issues not solved by
Redux’. The features of Redux’ could be implemented as extensions to both [27] and [28].

The paraconsistency approach may be necessary in any case because logical inconsistencies are
certain to arise in any distributed complex system. However, it is worth noting that both Redux’ and
the system described in [33] are based on versions of truth maintenance systems, in which the nodes are
propositions and are not reasoned about other than to detect constraint violations, which are arbitrary,
not logical.

However, full Redux does use logical inference to reason about choice of operators, which goal to
work on next, and a variety of conditions. Though the justified nodes are not part of this inference,
underlying facts are and so may need paraconsistency, although Redux’ is agnostic about the inferencing
method and even non-deductive methods could be used as proposed in [35].

In general, there is a need for much more research in the field of coordination engineering. Topics
include the proper technologies for detecting and understanding tasks and filtering notifications so that
they are more useful—instead of distracting or disturbing—to people.

Known research issues include (1) understanding how to combine constraint satisfaction techniques
with DDB [36], (2) better algorithms for underlying justification graph control, (3) better representations
of committed actions and sunk costs, and (4) providing appropriate transparency of information in supply
chains. The last one is an especially challenging research issue. The end supplier in the chain needs
to know about schedule and product changes by suppliers far down the chain. It is clear that such
information can be passed up the chain as needed but it is not clear how to keep other suppliers from
seeing this information, which may be necessary because of competitive conflicts.

Another general computer science issue is conflict resolution. Redux offers no specific advice as
to which solution might best resolve a conflict. There is a long history of both domain-dependent
preferences and domain-independent advice (for example, when there is only one choice, that decision
could be retracted automatically.) There is some relation to on-going work in what to do when databases
are inconsistent, though most of this research has to do with providing minimally consistent answer
subsets. There is no good general answer to this issue now.
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Coordination should also ideally provide advice for users to consider changes in decisions. This
could be done in three levels. The first would be passive mode: consider propagating the effects of
the proposed decision change and report the calculated consequences. The second would be an active
“ping”: notify the owners of all other decision owners and consider their responses. The third level
is what Redux actually does now: make the change and work with others on resolving the resulting
conflicts, if any. How to best implement such functionality is a good engineering issue. Providing
guidance using sensitivity analysis is a particularly interesting scientific question for both decision
revision and conflict resolution.

Detailed questions about implementing coordination in the Internet involve what part of the
coordination functionality should embed in what Internet layers. For instance, could the message
notification be handled by smart routers and distributed servers? How should the “watching” function
be implemented in browser plug-ins and mobile device apps? In Next-Link [31], the precusor of
ProcessLink, we hand-inserted code in standard engineering programs. Is there a more scalable
approach?

The Coordinated Internet also has deep issues in common with Internet of Things, such as
authorization to change descriptions of products and services.

The Coordinated Internet provides a rich new topic of research for computer science as well as
the potential to radically improve mankind’s ability to manage complex projects. We have enough
technology to begin to build it.
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