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Abstract: When applying 5G network slicing technology, the operator’s network resources in the
form of mutually isolated logical network slices provide specific service requirements and quality
of service guarantees for smart grid communication services. In the face of the new situation of 5G,
which comprises the surge in demand for smart grid communication services and service types, as
well as the digital and intelligent development of communication networks, it is even more important
to provide a self-intelligent resource allocation and carrying method when slicing resources are
allocated. To this end, a carrying method based on a neural network is proposed. The objective is
to establish a hierarchical scheduling system for smart grid communication services at the power
smart gate-way at the edge, where intelligent classification matching of smart grid communication
services to (i) adapt to the characteristics of 5G network slicing and (ii) dynamic prediction of traffic
in the slicing network are both realized. This hierarchical scheduling system extracts the data features
of the services and encodes the data through a one-dimensional Convolutional Neural Network
(1D CNN) in order to achieve intelligent classification and matching of smart grid communication
services. This system also combines with Bidirectional Long Short-Term Memory Neural Network
(BILSTM) in order to achieve a dynamic prediction of time-series based traffic in the slicing network.
The simulation results validate the feasibility of a service classification model based on a 1D CNN
and a traffic prediction model based on BILSTM for smart grid communication services.

Keywords: CNN; BILSTM; network slicing; edge network; smart grid; service classification;
traffic prediction

1. Introduction

Today, the demand for grid communication services is increasing dramatically and
the types of services are diversifying, and smart grids have become the main development
trend and, ultimately, the strategic goal of the electric power system. Based on different
application scenarios and demands of 5G, network slicing adopts technologies based on
Software Defined Network (SDN) and Network Functions Virtualization (NFV) [1,2]. Network
slicing realizes an end-to-end network grouping communication function and provides the
network resources required for the service through the orchestration operation of slicing.
The characteristics of 5G network slicing technology are well suited to the performance
requirements of a smart grid [3,4]. Its three main features of large bandwidth, low latency,
and large connectivity will provide better processing capabilities for various typical services
in the smart grid. Network slicing provides differentiated grid communication services for
different units on demand based on the working conditions and the service requirements
that are needed to meet the carrying requirements of different types of grid communication
services on network slicing [5]. At present, research combining grid communication services
with 5G network slicing technology is being gradually enriched and put into use.
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In the electricity grid, cloud computing is now widely used [6]. But as the volume
of data increases rapidly, there is a need for new ways of handling and storing those
data [7]. The application of edge computing technology, which decentralises computing
resources and distributes them closer to end devices, can better reduce network latency and
costs [8]. Implementing edge computing through edge data centres enables more granular
requirements for each edge node, resulting in more efficient resource utilisation [9]. Aiming
at smart grid scenarios, edge data centres are well placed to improve resource management
strategies [10,11].

Ref. [12] proposes a prediction-based 5G network slicing algorithm that uses a predic-
tion algorithm to pre-implement resource isolation and shorten the establishment cycle of
network slicing in order to accommodate the real-time requirements of 5G networks. Based
on different mathematical approaches, these models are classified into game theory-based
models, predictive techniques, and robustness/failure recovery models. One study [13]
introduces the application of 5G network slicing technology in smart grids and presents
several typical case studies. Another study [14] illustrates the application of resource
allocation algorithms for network slicing in smart grids. In the work of [15], according to
the demand of power services, network slice planning strategies with different isolation
abilities are proposed. Based on the management requirements of refined service in the
power industry, the slice identification of the power service is then proposed. The work
of [16] constructs a new grid data collection system based on cloud-edge collaboration,
which solves the real-time processing and response problems of edge applications while
reducing the bandwidth pressure of data communication between the cloud and the edge.
These preliminary studies focus on slicing scheduling algorithms and resource allocation
methods that seek to improve network efficiency. In such approaches, service requirements
are often abstracted into relatively fixed latency or bandwidth requirements. If the traffic
changes dynamically or has many types, before slicing resource allocation, service type
identification and dynamic demand prediction are achieved in advance on the edge side
to realize the collection of large amounts of data in the edge nodes and the preliminary
processing and analysis. Then, enter the next layer of network transmission is entered to
achieve a more efficient and reasonable resource allocation and carrying scheme for grid
services in 5G network slicing, which can use resources efficiently.

Communication networks are accelerating to become digitised and intelligent, and
using AI technologies to enhance communication intelligence has become a development
trend. To achieve this expectation, the network needs to have “endogenous intelligence”,
considering various artificial intelligence technologies at the beginning of the network
design, such as deep learning algorithms, in order to form a perfect system architecture
and enhance the network’s “intelligence capability” [17]. For example, China Mobile’s
“Tianyan” system provides self-intelligence for many functions in the 5G core network.
Compared to classical classification and recognition techniques, such as port recognition,
deep message detection and recognition, and statistical feature recognition, neural network-
based deep learning models can achieve higher accuracy rates while not relying on other
experiences, and they can also handle tasks and data of higher complexity [18,19]. The
classic traffic prediction methods, such as time series models and regression models, also
perform better with deep learning models, such as neural networks. Useful features can be
learned directly from the raw data, improving the accuracy and efficiency of the model [20].
The models can be better adapted to real-world scenarios and provide higher-quality
prediction results [21]. Therefore, this paper proposes a neural network-based approach
for carrying smart grid communication networks in 5G network slicing, which can reduce
the complexity of resource allocation in the next phase of network slicing. The main
contributions of this paper are as follows:

(1) The hierarchical classification matching scheme was designed by matching the differ-
ent communication demand for smart grid communication services, such as band-
width, latency, and connectivity, with the characteristics of the 5G sliced network,
where the traditional 5G network slices are divided into critical and general.
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(2) A scheme is proposed for combining edge computing in 5G slices in order to carry
smart grid communication services. Different types of data generated by electric
power terminal devices are received into the edge data centre for classification and
matching, while the edge data centre performs dynamic prediction of the service
traffic data in the network slice.

(3) In order to adapt to the development trend of intelligence, the neural network model
is used for classification matching and traffic prediction. The 1D CNN is used to
extract the data features of traffic services and encode the data in order to achieve
classification and matching of smart grid communication services. At the same time,
with the proliferation of grid communication network traffic, the complexity of the
services carried by the network has increased greatly. If a fixed rationing model is
adopted, excessive network resources are often required, which is not conducive to
improving network efficiency and expanding the network scale. This paper also uses
BILSTM work for dynamic traffic prediction and adjustment.

(4) The experimental results show that the neural network model used can show better
results in classifying the power communication network and in predicting the net-
work traffic, which is suitable for the 5G slicing network carrying the electric power
communication network.

The rest of the paper is organized as follows. Section 2 describes the system mecha-
nism. Section 3 illustrates the algorithm model. Section 4 implements the experimental
simulations. Finally, Section 5 gives the conclusions.

2. Hierarchical Dispatch Carrying Mechanism
2.1. Characteristics of Smart Grid Communication Services

The application scenario of power 5G communication service is mainly divided into
two production regions, the production control region (I) and the management information
region (II). The production control large area service mainly includes control class traffic,
such as distribution network differential protection, intelligent distributed feeder automa-
tion (FA), and precise load control, which require low delay control [22]. The management
information region mainly includes acquisition- and application-type services, involving
the acquisition of various terminal data, video monitoring, etc. The acquisition objects
are extended to various types of IoT terminals and multimedia scenes, with a surge in the
number of connections, which is in the millions [23]. At the same time, the acquired content
tends to be video-based and high-definition, and the demand for return transmission has
increased greatly [24]. For these diversified power 5G services, the three scenarios of
enhanced Mobile Broadband (eMBB), massive Machine Type Communication (mMTC),
and ultra-Reliable and Low-Latency Communication (uRLLC) in 5G network slicing can
well provide service capability for them [25,26]. The basic relationship between selected
typical power 5G services and network slicing is shown in Table 1. The services of the
two production regions involve three main categories, control, collection, and application,
corresponding to the three application scenarios of 5G slicing. Based on the size of the
specific feature data, they can be further categorized as general type and critical type.

Table 1. Features of power 5G service.

Production Region Traffic Category Electric Power Service
Communication Requirements

NS Hierarchical Classification
Delay Bandwidth

I Control category
Distribution network
differential protection ≤10 ms <2 Mbps

uRLLC
Delay-critical

Distribution automation ≤100 ms <10 Mbps Delay-general

II
Collection category Power information collection <3 s 10 kbps mMTC Connection-critical

Application category Mobile operation ≤300 ms ≥4 Mbps
eMBB

Bandwidth-general
Robot inspection ≤300 ms 20~100 Mbps Bandwidth-critical
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2.2. Neural Network-Based Hierarchical Scheduling Carrying Mechanism

The application of network slicing is greatly significant to the construction of 5G pri-
vate networks in power scenarios. In the intelligent processing of the power access network,
the edge access room can achieve intelligent sensing and prediction by automatically iden-
tifying different types of access terminal services, such as power distribution automation
and video monitoring; by automatically adapting them to the appropriate communication
lines and virtual network slices according to the different communication needs of the
services; and, lastly, by achieving intelligent classification. Service traffic, flow direction and
network congestion are continuously monitored and analysed, the network is dispatched
based on predicted future conditions, and traffic adjustment and routing optimisation of
network slices are carried out. Terminal data from different regions enter the edge data
centre, and for power slicing management needs, as well as for power service needs, the
power intelligent gateway is used as the edge computing node mainly responsible for
receiving and forwarding data. At the same time, the characteristics of the electric power
services are analysed and classified according to rules or data models, providing basic slice
configuration parameters for network slice carrying planning under different conditions
and generating various types of customized slices. Under the condition of considering the
soft isolation of base station equipment, the mode of slice priority scheduling is proposed
to ensure the resource occupation of high-priority users through the hierarchical classifi-
cation of power services characteristics. Then, combined with service traffic prediction, it
actively generates dynamic adjustment to improve the transmission efficiency of the whole
network [27].

This paper implements feature extraction of service data based on 1D CNN and carries
out service classification matching to satisfy the classification of differentiated power
5G services according to different service features and mapping deployment with power
5G slices. At the same time, the dynamic prediction of service traffic of network slices
based on LSTM can better satisfy network slices according to different service conditions
and service requirements for different units of differentiated power traffic network slicing
services to meet the carrying of power 5G traffic network slices. At this edge computing
node, the deployment of power 5G slicing service mapping for the access network is
completed. Afterward, by developing a slicing network management system, network
resource management and monitoring of the wireless network, bearer network, and core
network for 5G slicing are all realized. In order to realize the docking of the bearer network
and 5G slicing within the enterprise, a bearer network slicing device is developed in order
to realize the end-to-end slicing establishment between the traffic terminal, the 5G network,
the enterprise intranet and the traffic system, and the overall structure is shown in Figure 1,
where the classifications and traffic forecasts mentioned are marked in red.

The 5G network slicing service carrying is the process of deploying power service
to 5G slices. In the process of deployment and implementation, the demand described
in the hierarchical classification of the grid service is transformed into the service level
indicator of network slices in the 5G network. The network slice Service Level Agreement
(SLA) is part of the service agreement signed between the operator and the network
slice customer, and the network slice SLA contains the requirements of the network slice
customer for the services and network provided by the operator. On the basis of the service
level classification description, in order for the control equipment of the 5G network to
understand the power service requirements, it is also necessary to translate the power
service statute into the corresponding SLA quantitative model.

3. Neural Network Algorithm Model
3.1. CNN Model

CNN can process input data with a grid-like structure and are widely used in the field
of image processing. The part of the classification highlighted in red is shown in Figure 2,
where the algorithm consists of a unique deep feed-forward network containing an input
layer, a convolutional layer, a pooling layer, a global pooling layer, a fully connected layer
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and an output layer [28]. The dataset is obtained from the center DC, trained and the
model is output to the edge DC. The input sequence can be extracted and transformed into
features, and the feature vectors can be fed into a classifier for classification.
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The convolution layer is mainly used to extract local information from the temporal
data, with different filters to extract different features. For a filter of length D, the output of
the convolution layer is as follows [29]

hi = relu(
D

∑
d=1

wdxi+d−1 + b) (1)

where relu denotes the modified linear unit function, wd denotes the weight vector of the
filter, and b denotes the offset.

The CNN network contains multiple convolutional layers and multiple pooling lay-
ers. The combination of different layers will achieve feature extraction to obtain high-
dimensional features at higher levels. This paper uses a pooling layer and a global pool-
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ing layer. In the pooling layer, the maximum pooling rule is used. The feature map is
integrated into the global pooling layer and converted into a feature vector for use in
classification operations.

The fully connected layer uses regularization. L2 to prevent overfitting [30], and the
softmax logistic regression function is used to output the classification results,

min
w,b

J(w, b) =
1
m

m

∑
i=1

L(ŷ(i),y(i)) +
λ

2m
‖w‖2

2 (2)

y = so f tmax(WT p + b) (3)

where softmax denotes the softmax function, and W and b are the weights and offsets of the
fully connected layers, respectively.

3.2. LSTM Model
3.2.1. Structure of the LSTM and BILSTM Models

LSTM introduces self-loops to produce paths where gradients flow continuously over
long periods. The algorithm can predict dynamically changing sequences of numbers. The
LSTM model contains three gating units, the input gate, the forget gate, and the output
gate, which control the flow of information [31]. The internal structure of the LSTM model
is shown in Figure 3.
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The relationship between the three gating units and the candidate memory states is
as follows:

it = σ(Wiixt + bii + Whiht−1 + bhi) (4)

ft = σ(Wi f xt + bi f + Wh f ht−1 + bh f ) (5)

ot = σ(Wioxt + bio + Whoht−1 + bho) (6)

gt = tanh(Wigxt + big + Whght−1 + bhg) (7)

The relationship between ht and ct is as follows

ct = ftct−1 + itgt (8)
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ht = ot · tanh(ct) (9)

where it indicates the output of the input gate; ft denotes the output of the forgetting gate,
controlling the importance of the memory state at the previous moment; ot denotes the
output of the output gate, controlling the output of the memory state; gt indicates the
activation value of the input at the current moment; ct indicates the memory state of the
current moment, used to store historical information; ht indicates the output value of the
current moment for passing to the next moment; σ denotes the sigmoid function; tanh
denotes the hyperbolic tangent function; and W, b denote the weight and offset, respectively.

BILSTM is an extended LSTM model that considers not only historical input informa-
tion from the current moment but also information from future moments. It has greater
expressiveness and model generalization capabilities.

The BILSTM model processes the input sequence from front to back and from back to
front in two different LSTM layers and concatenates their outputs to obtain the final output.
In the forward LSTM layer, the LSTM model receives the original input sequence, i.e., in
left-to-right order. In the backward LSTM layer, the LSTM model receives the inverted
input sequence, i.e., in right-to-left order. The structure of both the LSTM and the BISTM
are shown in Figure 4.
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hf represents the hidden state output of the forward LSTM layer. Hb represents the
hidden state output of the backward LSTM layer; and ht denotes the output value at the
current moment, which is a concatenation of the outputs of the forward and backward
LSTM layers. Suppose the hidden state of the forward LSTM output is hf,t, the hidden
state of the backward LSTM output is hb,t, and the input at the current moment is xt. Then,
outputs can be expressed as follows, respectively, the output of the final forward and
backward LSTM are dot productively stitched together at moment in order to obtain the
output of the BILSTM model at that moment as

h f ,t = LSTM(xt, h f ,t−1) (10)

hb,t = LSTM(xt, hb,t−1) (11)

ht = h f ,t ⊕ hb,t (12)

where ⊕ represents the splicing operation of vectors, and the activation function is chosen
as relu.
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3.2.2. Evaluation of the LSTM and BILSTM Models

Formula (13) represents Mean Absolute Percentage Error (MAPE) and is a common
metric used to evaluate LSTM and BILSTM models, which indicates the difference between
the predicted and the actual values of the LSTM and BILSTM models, and the smaller the
value of the metric, the higher the prediction accuracy of the model

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (13)

where n indicates the sample size, yi indicates the actual value, and ŷi indicates the predicted value.

4. Results and Discussion

The neural network algorithm was built using the TensorFlow framework in the simu-
lation experiments. The hardware environment consisted of an AMD Ryzen 7 5800H CPU,
16 × 3.2 GHZ cores, 16G RAM and an NVIDIA GTX 1650 GPU with 4G video memory.

4.1. Classification of Grid Services Based on 1D CNN

The data messages generated by power communication services have relatively fixed
frame formats, and the characteristics of different types of electric power services are more
obvious, which can be abstracted into 1 × N pixel images, and then identified using CNN-
based image algorithms. Based on 1D CNN, the data features of the traffic service are extracted
and encoded in order to achieve power service identification and classification matching. The
data collected from various types of power terminals first enter the input layer data, which is
a 1 × 1024 two-dimensional matrix after pre-processing. In the pre-processing of the data, the
dataset used in the experiments are transformed into an input format with the same structure.
This mainly consists of data encoding, normalisation processing, and array dimensionality
reduction. The acquired data are used to convert them to integers according to the ASCII table
and turn them into a 1 × 1024 two-dimensional matrix.

In the simulation, the tagged sample dataset obtained from packet capture in the
operational network is used, with 146 service types in total and 100 sample service packet
data for each class. Each sample service packet data intercepts the net data load of the
application layer message and presents it in the form of a hexadecimal code stream. The
data processing flow based on the CNN model is shown in Figure 5.
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The accuracy of the operational recognition is related to the training sample parame-
ters, the convolutional layer parameters and the activation function. For the parameters
of the convolutional layer, the value of the number of convolutional kernels, FILTER, was
chosen to be adjusted. The corresponding accuracies for different filters is shown in Table 2.
It can be seen that the best combination of parameters is the number of the FILTERs of
128 and 256, which are indicated by underline.
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Table 2. The effect of the number of filters on accuracy.

FILTER Accuracy/%

128 256 82.72
512 1024 82.68
256 512 82.34
64 128 81.42

128 128 79.09
256 256 77.93
32 64 78.49
64 64 77.32

Figure 6 shows the results of the test set training tests with the best combination of
parameters. It can be seen that the test accuracy increases and gradually stabilises as the
number of epoch iterations increases over time. The accuracy of the test increases with the
number of iterations and stabilizes at around 83%. The recognition accuracy can be further
improved when the number of samples per class of service is increased, limited by the fact
that the number of samples per class of service is only 100. Therefore, we obtained Table 3
by repartitioning the number of entries of training set and test set data for each type of data.
It can be seen that as the number of training data entries within the dataset increases, the
accuracy of the model is subsequently increased.
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Figure 6. Accuracy of classification with the best combination of parameters.

Table 3. The effect of the number of training sets on accuracy.

Number of Training Sets Number of Test Sets Average Accuracy/%

10 20 44.71
20 20 58.88
30 20 66.31
40 20 68.67
50 20 73.19
60 20 75.26
70 20 75.35
80 20 77.86
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When applying this method to the power communication network, the training of the
recognition model can be carried out centrally in the data centre, and the sample pool can
be continuously updated and expanded to dynamically improve the accuracy of the model.
The training results of the model can be loaded onto the smart gateway devices in the edge
network stations or server rooms using the edge computing mode to automatically classify
the services before they are adapted into 5G slices.

The traffic types and characteristics of power communication networks are relatively
stable and less diverse than those of ordinary communication networks. Therefore, in
this type of traffic context, traffic identification can be carried out separately for different
services within the grid area, which can improve the accuracy of the dataset identification.
In order to analyse the impact of traffic types on the accuracy of the dataset, scenarios
with different numbers of types were set up and trained five times randomly in this paper,
and the classification average accuracy of the test data of the training model was obtained
as shown in Figure 7. In each of the five training sessions, datasets corresponding to the
number of species were randomly selected for training and testing. Figure 8 shows the
confusion matrix heat map of the results of one of the experiments when the number of
types of datasets is 10. Var-1 to val-10 represent each of the 10 different data types. It can
be seen that the traffic classification accuracy increases greatly when the number of types
of datasets is reduced, and the recognition accuracy reaches up to 95% when the number of
types of datasets is reduced to 10.
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In combination with edge computing, as represented in Figure 2, the data in the central
data centre are trained and the already trained model is stored separately on the edge side.
Then, the terminal data are brought in to classify it. In the simulation, the edge-smart
gateway is simulated by separating the training and validation of the model. The accuracy
obtained in the end is virtually unchanged from the accuracy values obtained when training
and testing are performed together.

4.2. Grid Service Traffic Prediction Based on LSTM

In traffic services, especially for the grid service, current traffic may be influenced by
the previous moments. LSTM can capture the long-term dependencies in sequential data
and handle the temporal relationships between input data. By training, it can learn the
periodicity, trend, and special events in traffic, and then use these features for prediction.
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The LSTM model performs well in traffic prediction tasks. It is applied to dynamically
predict service traffic in the power 5G network slice, thereby adjusting the service carrying
requirements of the network slice.
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The traffic prediction algorithm utilizes a publicly available dataset from Internet
source providers (ISP) to verify the effectiveness of the prediction model [32]. Each traffic
data point in the dataset is measured at one-hour intervals, resulting in a total of 1232 data
points. After reading in the dataset, the traffic data are normalized and split into training
and testing datasets with an 8:2 ratio [33]. Time series data are then created, and the time
series length is set. Based on TensorFlow, LSTM and BILSTM models are established and
trained on the training dataset, obtaining the loss values for both the training and the testing
datasets during the training process. Finally, predictions are made and the denormalized
results are compared to the true values. The data processing flowchart for the BILSTM
model is shown in Figure 9.
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Figure 9. Flow chart of data processing in LSTM and BILSTM model.

Figure 10 shows the loss values of the LSTM and BILSTM as the model is continuously
trained. Figure 10a shows the loss values for the training set and Figure 10b shows the loss
values for the test set. It can be seen that the loss values in both the training and test sets
gradually decrease, with the loss values in both the training set being lower than those in
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the validation set. Loss and val_loss represent training error and testing error, respectively.
At the same time, the loss values of the BILSTM model were both lower than those of the
LSTM model. Therefore, the use of the BILSTM model for prediction is more effective and
can basically satisfy the task of traffic prediction in the power network slicing.
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Figure 10. Training loss values of LSTM model and BILSTM model. (a) Loss values for the training
set. (b) Loss values for the test set.

As shown in Table 4, multiple predicted values were obtained by changing the time
series length. According to the comparison results of MAPE, it can be seen that the smallest
error was obtained when the time series length was set to 10. The comparison chart of the
predicted results and actual values shown in Figure 11 was based on the BILSTM model
with a time series length set to 10. At this point, the MAPE of the BILSTM model was 6%.
The red solid line shows the actual values of the test set and the black dashed line shows
the predicted values based on the BILSTM model. As can be seen from the figures, the
two curves are in good agreement. Figure 12 shows a statistical histogram of the different
relative errors and it can be seen that about 90% of the predicted data have a relative error
of less than 10%. Table 5 and Figure 13 show the comparison of MAPE under the BILSTM
method used in this paper with the four methods mentioned in [32]. From the table and bar
chart, it can be seen that the use of BILSTM method has reduced the MAPE of this dataset
and gives better and stable prediction results.

Table 4. MAPE corresponding to different time series lengths.

Length/h MAPE/%

5 9.18
10 6.32
30 8.58

Table 5. MAPE values for different methods.

Method Naïve Holt-Winters ARIMS NNE BILSTM

MAPE 65.67% 50.60% 26.96% 23.48 ± 0.49% 6.32%
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5. Conclusions

The 5G network slicing technology is a good solution to the complex service needs of
grid systems. The network slicing technology enables the isolation of electric power services
from other services whilst also meeting specific service requirements and quality of service
guarantees. This paper combines 1D CNN and BILSTM to extract data features of traffic ser-
vices and encode the data, which proposes a neural network-based power 5G slicing service
carrying method to achieve electric power services classification matching and dynamic
traffic prediction. Through simulation verification, we can show that, based on the 1D CNN
neural network model, the features of electric power services are extracted, classified, and
matched. The recognition accuracy can reach up to 95% when the type of dataset is 10, and
the recognition can be carried out separately for the services in different grid areas, which
can improve the accuracy of dataset recognition and meet the mapping deployment of
5G power network slicing. Meanwhile, combined with the BILSTM-based service traffic
prediction, the model training loss value is small, the value of each evaluation index is opti-
mized compared with the BILSTM model, and the error of more than half of the prediction
values is less than 10%. This enables the scheduling configuration of services at the edge
nodes and meets the service-carrying requirements of 5G network slicing.
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Abbreviations

Acronym Definition
1D CNN One-Dimensional Convolutional Neural Network
5G 5th Generation Mobile Networks
BILSTM Bidirectional Long Short-Term Memory Neural Network
CNN Convolutional Neural Network
DC Data Centre
eMBB Enhanced Mobile Broadband
FA Feeder Automation
ISP Internet Source Providers
LSTM Long Short-Term Memory Neural Network
MAPE Mean Absolute Percentage Error
mMTC Massive Machine Type Communication
NFV Network Functions Virtualization
SDN Software Defined Network
SLA Service level Agreement
uRLLC Ultra-Reliable and Low-Latency Communication
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